• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010, The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <cassert>
18 #include <cstring>
19 
20 #define LOG_TAG "LatinIME: unigram_dictionary.cpp"
21 
22 #include "binary_format.h"
23 #include "char_utils.h"
24 #include "defines.h"
25 #include "dictionary.h"
26 #include "proximity_info.h"
27 #include "terminal_attributes.h"
28 #include "unigram_dictionary.h"
29 #include "words_priority_queue.h"
30 #include "words_priority_queue_pool.h"
31 
32 namespace latinime {
33 
34 const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
35         { { 'a', 'e', 0x00E4 }, // U+00E4 : LATIN SMALL LETTER A WITH DIAERESIS
36         { 'o', 'e', 0x00F6 }, // U+00F6 : LATIN SMALL LETTER O WITH DIAERESIS
37         { 'u', 'e', 0x00FC } }; // U+00FC : LATIN SMALL LETTER U WITH DIAERESIS
38 
39 const UnigramDictionary::digraph_t UnigramDictionary::FRENCH_LIGATURES_DIGRAPHS[] =
40         { { 'a', 'e', 0x00E6 }, // U+00E6 : LATIN SMALL LETTER AE
41         { 'o', 'e', 0x0153 } }; // U+0153 : LATIN SMALL LIGATURE OE
42 
43 // TODO: check the header
UnigramDictionary(const uint8_t * const streamStart,int typedLetterMultiplier,int fullWordMultiplier,int maxWordLength,int maxWords,const unsigned int flags)44 UnigramDictionary::UnigramDictionary(const uint8_t *const streamStart, int typedLetterMultiplier,
45         int fullWordMultiplier, int maxWordLength, int maxWords, const unsigned int flags)
46     : DICT_ROOT(streamStart), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
47     TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
48       // TODO : remove this variable.
49     ROOT_POS(0),
50     BYTES_IN_ONE_CHAR(sizeof(int)),
51     MAX_DIGRAPH_SEARCH_DEPTH(DEFAULT_MAX_DIGRAPH_SEARCH_DEPTH), FLAGS(flags) {
52     if (DEBUG_DICT) {
53         AKLOGI("UnigramDictionary - constructor");
54     }
55 }
56 
~UnigramDictionary()57 UnigramDictionary::~UnigramDictionary() {
58 }
59 
getCodesBufferSize(const int * codes,const int codesSize)60 static inline unsigned int getCodesBufferSize(const int *codes, const int codesSize) {
61     return static_cast<unsigned int>(sizeof(*codes)) * codesSize;
62 }
63 
64 // TODO: This needs to take a const unsigned short* and not tinker with its contents
addWord(unsigned short * word,int length,int frequency,WordsPriorityQueue * queue,int type)65 static inline void addWord(unsigned short *word, int length, int frequency,
66         WordsPriorityQueue *queue, int type) {
67     queue->push(frequency, word, length, type);
68 }
69 
70 // Return the replacement code point for a digraph, or 0 if none.
getDigraphReplacement(const int * codes,const int i,const int codesSize,const digraph_t * const digraphs,const unsigned int digraphsSize) const71 int UnigramDictionary::getDigraphReplacement(const int *codes, const int i, const int codesSize,
72         const digraph_t *const digraphs, const unsigned int digraphsSize) const {
73 
74     // There can't be a digraph if we don't have at least 2 characters to examine
75     if (i + 2 > codesSize) return false;
76 
77     // Search for the first char of some digraph
78     int lastDigraphIndex = -1;
79     const int thisChar = codes[i];
80     for (lastDigraphIndex = digraphsSize - 1; lastDigraphIndex >= 0; --lastDigraphIndex) {
81         if (thisChar == digraphs[lastDigraphIndex].first) break;
82     }
83     // No match: return early
84     if (lastDigraphIndex < 0) return 0;
85 
86     // It's an interesting digraph if the second char matches too.
