1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_VECTOR_H 18 #define ANDROID_VECTOR_H 19 20 #include <new> 21 #include <stdint.h> 22 #include <sys/types.h> 23 24 #include <cutils/log.h> 25 26 #include <utils/VectorImpl.h> 27 #include <utils/TypeHelpers.h> 28 29 // --------------------------------------------------------------------------- 30 31 namespace android { 32 33 template <typename TYPE> 34 class SortedVector; 35 36 /*! 37 * The main templated vector class ensuring type safety 38 * while making use of VectorImpl. 39 * This is the class users want to use. 40 */ 41 42 template <class TYPE> 43 class Vector : private VectorImpl 44 { 45 public: 46 typedef TYPE value_type; 47 48 /*! 49 * Constructors and destructors 50 */ 51 52 Vector(); 53 Vector(const Vector<TYPE>& rhs); 54 explicit Vector(const SortedVector<TYPE>& rhs); 55 virtual ~Vector(); 56 57 /*! copy operator */ 58 const Vector<TYPE>& operator = (const Vector<TYPE>& rhs) const; 59 Vector<TYPE>& operator = (const Vector<TYPE>& rhs); 60 61 const Vector<TYPE>& operator = (const SortedVector<TYPE>& rhs) const; 62 Vector<TYPE>& operator = (const SortedVector<TYPE>& rhs); 63 64 /* 65 * empty the vector 66 */ 67 clear()68 inline void clear() { VectorImpl::clear(); } 69 70 /*! 71 * vector stats 72 */ 73 74 //! returns number of items in the vector size()75 inline size_t size() const { return VectorImpl::size(); } 76 //! returns whether or not the vector is empty isEmpty()77 inline bool isEmpty() const { return VectorImpl::isEmpty(); } 78 //! returns how many items can be stored without reallocating the backing store capacity()79 inline size_t capacity() const { return VectorImpl::capacity(); } 80 //! sets the capacity. capacity can never be reduced less than size() setCapacity(size_t size)81 inline ssize_t setCapacity(size_t size) { return VectorImpl::setCapacity(size); } 82 83 /*! 84 * C-style array access 85 */ 86 87 //! read-only C-style access 88 inline const TYPE* array() const; 89 //! read-write C-style access 90 TYPE* editArray(); 91 92 /*! 93 * accessors 94 */ 95 96 //! read-only access to an item at a given index 97 inline const TYPE& operator [] (size_t index) const; 98 //! alternate name for operator [] 99 inline const TYPE& itemAt(size_t index) const; 100 //! stack-usage of the vector. returns the top of the stack (last element) 101 const TYPE& top() const; 102 103 /*! 104 * modifying the array 105 */ 106 107 //! copy-on write support, grants write access to an item 108 TYPE& editItemAt(size_t index); 109 //! grants right access to the top of the stack (last element) 110 TYPE& editTop(); 111 112 /*! 113 * append/insert another vector 114 */ 115 116 //! insert another vector at a given index 117 ssize_t insertVectorAt(const Vector<TYPE>& vector, size_t index); 118 119 //! append another vector at the end of this one 120 ssize_t appendVector(const Vector<TYPE>& vector); 121 122 123 //! insert an array at a given index 124 ssize_t insertArrayAt(const TYPE* array, size_t index, size_t length); 125 126 //! append an array at the end of this vector 127 ssize_t appendArray(const TYPE* array, size_t length); 128 129 /*! 130 * add/insert/replace items 131 */ 132 133 //! insert one or several items initialized with their default constructor 134 inline ssize_t insertAt(size_t index, size_t numItems = 1); 135 //! insert one or several items initialized from a prototype item 136 ssize_t insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1); 137 //! pop the top of the stack (removes the last element). No-op if the stack's empty 138 inline void pop(); 139 //! pushes an item initialized with its default constructor 140 inline void push(); 141 //! pushes an item on the top of the stack 142 void push(const TYPE& item); 143 //! same as push() but returns the index the item was added at (or an error) 144 inline ssize_t add(); 145 //! same as push() but returns the index the item was added at (or an error) 146 ssize_t add(const TYPE& item); 147 //! replace an item with a new one initialized with its default constructor 148 inline ssize_t replaceAt(size_t index); 149 //! replace an item with a new one 150 ssize_t replaceAt(const TYPE& item, size_t index); 151 152 /*! 