• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef LATINIME_BINARY_FORMAT_H
18 #define LATINIME_BINARY_FORMAT_H
19 
20 #include <limits>
21 #include <map>
22 #include "bloom_filter.h"
23 #include "char_utils.h"
24 
25 namespace latinime {
26 
27 class BinaryFormat {
28  public:
29     // Mask and flags for children address type selection.
30     static const int MASK_GROUP_ADDRESS_TYPE = 0xC0;
31     static const int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00;
32     static const int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40;
33     static const int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80;
34     static const int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0;
35 
36     // Flag for single/multiple char group
37     static const int FLAG_HAS_MULTIPLE_CHARS = 0x20;
38 
39     // Flag for terminal groups
40     static const int FLAG_IS_TERMINAL = 0x10;
41 
42     // Flag for shortcut targets presence
43     static const int FLAG_HAS_SHORTCUT_TARGETS = 0x08;
44     // Flag for bigram presence
45     static const int FLAG_HAS_BIGRAMS = 0x04;
46     // Flag for non-words (typically, shortcut only entries)
47     static const int FLAG_IS_NOT_A_WORD = 0x02;
48     // Flag for blacklist
49     static const int FLAG_IS_BLACKLISTED = 0x01;
50 
51     // Attribute (bigram/shortcut) related flags:
52     // Flag for presence of more attributes
53     static const int FLAG_ATTRIBUTE_HAS_NEXT = 0x80;
54     // Flag for sign of offset. If this flag is set, the offset value must be negated.
55     static const int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40;
56 
57     // Mask for attribute frequency, stored on 4 bits inside the flags byte.
58     static const int MASK_ATTRIBUTE_FREQUENCY = 0x0F;
59     // The numeric value of the shortcut frequency that means 'whitelist'.
60     static const int WHITELIST_SHORTCUT_FREQUENCY = 15;
61 
62     // Mask and flags for attribute address type selection.
63     static const int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30;
64     static const int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10;
65     static const int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20;
66     static const int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30;
67 
68     const static int UNKNOWN_FORMAT = -1;
69     // Originally, format version 1 had a 16-bit magic number, then the version number `01'
70     // then options that must be 0. Hence the first 32-bits of the format are always as follow
71     // and it's okay to consider them a magic number as a whole.
72     const static uint32_t FORMAT_VERSION_1_MAGIC_NUMBER = 0x78B10100;
73     const static unsigned int FORMAT_VERSION_1_HEADER_SIZE = 5;
74     // The versions of Latin IME that only handle format version 1 only test for the magic
75     // number, so we had to change it so that version 2 files would be rejected by older
76     // implementations. On this occasion, we made the magic number 32 bits long.
77     const static uint32_t FORMAT_VERSION_2_MAGIC_NUMBER = 0x9BC13AFE;
78 
79     const static int CHARACTER_ARRAY_TERMINATOR_SIZE = 1;
80     const static int SHORTCUT_LIST_SIZE_SIZE = 2;
81 
82     static int detectFormat(const uint8_t *const dict);
83     static unsigned int getHeaderSize(const uint8_t *const dict);
84     static unsigned int getFlags(const uint8_t *const dict);
85     static int getGroupCountAndForwardPointer(const uint8_t *const dict, int *pos);
86     static uint8_t getFlagsAndForwardPointer(const uint8_t *const dict, int *pos);
87     static int32_t getCodePointAndForwardPointer(const uint8_t *const dict, int *pos);
88     static int readFrequencyWithoutMovingPointer(const uint8_t *const dict, const int pos);
89     static int skipOtherCharacters(const uint8_t *const dict, const int pos);
90     static int skipChildrenPosition(const uint8_t flags, const int pos);
91     static int skipFrequency(const uint8_t flags, const int pos);
92     static int skipShortcuts(const uint8_t *const dict, const uint8_t flags, const int pos);
93     static int skipBigrams(const uint8_t *const dict, const uint8_t flags, const int pos);
94     static int skipChildrenPosAndAttributes(const uint8_t *const dict, const uint8_t flags,
95             const int pos);
96     static int readChildrenPosition(const uint8_t *const dict, const uint8_t flags, const int pos);
97     static bool hasChildrenInFlags(const uint8_t flags);
98     static int getAttributeAddressAndForwardPointer(const uint8_t *const dict, const uint8_t flags,
99             int *pos);
100     static int getAttributeFrequencyFromFlags(const int flags);
101     static int getTerminalPosition(const uint8_t *const root, const int32_t *const inWord,
102             const int length, const bool forceLowerCaseSearch);
103     static int getWordAtAddress(const uint8_t *const root, const int address, const int maxDepth,
104             uint16_t *outWord, int *outUnigramFrequency);
105     static int computeFrequencyForBigram(const int unigramFreq, const int bigramFreq);
106     static int getProbability(const int position, const std::map<int, int> *bigramMap,
107             const uint8_t *bigramFilter, const int unigramFreq);
108 
109     // Flags for special processing
110     // Those *must* match the flags in makedict (BinaryDictInputOutput#*_PROCESSING_FLAG) or
111     // something very bad (like, the apocalypse) will happen. Please update both at the same time.