87     if (digraphs[lastDigraphIndex].second == codes[i + 1]) {
88         return digraphs[lastDigraphIndex].replacement;
89     } else {
90         return 0;
91     }
92 }
93 
94 // Mostly the same arguments as the non-recursive version, except:
95 // codes is the original value. It points to the start of the work buffer, and gets passed as is.
96 // codesSize is the size of the user input (thus, it is the size of codesSrc).
97 // codesDest is the current point in the work buffer.
98 // codesSrc is the current point in the user-input, original, content-unmodified buffer.
99 // codesRemain is the remaining size in codesSrc.
getWordWithDigraphSuggestionsRec(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codesBuffer,int * xCoordinatesBuffer,int * yCoordinatesBuffer,const int codesBufferSize,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,const bool useFullEditDistance,const int * codesSrc,const int codesRemain,const int currentDepth,int * codesDest,Correction * correction,WordsPriorityQueuePool * queuePool,const digraph_t * const digraphs,const unsigned int digraphsSize) const100 void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo,
101         const int *xcoordinates, const int *ycoordinates, const int *codesBuffer,
102         int *xCoordinatesBuffer, int *yCoordinatesBuffer,
103         const int codesBufferSize, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
104         const bool useFullEditDistance, const int *codesSrc,
105         const int codesRemain, const int currentDepth, int *codesDest, Correction *correction,
106         WordsPriorityQueuePool *queuePool,
107         const digraph_t *const digraphs, const unsigned int digraphsSize) const {
108 
109     const int startIndex = static_cast<int>(codesDest - codesBuffer);
110     if (currentDepth < MAX_DIGRAPH_SEARCH_DEPTH) {
111         for (int i = 0; i < codesRemain; ++i) {
112             xCoordinatesBuffer[startIndex + i] = xcoordinates[codesBufferSize - codesRemain + i];
113             yCoordinatesBuffer[startIndex + i] = ycoordinates[codesBufferSize - codesRemain + i];
114             const int replacementCodePoint =
115                     getDigraphReplacement(codesSrc, i, codesRemain, digraphs, digraphsSize);
116             if (0 != replacementCodePoint) {
117                 // Found a digraph. We will try both spellings. eg. the word is "pruefen"
118 
119                 // Copy the word up to the first char of the digraph, including proximity chars,
120                 // and overwrite the primary code with the replacement code point. Then, continue
121                 // processing on the remaining part of the word, skipping the second char of the
122                 // digraph.
123                 // In our example, copy "pru", replace "u" with the version with the diaeresis and
124                 // continue running on "fen".
125                 // Make i the index of the second char of the digraph for simplicity. Forgetting
126                 // to do that results in an infinite recursion so take care!
127                 ++i;
128                 memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR);
129                 codesDest[(i - 1) * (BYTES_IN_ONE_CHAR / sizeof(codesDest[0]))] =
130                         replacementCodePoint;
131                 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
132                         codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize,
133                         bigramMap, bigramFilter, useFullEditDistance, codesSrc + i + 1,
134                         codesRemain - i - 1, currentDepth + 1, codesDest + i, correction,
135                         queuePool, digraphs, digraphsSize);
136 
137                 // Copy the second char of the digraph in place, then continue processing on
138                 // the remaining part of the word.
139                 // In our example, after "pru" in the buffer copy the "e", and continue on "fen"
140                 memcpy(codesDest + i, codesSrc + i, BYTES_IN_ONE_CHAR);
141                 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
142                         codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize,
143                         bigramMap, bigramFilter, useFullEditDistance, codesSrc + i, codesRemain - i,
144                         currentDepth + 1, codesDest + i, correction, queuePool, digraphs,
145                         digraphsSize);
146                 return;
147             }
148         }
149     }
150 
151     // If we come here, we hit the end of the word: let's check it against the dictionary.
152     // In our example, we'll come here once for "prufen" and then once for "pruefen".