153 * remove items 154 */ 155 156 //! remove several items 157 inline ssize_t removeItemsAt(size_t index, size_t count = 1); 158 //! remove one item removeAt(size_t index)159 inline ssize_t removeAt(size_t index) { return removeItemsAt(index); } 160 161 /*! 162 * sort (stable) the array 163 */ 164 165 typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs); 166 typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state); 167 168 inline status_t sort(compar_t cmp); 169 inline status_t sort(compar_r_t cmp, void* state); 170 171 // for debugging only getItemSize()172 inline size_t getItemSize() const { return itemSize(); } 173 174 175 /* 176 * these inlines add some level of compatibility with STL. eventually 177 * we should probably turn things around. 178 */ 179 typedef TYPE* iterator; 180 typedef TYPE const* const_iterator; 181 begin()182 inline iterator begin() { return editArray(); } end()183 inline iterator end() { return editArray() + size(); } begin()184 inline const_iterator begin() const { return array(); } end()185 inline const_iterator end() const { return array() + size(); } reserve(size_t n)186 inline void reserve(size_t n) { setCapacity(n); } empty()187 inline bool empty() const{ return isEmpty(); } push_back(const TYPE & item)188 inline void push_back(const TYPE& item) { insertAt(item, size(), 1); } push_front(const TYPE & item)189 inline void push_front(const TYPE& item) { insertAt(item, 0, 1); } erase(iterator pos)190 inline iterator erase(iterator pos) { 191 return begin() + removeItemsAt(pos-array()); 192 } 193 194 protected: 195 virtual void do_construct(void* storage, size_t num) const; 196 virtual void do_destroy(void* storage, size_t num) const; 197 virtual void do_copy(void* dest, const void* from, size_t num) const; 198 virtual void do_splat(void* dest, const void* item, size_t num) const; 199 virtual void do_move_forward(void* dest, const void* from, size_t num) const; 200 virtual void do_move_backward(void* dest, const void* from, size_t num) const; 201 }; 202 203 // Vector<T> can be trivially moved using memcpy() because moving does not 204 // require any change to the underlying SharedBuffer contents or reference count. 205 template<typename T> struct trait_trivial_move<Vector<T> > { enum { value = true }; }; 206 207 // --------------------------------------------------------------------------- 208 // No user serviceable parts from here... 209 // --------------------------------------------------------------------------- 210 211 template<class TYPE> inline 212 Vector<TYPE>::Vector() 213 : VectorImpl(sizeof(TYPE), 214 ((traits<TYPE>::has_trivial_ctor ? HAS_TRIVIAL_CTOR : 0) 215 |(traits<TYPE>::has_trivial_dtor ? HAS_TRIVIAL_DTOR : 0) 216 |(traits<TYPE>::has_trivial_copy ? HAS_TRIVIAL_COPY : 0)) 217 ) 218 { 219 } 220 221 template<class TYPE> inline 222 Vector<TYPE>::Vector(const Vector<TYPE>& rhs) 223 : VectorImpl(rhs) { 224 } 225 226 template<class TYPE> inline 227 Vector<TYPE>::Vector(const SortedVector<TYPE>& rhs) 228 : VectorImpl(static_cast<const VectorImpl&>(rhs)) { 229 } 230 231 template<class TYPE> inline 232 Vector<TYPE>::~Vector() { 233 finish_vector(); 234 } 235 236 template<class TYPE> inline 237 Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) { 238 VectorImpl::operator = (rhs); 239 return *this; 240 } 241 242 template<class TYPE> inline 243 const Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) const { 244 VectorImpl::operator = (static_cast<const VectorImpl&>(rhs)); 245 return *this; 246 } 247 248 template<class TYPE> inline 249 Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) { 250 VectorImpl::operator = (static_cast<const VectorImpl&>(rhs)); 251 return *this; 252 } 253 254 template<class TYPE> inline 255 const Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const { 256 VectorImpl::operator = (rhs); 257 return *this; 258 } 259 260 template<class TYPE> inline 261 const TYPE* Vector<TYPE>::array() const { 262 return static_cast<const TYPE *>(arrayImpl()); 263 } 264 265 template<class TYPE> inline 266 TYPE* Vector<TYPE>::editArray() { 267 return static_cast<TYPE *>(editArrayImpl()); 268 } 269 270 271 template<class TYPE> inline 272 const TYPE& Vector<TYPE>::operator[](size_t index) const { 273 LOG_FATAL_IF(index>=size(), 