112     enum {
113         REQUIRES_GERMAN_UMLAUT_PROCESSING = 0x1,
114         REQUIRES_FRENCH_LIGATURES_PROCESSING = 0x4
115     };
116     const static unsigned int NO_FLAGS = 0;
117 
118  private:
119     DISALLOW_IMPLICIT_CONSTRUCTORS(BinaryFormat);
120     const static int32_t MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
121     const static int32_t CHARACTER_ARRAY_TERMINATOR = 0x1F;
122     const static int MULTIPLE_BYTE_CHARACTER_ADDITIONAL_SIZE = 2;
123     static int skipAllAttributes(const uint8_t *const dict, const uint8_t flags, const int pos);
124 };
125 
detectFormat(const uint8_t * const dict)126 inline int BinaryFormat::detectFormat(const uint8_t *const dict) {
127     // The magic number is stored big-endian.
128     const uint32_t magicNumber = (dict[0] << 24) + (dict[1] << 16) + (dict[2] << 8) + dict[3];
129     switch (magicNumber) {
130     case FORMAT_VERSION_1_MAGIC_NUMBER:
131         // Format 1 header is exactly 5 bytes long and looks like:
132         // Magic number (2 bytes) 0x78 0xB1
133         // Version number (1 byte) 0x01
134         // Options (2 bytes) must be 0x00 0x00
135         return 1;
136     case FORMAT_VERSION_2_MAGIC_NUMBER:
137         // Format 2 header is as follows:
138         // Magic number (4 bytes) 0x9B 0xC1 0x3A 0xFE
139         // Version number (2 bytes) 0x00 0x02
140         // Options (2 bytes)
141         // Header size (4 bytes) : integer, big endian
142         return (dict[4] << 8) + dict[5];
143     default:
144         return UNKNOWN_FORMAT;
145     }
146 }
147 
getFlags(const uint8_t * const dict)148 inline unsigned int BinaryFormat::getFlags(const uint8_t *const dict) {
149     switch (detectFormat(dict)) {
150     case 1:
151         return NO_FLAGS;
152     default:
153         return (dict[6] << 8) + dict[7];
154     }
155 }
156 
getHeaderSize(const uint8_t * const dict)157 inline unsigned int BinaryFormat::getHeaderSize(const uint8_t *const dict) {
158     switch (detectFormat(dict)) {
159     case 1:
160         return FORMAT_VERSION_1_HEADER_SIZE;
161     case 2:
162         // See the format of the header in the comment in detectFormat() above
163         return (dict[8] << 24) + (dict[9] << 16) + (dict[10] << 8) + dict[11];
164     default:
165         return std::numeric_limits<unsigned int>::max();
166     }
167 }
168 
getGroupCountAndForwardPointer(const uint8_t * const dict,int * pos)169 inline int BinaryFormat::getGroupCountAndForwardPointer(const uint8_t *const dict, int *pos) {
170     const int msb = dict[(*pos)++];
171     if (msb < 0x80) return msb;
172     return ((msb & 0x7F) << 8) | dict[(*pos)++];
173 }
174 
getFlagsAndForwardPointer(const uint8_t * const dict,int * pos)175 inline uint8_t BinaryFormat::getFlagsAndForwardPointer(const uint8_t *const dict, int *pos) {
176     return dict[(*pos)++];
177 }
178 
getCodePointAndForwardPointer(const uint8_t * const dict,int * pos)179 inline int32_t BinaryFormat::getCodePointAndForwardPointer(const uint8_t *const dict, int *pos) {
180     const int origin = *pos;
181     const int32_t codePoint = dict[origin];
182     if (codePoint < MINIMAL_ONE_BYTE_CHARACTER_VALUE) {
183         if (codePoint == CHARACTER_ARRAY_TERMINATOR) {
184             *pos = origin + 1;
185             return NOT_A_CODE_POINT;
186         } else {
187             *pos = origin + 3;
188             const int32_t char_1 = codePoint << 16;
189             const int32_t char_2 = char_1 + (dict[origin + 1] << 8);
190             return char_2 + dict[origin + 2];
191         }
192     } else {
193         *pos = origin + 1;
194         return codePoint;
195     }
196 }
197 
readFrequencyWithoutMovingPointer(const uint8_t * const dict,const int pos)198 inline int BinaryFormat::readFrequencyWithoutMovingPointer(const uint8_t *const dict,