153     // If the word contains several digraphs, we'll come it for the product of them.
154     // eg. if the word is "ueberpruefen" we'll test, in order, against
155     // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen".
156     const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain;
157     if (0 != remainingBytes) {
158         memcpy(codesDest, codesSrc, remainingBytes);
159         memcpy(&xCoordinatesBuffer[startIndex], &xcoordinates[codesBufferSize - codesRemain],
160                 sizeof(int) * codesRemain);
161         memcpy(&yCoordinatesBuffer[startIndex], &ycoordinates[codesBufferSize - codesRemain],
162                 sizeof(int) * codesRemain);
163     }
164 
165     getWordSuggestions(proximityInfo, xCoordinatesBuffer, yCoordinatesBuffer, codesBuffer,
166             startIndex + codesRemain, bigramMap, bigramFilter, useFullEditDistance, correction,
167             queuePool);
168 }
169 
170 // bigramMap contains the association <bigram address> -> <bigram frequency>
171 // bigramFilter is a bloom filter for fast rejection: see functions setInFilter and isInFilter
172 // in bigram_dictionary.cpp
getSuggestions(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const int codesSize,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,const bool useFullEditDistance,unsigned short * outWords,int * frequencies,int * outputTypes) const173 int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates,
174         const int *ycoordinates, const int *codes, const int codesSize,
175         const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
176         const bool useFullEditDistance, unsigned short *outWords, int *frequencies,
177         int *outputTypes) const {
178 
179     WordsPriorityQueuePool queuePool(MAX_WORDS, SUB_QUEUE_MAX_WORDS, MAX_WORD_LENGTH);
180     queuePool.clearAll();
181     Correction masterCorrection;
182     masterCorrection.resetCorrection();
183     if (BinaryFormat::REQUIRES_GERMAN_UMLAUT_PROCESSING & FLAGS)
184     { // Incrementally tune the word and try all possibilities
185         int codesBuffer[getCodesBufferSize(codes, codesSize)];
186         int xCoordinatesBuffer[codesSize];
187         int yCoordinatesBuffer[codesSize];
188         getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
189                 xCoordinatesBuffer, yCoordinatesBuffer, codesSize, bigramMap, bigramFilter,
190                 useFullEditDistance, codes, codesSize, 0, codesBuffer, &masterCorrection,
191                 &queuePool, GERMAN_UMLAUT_DIGRAPHS,
192                 sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]));
193     } else if (BinaryFormat::REQUIRES_FRENCH_LIGATURES_PROCESSING & FLAGS) {
194         int codesBuffer[getCodesBufferSize(codes, codesSize)];
195         int xCoordinatesBuffer[codesSize];
196         int yCoordinatesBuffer[codesSize];
197         getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
198                 xCoordinatesBuffer, yCoordinatesBuffer, codesSize, bigramMap, bigramFilter,
199                 useFullEditDistance, codes, codesSize, 0, codesBuffer, &masterCorrection,
200                 &queuePool, FRENCH_LIGATURES_DIGRAPHS,
201                 sizeof(FRENCH_LIGATURES_DIGRAPHS) / sizeof(FRENCH_LIGATURES_DIGRAPHS[0]));
202     } else { // Normal processing
203         getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize,
204                 bigramMap, bigramFilter, useFullEditDistance, &masterCorrection, &queuePool);
205     }
206 
207     PROF_START(20);
208     if (DEBUG_DICT) {
209         float ns = queuePool.getMasterQueue()->getHighestNormalizedScore(
210                 masterCorrection.getPrimaryInputWord(), codesSize, 0, 0, 0);
211         ns += 0;
212         AKLOGI("Max normalized score = %f", ns);
213     }
214     const int suggestedWordsCount =
215             queuePool.getMasterQueue()->outputSuggestions(masterCorrection.getPrimaryInputWord(),
216                     codesSize, frequencies, outWords, outputTypes);
217 
218     if (DEBUG_DICT) {
219         float ns = queuePool.getMasterQueue()->getHighestNormalizedScore(
220                 masterCorrection.getPrimaryInputWord(), codesSize, 0, 0, 0);
221         ns += 0;
222         AKLOGI("Returning %d words", suggestedWordsCount);
223         /// Print the returned words
224         for (int j = 0; j < suggestedWordsCount; ++j) {
225             short unsigned int *w = outWords + j * MAX_WORD_LENGTH;