274 "%s: index=%u out of range (%u)", __PRETTY_FUNCTION__, 275 int(index), int(size())); 276 return *(array() + index); 277 } 278 279 template<class TYPE> inline 280 const TYPE& Vector<TYPE>::itemAt(size_t index) const { 281 return operator[](index); 282 } 283 284 template<class TYPE> inline 285 const TYPE& Vector<TYPE>::top() const { 286 return *(array() + size() - 1); 287 } 288 289 template<class TYPE> inline 290 TYPE& Vector<TYPE>::editItemAt(size_t index) { 291 return *( static_cast<TYPE *>(editItemLocation(index)) ); 292 } 293 294 template<class TYPE> inline 295 TYPE& Vector<TYPE>::editTop() { 296 return *( static_cast<TYPE *>(editItemLocation(size()-1)) ); 297 } 298 299 template<class TYPE> inline 300 ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) { 301 return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index); 302 } 303 304 template<class TYPE> inline 305 ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) { 306 return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector)); 307 } 308 309 template<class TYPE> inline 310 ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) { 311 return VectorImpl::insertArrayAt(array, index, length); 312 } 313 314 template<class TYPE> inline 315 ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) { 316 return VectorImpl::appendArray(array, length); 317 } 318 319 template<class TYPE> inline 320 ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) { 321 return VectorImpl::insertAt(&item, index, numItems); 322 } 323 324 template<class TYPE> inline 325 void Vector<TYPE>::push(const TYPE& item) { 326 return VectorImpl::push(&item); 327 } 328 329 template<class TYPE> inline 330 ssize_t Vector<TYPE>::add(const TYPE& item) { 331 return VectorImpl::add(&item); 332 } 333 334 template<class TYPE> inline 335 ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) { 336 return VectorImpl::replaceAt(&item, index); 337 } 338 339 template<class TYPE> inline 340 ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) { 341 return VectorImpl::insertAt(index, numItems); 342 } 343 344 template<class TYPE> inline 345 void Vector<TYPE>::pop() { 346 VectorImpl::pop(); 347 } 348 349 template<class TYPE> inline 350 void Vector<TYPE>::push() { 351 VectorImpl::push(); 352 } 353 354 template<class TYPE> inline 355 ssize_t Vector<TYPE>::add() { 356 return VectorImpl::add(); 357 } 358 359 template<class TYPE> inline 360 ssize_t Vector<TYPE>::replaceAt(size_t index) { 361 return VectorImpl::replaceAt(index); 362 } 363 364 template<class TYPE> inline 365 ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) { 366 return VectorImpl::removeItemsAt(index, count); 367 } 368 369 template<class TYPE> inline 370 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) { 371 return VectorImpl::sort((VectorImpl::compar_t)cmp); 372 } 373 374 template<class TYPE> inline 375 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) { 376 return VectorImpl::sort((VectorImpl::compar_r_t)cmp, state); 377 } 378 379 // --------------------------------------------------------------------------- 380 381 template<class TYPE> 382 void Vector<TYPE>::do_construct(void* storage, size_t num) const { 383 construct_type( reinterpret_cast<TYPE*>(storage), num ); 384 } 385 386 template<class TYPE> 387 void Vector<TYPE>::do_destroy(void* storage, size_t num) const { 388 destroy_type( reinterpret_cast<TYPE*>(storage), num ); 389 } 390 391 template<class TYPE> 392 void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const { 393 copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 394 } 395 396 template<class TYPE> 397 void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const { 398 splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num ); 399 } 400 401 template<class TYPE> 402 void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const { 403 move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 404 } 405 406 template<class TYPE> 407 void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const { 408 move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 409 } 410 411 }; // namespace android 412 413 414 // --------------------------------------------------------------------------- 415 416 #endif // ANDROID_VECTOR_H 417