199         const int pos) {
200     return dict[pos];
201 }
202 
skipOtherCharacters(const uint8_t * const dict,const int pos)203 inline int BinaryFormat::skipOtherCharacters(const uint8_t *const dict, const int pos) {
204     int currentPos = pos;
205     int32_t character = dict[currentPos++];
206     while (CHARACTER_ARRAY_TERMINATOR != character) {
207         if (character < MINIMAL_ONE_BYTE_CHARACTER_VALUE) {
208             currentPos += MULTIPLE_BYTE_CHARACTER_ADDITIONAL_SIZE;
209         }
210         character = dict[currentPos++];
211     }
212     return currentPos;
213 }
214 
attributeAddressSize(const uint8_t flags)215 static inline int attributeAddressSize(const uint8_t flags) {
216     static const int ATTRIBUTE_ADDRESS_SHIFT = 4;
217     return (flags & BinaryFormat::MASK_ATTRIBUTE_ADDRESS_TYPE) >> ATTRIBUTE_ADDRESS_SHIFT;
218     /* Note: this is a value-dependant optimization of what may probably be
219        more readably written this way:
220        switch (flags * BinaryFormat::MASK_ATTRIBUTE_ADDRESS_TYPE) {
221        case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: return 1;
222        case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: return 2;
223        case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTE: return 3;
224        default: return 0;
225        }
226     */
227 }
228 
skipExistingBigrams(const uint8_t * const dict,const int pos)229 static inline int skipExistingBigrams(const uint8_t *const dict, const int pos) {
230     int currentPos = pos;
231     uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(dict, &currentPos);
232     while (flags & BinaryFormat::FLAG_ATTRIBUTE_HAS_NEXT) {
233         currentPos += attributeAddressSize(flags);
234         flags = BinaryFormat::getFlagsAndForwardPointer(dict, &currentPos);
235     }
236     currentPos += attributeAddressSize(flags);
237     return currentPos;
238 }
239 
childrenAddressSize(const uint8_t flags)240 static inline int childrenAddressSize(const uint8_t flags) {
241     static const int CHILDREN_ADDRESS_SHIFT = 6;
242     return (BinaryFormat::MASK_GROUP_ADDRESS_TYPE & flags) >> CHILDREN_ADDRESS_SHIFT;
243     /* See the note in attributeAddressSize. The same applies here */
244 }
245 
shortcutByteSize(const uint8_t * const dict,const int pos)246 static inline int shortcutByteSize(const uint8_t *const dict, const int pos) {
247     return ((int)(dict[pos] << 8)) + (dict[pos + 1]);
248 }
249 
skipChildrenPosition(const uint8_t flags,const int pos)250 inline int BinaryFormat::skipChildrenPosition(const uint8_t flags, const int pos) {
251     return pos + childrenAddressSize(flags);
252 }
253 
skipFrequency(const uint8_t flags,const int pos)254 inline int BinaryFormat::skipFrequency(const uint8_t flags, const int pos) {
255     return FLAG_IS_TERMINAL & flags ? pos + 1 : pos;
256 }
257 
skipShortcuts(const uint8_t * const dict,const uint8_t flags,const int pos)258 inline int BinaryFormat::skipShortcuts(const uint8_t *const dict, const uint8_t flags,
259         const int pos) {
260     if (FLAG_HAS_SHORTCUT_TARGETS & flags) {
261         return pos + shortcutByteSize(dict, pos);
262     } else {
263         return pos;
264     }
265 }
266 
skipBigrams(const uint8_t * const dict,const uint8_t flags,const int pos)267 inline int BinaryFormat::skipBigrams(const uint8_t *const dict, const uint8_t flags,
268         const int pos) {
269     if (FLAG_HAS_BIGRAMS & flags) {
270         return skipExistingBigrams(dict, pos);
271     } else {
272         return pos;
273     }
274 }
275 
skipAllAttributes(const uint8_t * const dict,const uint8_t flags,const int pos)276 inline int BinaryFormat::skipAllAttributes(const uint8_t *const dict, const uint8_t flags,
277         const int pos) {
278     // This function skips all attributes: shortcuts and bigrams.