226             char s[MAX_WORD_LENGTH];
227             for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i];
228             (void)s; // To suppress compiler warning
229             AKLOGI("%s %i", s, frequencies[j]);
230         }
231     }
232     PROF_END(20);
233     PROF_CLOSE;
234     return suggestedWordsCount;
235 }
236 
getWordSuggestions(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const int inputSize,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,const bool useFullEditDistance,Correction * correction,WordsPriorityQueuePool * queuePool) const237 void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
238         const int *xcoordinates, const int *ycoordinates, const int *codes,
239         const int inputSize, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
240         const bool useFullEditDistance, Correction *correction,
241         WordsPriorityQueuePool *queuePool) const {
242 
243     PROF_OPEN;
244     PROF_START(0);
245     PROF_END(0);
246 
247     PROF_START(1);
248     getOneWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, bigramMap, bigramFilter,
249             useFullEditDistance, inputSize, correction, queuePool);
250     PROF_END(1);
251 
252     PROF_START(2);
253     // Note: This line is intentionally left blank
254     PROF_END(2);
255 
256     PROF_START(3);
257     // Note: This line is intentionally left blank
258     PROF_END(3);
259 
260     PROF_START(4);
261     bool hasAutoCorrectionCandidate = false;
262     WordsPriorityQueue *masterQueue = queuePool->getMasterQueue();
263     if (masterQueue->size() > 0) {
264         float nsForMaster = masterQueue->getHighestNormalizedScore(
265                 correction->getPrimaryInputWord(), inputSize, 0, 0, 0);
266         hasAutoCorrectionCandidate = (nsForMaster > START_TWO_WORDS_CORRECTION_THRESHOLD);
267     }
268     PROF_END(4);
269 
270     PROF_START(5);
271     // Multiple word suggestions
272     if (SUGGEST_MULTIPLE_WORDS
273             && inputSize >= MIN_USER_TYPED_LENGTH_FOR_MULTIPLE_WORD_SUGGESTION) {
274         getSplitMultipleWordsSuggestions(proximityInfo, xcoordinates, ycoordinates, codes,
275                 useFullEditDistance, inputSize, correction, queuePool,
276                 hasAutoCorrectionCandidate);
277     }
278     PROF_END(5);
279 
280     PROF_START(6);
281     // Note: This line is intentionally left blank
282     PROF_END(6);
283 
284     if (DEBUG_DICT) {
285         queuePool->dumpSubQueue1TopSuggestions();
286         for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) {
287             WordsPriorityQueue *queue = queuePool->getSubQueue(FIRST_WORD_INDEX, i);
288             if (queue->size() > 0) {
289                 WordsPriorityQueue::SuggestedWord *sw = queue->top();
290                 const int score = sw->mScore;
291                 const unsigned short *word = sw->mWord;
292                 const int wordLength = sw->mWordLength;
293                 float ns = Correction::RankingAlgorithm::calcNormalizedScore(
294                         correction->getPrimaryInputWord(), i, word, wordLength, score);
295                 ns += 0;
296                 AKLOGI("--- TOP SUB WORDS for %d --- %d %f [%d]", i, score, ns,
297                         (ns > TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD));
298                 DUMP_WORD(correction->getPrimaryInputWord(), i);
299                 DUMP_WORD(word, wordLength);
300             }
301         }
302     }
303 }
304 
initSuggestions(ProximityInfo * proximityInfo,const int * xCoordinates,const int * yCoordinates,const int * codes,const int inputSize,Correction * correction) const305 void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xCoordinates,
306         const int *yCoordinates, const int *codes, const int inputSize,
307         Correction *correction) const {
308     if (DEBUG_DICT) {
309         AKLOGI("initSuggest");
310         DUMP_WORD_INT(codes, inputSize);
311     }
312     correction->initInputParams(proximityInfo, codes, inputSize, xCoordinates, yCoordinates);
313     const int maxDepth = min(inputSize * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
314     correction->initCorrection(proximityInfo, inputSize, maxDepth);
315 }
316 
317 static const char SPACE = ' ';
318 
getOneWordSuggestions(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,const bool useFullEditDistance,const int inputSize,Correction * correction,WordsPriorityQueuePool * queuePool) const319 void UnigramDictionary::getOneWordSuggestions(ProximityInfo *proximityInfo,