279     int newPos = pos;
280     newPos = skipShortcuts(dict, flags, newPos);
281     newPos = skipBigrams(dict, flags, newPos);
282     return newPos;
283 }
284 
skipChildrenPosAndAttributes(const uint8_t * const dict,const uint8_t flags,const int pos)285 inline int BinaryFormat::skipChildrenPosAndAttributes(const uint8_t *const dict,
286         const uint8_t flags, const int pos) {
287     int currentPos = pos;
288     currentPos = skipChildrenPosition(flags, currentPos);
289     currentPos = skipAllAttributes(dict, flags, currentPos);
290     return currentPos;
291 }
292 
readChildrenPosition(const uint8_t * const dict,const uint8_t flags,const int pos)293 inline int BinaryFormat::readChildrenPosition(const uint8_t *const dict, const uint8_t flags,
294         const int pos) {
295     int offset = 0;
296     switch (MASK_GROUP_ADDRESS_TYPE & flags) {
297         case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
298             offset = dict[pos];
299             break;
300         case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
301             offset = dict[pos] << 8;
302             offset += dict[pos + 1];
303             break;
304         case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
305             offset = dict[pos] << 16;
306             offset += dict[pos + 1] << 8;
307             offset += dict[pos + 2];
308             break;
309         default:
310             // If we come here, it means we asked for the children of a word with
311             // no children.
312             return -1;
313     }
314     return pos + offset;
315 }
316 
hasChildrenInFlags(const uint8_t flags)317 inline bool BinaryFormat::hasChildrenInFlags(const uint8_t flags) {
318     return (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS != (MASK_GROUP_ADDRESS_TYPE & flags));
319 }
320 
getAttributeAddressAndForwardPointer(const uint8_t * const dict,const uint8_t flags,int * pos)321 inline int BinaryFormat::getAttributeAddressAndForwardPointer(const uint8_t *const dict,
322         const uint8_t flags, int *pos) {
323     int offset = 0;
324     const int origin = *pos;
325     switch (MASK_ATTRIBUTE_ADDRESS_TYPE & flags) {
326         case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
327             offset = dict[origin];
328             *pos = origin + 1;
329             break;
330         case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
331             offset = dict[origin] << 8;
332             offset += dict[origin + 1];
333             *pos = origin + 2;
334             break;
335         case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
336             offset = dict[origin] << 16;
337             offset += dict[origin + 1] << 8;
338             offset += dict[origin + 2];
339             *pos = origin + 3;
340             break;
341     }
342     if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE & flags) {
343         return origin - offset;
344     } else {
345         return origin + offset;
346     }
347 }
348 
getAttributeFrequencyFromFlags(const int flags)349 inline int BinaryFormat::getAttributeFrequencyFromFlags(const int flags) {
350     return flags & MASK_ATTRIBUTE_FREQUENCY;
351 }
352 
353 // This function gets the byte position of the last chargroup of the exact matching word in the
354 // dictionary. If no match is found, it returns NOT_VALID_WORD.
getTerminalPosition(const uint8_t * const root,const int32_t * const inWord,const int length,const bool forceLowerCaseSearch)355 inline int BinaryFormat::getTerminalPosition(const uint8_t *const root,
356         const int32_t *const inWord, const int length, const bool forceLowerCaseSearch) {
357     int pos = 0;
358     int wordPos = 0;
359 
360     while (true) {
361         // If we already traversed the tree further than the word is long, there means
362         // there was no match (or we would have found it).
363         if (wordPos >= length) return NOT_VALID_WORD;
364         int charGroupCount = BinaryFormat::getGroupCountAndForwardPointer(root, &pos);
365         const int32_t wChar = forceLowerCaseSearch ? toLowerCase(inWord[wordPos]) : inWord[wordPos];
366         while (true) {
367             // If there are no more character groups in this node, it means we could not
368             // find a matching character for this depth, therefore there is no match.
369             if (0 >= charGroupCount) return NOT_VALID_WORD;
370             const int charGroupPos = pos;
371             const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
372             int32_t character = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
373             if (character == wChar) {
374                 // This is the correct node. Only one character group may start with the same
375                 // char within a node, so either we found our match in this node, or there is
376                 // no match and we can return NOT_VALID_WORD. So we will check all the characters
377                 // in this character group indeed does match.
378                 if (FLAG_HAS_MULTIPLE_CHARS & flags) {
379                     character = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
380                     while (NOT_A_CODE_POINT != character) {
381                         ++wordPos;
382                         // If we shoot the length of the word we search for, or if we find a single
383                         // character that does not match, as explained above, it means the word is
384                         // not in the dictionary (by virtue of this chargroup being the only one to
385                         // match the word on the first character, but not matching the whole word).
386                         if (wordPos >= length) return NOT_VALID_WORD;
387                         if (inWord[wordPos] != character) return NOT_VALID_WORD;
388                         character = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
389                     }
390                 }
391                 // If we come here we know that so far, we do match. Either we are on a terminal
392                 // and we match the length, in which case we found it, or we traverse children.
393                 // If we don't match the length AND don't have children, then a word in the
394                 // dictionary fully matches a prefix of the searched word but not the full word.
395                 ++wordPos;
396                 if (FLAG_IS_TERMINAL & flags) {
397                     if (wordPos == length) {
398                         return charGroupPos;
399                     }
400                     pos = BinaryFormat::skipFrequency(FLAG_IS_TERMINAL, pos);
401                 }
402                 if (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS == (MASK_GROUP_ADDRESS_TYPE & flags)) {
403                     return NOT_VALID_WORD;
404                 }
405                 // We have children and we are still shorter than the word we are searching for, so
406                 // we need to traverse children. Put the pointer on the children position, and
407                 // break
408                 pos = BinaryFormat::readChildrenPosition(root, flags, pos);
409                 break;
410             } else {
411                 // This chargroup does not match, so skip the remaining part and go to the next.
412                 if (FLAG_HAS_MULTIPLE_CHARS & flags) {
413                     pos = BinaryFormat::skipOtherCharacters(root, pos);
414                 }
415                 pos = BinaryFormat::skipFrequency(flags, pos);
416                 pos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
417             }
418             --charGroupCount;
419         }
420     }
421 }
422 
423 // This function searches for a terminal in the dictionary by its address.
424 // Due to the fact that words are ordered in the dictionary in a strict breadth-first order,
425 // it is possible to check for this with advantageous complexity. For each node, we search
426 // for groups with children and compare the children address with the address we look for.
427 // When we shoot the address we look for, it means the word we look for is in the children
428 // of the previous group. The only tricky part is the fact that if we arrive at the end of a
429 // node with the last group's children address still less than what we are searching for, we
430 // must descend the last group's children (for example, if the word we are searching for starts
431 // with a z, it's the last group of the root node, so all children addresses will be smaller
432 // than the address we look for, and we have to descend the z node).
433 /* Parameters :
434  * root: the dictionary buffer
435  * address: the byte position of the last chargroup of the word we are searching for (this is
436  *   what is stored as the "bigram address" in each bigram)
437  * outword: an array to write the found word, with MAX_WORD_LENGTH size.
438  * outUnigramFrequency: a pointer to an int to write the frequency into.
439  * Return value : the length of the word, of 0 if the word was not found.