320         const int *xcoordinates, const int *ycoordinates, const int *codes,
321         const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
322         const bool useFullEditDistance, const int inputSize,
323         Correction *correction, WordsPriorityQueuePool *queuePool) const {
324     initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, inputSize, correction);
325     getSuggestionCandidates(useFullEditDistance, inputSize, bigramMap, bigramFilter, correction,
326             queuePool, true /* doAutoCompletion */, DEFAULT_MAX_ERRORS, FIRST_WORD_INDEX);
327 }
328 
getSuggestionCandidates(const bool useFullEditDistance,const int inputSize,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,Correction * correction,WordsPriorityQueuePool * queuePool,const bool doAutoCompletion,const int maxErrors,const int currentWordIndex) const329 void UnigramDictionary::getSuggestionCandidates(const bool useFullEditDistance,
330         const int inputSize, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
331         Correction *correction, WordsPriorityQueuePool *queuePool,
332         const bool doAutoCompletion, const int maxErrors, const int currentWordIndex) const {
333     uint8_t totalTraverseCount = correction->pushAndGetTotalTraverseCount();
334     if (DEBUG_DICT) {
335         AKLOGI("Traverse count %d", totalTraverseCount);
336     }
337     if (totalTraverseCount > MULTIPLE_WORDS_SUGGESTION_MAX_TOTAL_TRAVERSE_COUNT) {
338         if (DEBUG_DICT) {
339             AKLOGI("Abort traversing %d", totalTraverseCount);
340         }
341         return;
342     }
343     // TODO: Remove setCorrectionParams
344     correction->setCorrectionParams(0, 0, 0,
345             -1 /* spaceProximityPos */, -1 /* missingSpacePos */, useFullEditDistance,
346             doAutoCompletion, maxErrors);
347     int rootPosition = ROOT_POS;
348     // Get the number of children of root, then increment the position
349     int childCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &rootPosition);
350     int outputIndex = 0;
351 
352     correction->initCorrectionState(rootPosition, childCount, (inputSize <= 0));
353 
354     // Depth first search
355     while (outputIndex >= 0) {
356         if (correction->initProcessState(outputIndex)) {
357             int siblingPos = correction->getTreeSiblingPos(outputIndex);
358             int firstChildPos;
359 
360             const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
361                     bigramMap, bigramFilter, correction, &childCount, &firstChildPos, &siblingPos,
362                     queuePool, currentWordIndex);
363             // Update next sibling pos
364             correction->setTreeSiblingPos(outputIndex, siblingPos);
365 
366             if (needsToTraverseChildrenNodes) {
367                 // Goes to child node
368                 outputIndex = correction->goDownTree(outputIndex, childCount, firstChildPos);
369             }
370         } else {
371             // Goes to parent sibling node
372             outputIndex = correction->getTreeParentIndex(outputIndex);
373         }
374     }
375 }
376 
onTerminal(const int probability,const TerminalAttributes & terminalAttributes,Correction * correction,WordsPriorityQueuePool * queuePool,const bool addToMasterQueue,const int currentWordIndex) const377 inline void UnigramDictionary::onTerminal(const int probability,
378         const TerminalAttributes& terminalAttributes, Correction *correction,
379         WordsPriorityQueuePool *queuePool, const bool addToMasterQueue,
380         const int currentWordIndex) const {
381     const int inputIndex = correction->getInputIndex();
382     const bool addToSubQueue = inputIndex < SUB_QUEUE_MAX_COUNT;
383 
384     int wordLength;
385     unsigned short *wordPointer;
386 
387     if ((currentWordIndex == FIRST_WORD_INDEX) && addToMasterQueue) {
388         WordsPriorityQueue *masterQueue = queuePool->getMasterQueue();
389         const int finalProbability =
390                 correction->getFinalProbability(probability, &wordPointer, &wordLength);
391 
392         if (0 != finalProbability && !terminalAttributes.isBlacklistedOrNotAWord()) {
393             // If the probability is 0, we don't want to add this word. However we still
394             // want to add its shortcuts (including a possible whitelist entry) if any.
395             // Furthermore, if this is not a word (shortcut only for example) or a blacklisted
396             // entry then we never want to suggest this.
397             addWord(wordPointer, wordLength, finalProbability, masterQueue,
398                     Dictionary::KIND_CORRECTION);
399         }
400 
401         const int shortcutProbability = finalProbability > 0 ? finalProbability - 1 : 0;
402         // Please note that the shortcut candidates will be added to the master queue only.
403         TerminalAttributes::ShortcutIterator iterator =
404                 terminalAttributes.getShortcutIterator();
405         while (iterator.hasNextShortcutTarget()) {
406             // TODO: addWord only supports weak ordering, meaning we have no means
407             // to control the order of the shortcuts relative to one another or to the word.
408             // We need to either modulate the probability of each shortcut according
409             // to its own shortcut probability or to make the queue
410             // so that the insert order is protected inside the queue for words
411             // with the same score. For the moment we use -1 to make sure the shortcut will
412             // never be in front of the word.
413             uint16_t shortcutTarget[MAX_WORD_LENGTH_INTERNAL];
414             int shortcutFrequency;
415             const int shortcutTargetStringLength = iterator.getNextShortcutTarget(
416                     MAX_WORD_LENGTH_INTERNAL, shortcutTarget, &shortcutFrequency);
417             int shortcutScore;
418             int kind;
419             if (shortcutFrequency == BinaryFormat::WHITELIST_SHORTCUT_FREQUENCY
420                     && correction->sameAsTyped()) {
421                 shortcutScore = S_INT_MAX;
422                 kind = Dictionary::KIND_WHITELIST;
423             } else {
424                 shortcutScore = shortcutProbability;
425                 kind = Dictionary::KIND_CORRECTION;
426             }
427             addWord(shortcutTarget, shortcutTargetStringLength, shortcutScore,
428                     masterQueue, kind);
429         }
430     }
431 
432     // We only allow two words + other error correction for words with SUB_QUEUE_MIN_WORD_LENGTH
433     // or more length.