440  */
getWordAtAddress(const uint8_t * const root,const int address,const int maxDepth,uint16_t * outWord,int * outUnigramFrequency)441 inline int BinaryFormat::getWordAtAddress(const uint8_t *const root, const int address,
442         const int maxDepth, uint16_t *outWord, int *outUnigramFrequency) {
443     int pos = 0;
444     int wordPos = 0;
445 
446     // One iteration of the outer loop iterates through nodes. As stated above, we will only
447     // traverse nodes that are actually a part of the terminal we are searching, so each time
448     // we enter this loop we are one depth level further than last time.
449     // The only reason we count nodes is because we want to reduce the probability of infinite
450     // looping in case there is a bug. Since we know there is an upper bound to the depth we are
451     // supposed to traverse, it does not hurt to count iterations.
452     for (int loopCount = maxDepth; loopCount > 0; --loopCount) {
453         int lastCandidateGroupPos = 0;
454         // Let's loop through char groups in this node searching for either the terminal
455         // or one of its ascendants.
456         for (int charGroupCount = getGroupCountAndForwardPointer(root, &pos); charGroupCount > 0;
457                  --charGroupCount) {
458             const int startPos = pos;
459             const uint8_t flags = getFlagsAndForwardPointer(root, &pos);
460             const int32_t character = getCodePointAndForwardPointer(root, &pos);
461             if (address == startPos) {
462                 // We found the address. Copy the rest of the word in the buffer and return
463                 // the length.
464                 outWord[wordPos] = character;
465                 if (FLAG_HAS_MULTIPLE_CHARS & flags) {
466                     int32_t nextChar = getCodePointAndForwardPointer(root, &pos);
467                     // We count chars in order to avoid infinite loops if the file is broken or
468                     // if there is some other bug
469                     int charCount = maxDepth;
470                     while (NOT_A_CODE_POINT != nextChar && --charCount > 0) {
471                         outWord[++wordPos] = nextChar;
472                         nextChar = getCodePointAndForwardPointer(root, &pos);
473                     }
474                 }
475                 *outUnigramFrequency = readFrequencyWithoutMovingPointer(root, pos);
476                 return ++wordPos;
477             }
478             // We need to skip past this char group, so skip any remaining chars after the
479             // first and possibly the frequency.
480             if (FLAG_HAS_MULTIPLE_CHARS & flags) {
481                 pos = skipOtherCharacters(root, pos);
482             }
483             pos = skipFrequency(flags, pos);
484 
485             // The fact that this group has children is very important. Since we already know
486             // that this group does not match, if it has no children we know it is irrelevant
487             // to what we are searching for.
488             const bool hasChildren = (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS !=
489                     (MASK_GROUP_ADDRESS_TYPE & flags));
490             // We will write in `found' whether we have passed the children address we are
491             // searching for. For example if we search for "beer", the children of b are less
492             // than the address we are searching for and the children of c are greater. When we
493             // come here for c, we realize this is too big, and that we should descend b.
494             bool found;
495             if (hasChildren) {
496                 // Here comes the tricky part. First, read the children position.
497                 const int childrenPos = readChildrenPosition(root, flags, pos);
498                 if (childrenPos > address) {
499                     // If the children pos is greater than address, it means the previous chargroup,
500                     // which address is stored in lastCandidateGroupPos, was the right one.
501                     found = true;
502                 } else if (1 >= charGroupCount) {
503                     // However if we are on the LAST group of this node, and we have NOT shot the
504                     // address we should descend THIS node. So we trick the lastCandidateGroupPos
505                     // so that we will descend this node, not the previous one.
506                     lastCandidateGroupPos = startPos;
507                     found = true;
508                 } else {
509                     // Else, we should continue looking.
510                     found = false;
511                 }
512             } else {
513                 // Even if we don't have children here, we could still be on the last group of this
514                 // node. If this is the case, we should descend the last group that had children,
515                 // and their address is already in lastCandidateGroup.
516                 found = (1 >= charGroupCount);
517             }
518 
519             if (found) {
520                 // Okay, we found the group we should descend. Its address is in
521                 // the lastCandidateGroupPos variable, so we just re-read it.
522                 if (0 != lastCandidateGroupPos) {
523                     const uint8_t lastFlags =
524                             getFlagsAndForwardPointer(root, &lastCandidateGroupPos);
525                     const int32_t lastChar =
526                             getCodePointAndForwardPointer(root, &lastCandidateGroupPos);
527                     // We copy all the characters in this group to the buffer
528                     outWord[wordPos] = lastChar;
529                     if (FLAG_HAS_MULTIPLE_CHARS & lastFlags) {
530                         int32_t nextChar =
531                                 getCodePointAndForwardPointer(root, &lastCandidateGroupPos);
532                         int charCount = maxDepth;
533                         while (-1 != nextChar && --charCount > 0) {
534                             outWord[++wordPos] = nextChar;
535                             nextChar = getCodePointAndForwardPointer(root, &lastCandidateGroupPos);
536                         }
537                     }
538                     ++wordPos;
539                     // Now we only need to branch to the children address. Skip the frequency if
540                     // it's there, read pos, and break to resume the search at pos.
541                     lastCandidateGroupPos = skipFrequency(lastFlags, lastCandidateGroupPos);
542                     pos = readChildrenPosition(root, lastFlags, lastCandidateGroupPos);
543                     break;
544                 } else {
545                     // Here is a little tricky part: we come here if we found out that all children
546                     // addresses in this group are bigger than the address we are searching for.
547                     // Should we conclude the word is not in the dictionary? No! It could still be
548                     // one of the remaining chargroups in this node, so we have to keep looking in
549                     // this node until we find it (or we realize it's not there either, in which
550                     // case it's actually not in the dictionary). Pass the end of this group, ready
551                     // to start the next one.
552                     pos = skipChildrenPosAndAttributes(root, flags, pos);
553                 }
554             } else {
555                 // If we did not find it, we should record the last children address for the next
556                 // iteration.
557                 if (hasChildren) lastCandidateGroupPos = startPos;
558                 // Now skip the end of this group (children pos and the attributes if any) so that
559                 // our pos is after the end of this char group, at the start of the next one.
560                 pos = skipChildrenPosAndAttributes(root, flags, pos);
561             }
562 
563         }
564     }
565     // If we have looked through all the chargroups and found no match, the address is
566     // not the address of a terminal in this dictionary.
567     return 0;
568 }
569 
backoff(const int unigramFreq)570 static inline int backoff(const int unigramFreq) {
571     return unigramFreq;
572     // For some reason, applying the backoff weight gives bad results in tests. To apply the
573     // backoff weight, we divide the probability by 2, which in our storing format means
574     // decreasing the score by 8.
575     // TODO: figure out what's wrong with this.
576     // return unigramFreq > 8 ? unigramFreq - 8 : (0 == unigramFreq ? 0 : 8);
577 }
578 
computeFrequencyForBigram(const int unigramFreq,const int bigramFreq)579 inline int BinaryFormat::computeFrequencyForBigram(const int unigramFreq, const int bigramFreq) {
580     // We divide the range [unigramFreq..255] in 16.5 steps - in other words, we want the
581     // unigram frequency to be the median value of the 17th step from the top. A value of
582     // 0 for the bigram frequency represents the middle of the 16th step from the top,
583     // while a value of 15 represents the middle of the top step.
584     // See makedict.BinaryDictInputOutput for details.
585     const float stepSize = static_cast<float>(MAX_FREQ - unigramFreq) / (1.5f + MAX_BIGRAM_FREQ);
586     return unigramFreq + static_cast<int>(static_cast<float>(bigramFreq + 1) * stepSize);
587 }
588 
589 // This returns a probability in log space.
getProbability(const int position,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,const int unigramFreq)590 inline int BinaryFormat::getProbability(const int position, const std::map<int, int> *bigramMap,
591         const uint8_t *bigramFilter, const int unigramFreq) {
592     if (!bigramMap || !bigramFilter) return backoff(unigramFreq);
593     if (!isInFilter(bigramFilter, position)) return backoff(unigramFreq);
594     const std::map<int, int>::const_iterator bigramFreqIt = bigramMap->find(position);
595     if (bigramFreqIt != bigramMap->end()) {
596         const int bigramFreq = bigramFreqIt->second;
597         return computeFrequencyForBigram(unigramFreq, bigramFreq);
598     } else {
599         return backoff(unigramFreq);
600     }
601 }
602 } // namespace latinime
603 #endif // LATINIME_BINARY_FORMAT_H
604