434     if (inputIndex >= SUB_QUEUE_MIN_WORD_LENGTH && addToSubQueue) {
435         WordsPriorityQueue *subQueue;
436         subQueue = queuePool->getSubQueue(currentWordIndex, inputIndex);
437         if (!subQueue) {
438             return;
439         }
440         const int finalProbability = correction->getFinalProbabilityForSubQueue(
441                 probability, &wordPointer, &wordLength, inputIndex);
442         addWord(wordPointer, wordLength, finalProbability, subQueue, Dictionary::KIND_CORRECTION);
443     }
444 }
445 
getSubStringSuggestion(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const bool useFullEditDistance,Correction * correction,WordsPriorityQueuePool * queuePool,const int inputSize,const bool hasAutoCorrectionCandidate,const int currentWordIndex,const int inputWordStartPos,const int inputWordLength,const int outputWordStartPos,const bool isSpaceProximity,int * freqArray,int * wordLengthArray,unsigned short * outputWord,int * outputWordLength) const446 int UnigramDictionary::getSubStringSuggestion(
447         ProximityInfo *proximityInfo, const int *xcoordinates, const int *ycoordinates,
448         const int *codes, const bool useFullEditDistance, Correction *correction,
449         WordsPriorityQueuePool *queuePool, const int inputSize,
450         const bool hasAutoCorrectionCandidate, const int currentWordIndex,
451         const int inputWordStartPos, const int inputWordLength,
452         const int outputWordStartPos, const bool isSpaceProximity, int *freqArray,
453         int *wordLengthArray, unsigned short *outputWord, int *outputWordLength) const {
454     if (inputWordLength > MULTIPLE_WORDS_SUGGESTION_MAX_WORD_LENGTH) {
455         return FLAG_MULTIPLE_SUGGEST_ABORT;
456     }
457 
458     /////////////////////////////////////////////
459     // safety net for multiple word suggestion //
460     // TODO: Remove this safety net            //
461     /////////////////////////////////////////////
462     int smallWordCount = 0;
463     int singleLetterWordCount = 0;
464     if (inputWordLength == 1) {
465         ++singleLetterWordCount;
466     }
467     if (inputWordLength <= 2) {
468         // small word == single letter or 2-letter word
469         ++smallWordCount;
470     }
471     for (int i = 0; i < currentWordIndex; ++i) {
472         const int length = wordLengthArray[i];
473         if (length == 1) {
474             ++singleLetterWordCount;
475             // Safety net to avoid suggesting sequential single letter words
476             if (i < (currentWordIndex - 1)) {
477                 if (wordLengthArray[i + 1] == 1) {
478                     return FLAG_MULTIPLE_SUGGEST_ABORT;
479                 }
480             } else if (inputWordLength == 1) {
481                 return FLAG_MULTIPLE_SUGGEST_ABORT;
482             }
483         }
484         if (length <= 2) {
485             ++smallWordCount;
486         }
487         // Safety net to avoid suggesting multiple words with many (4 or more, for now) small words
488         if (singleLetterWordCount >= 3 || smallWordCount >= 4) {
489             return FLAG_MULTIPLE_SUGGEST_ABORT;
490         }
491     }
492     //////////////////////////////////////////////
493     // TODO: Remove the safety net above        //
494     //////////////////////////////////////////////
495 
496     unsigned short *tempOutputWord = 0;
497     int nextWordLength = 0;
498     // TODO: Optimize init suggestion
499     initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes,
500             inputSize, correction);
501 
502     unsigned short word[MAX_WORD_LENGTH_INTERNAL];
503     int freq = getMostFrequentWordLike(
504             inputWordStartPos, inputWordLength, correction, word);
505     if (freq > 0) {
506         nextWordLength = inputWordLength;
507         tempOutputWord = word;
508     } else if (!hasAutoCorrectionCandidate) {
509         if (inputWordStartPos > 0) {
510             const int offset = inputWordStartPos;
511             initSuggestions(proximityInfo, &xcoordinates[offset], &ycoordinates[offset],
512                     codes + offset, inputWordLength, correction);
513             queuePool->clearSubQueue(currentWordIndex);
514             // TODO: pass the bigram list for substring suggestion
515             getSuggestionCandidates(useFullEditDistance, inputWordLength,
516                     0 /* bigramMap */, 0 /* bigramFilter */, correction, queuePool,
517                     false /* doAutoCompletion */, MAX_ERRORS_FOR_TWO_WORDS, currentWordIndex);
518             if (DEBUG_DICT) {
519                 if (currentWordIndex < MULTIPLE_WORDS_SUGGESTION_MAX_WORDS) {
520                     AKLOGI("Dump word candidates(%d) %d", currentWordIndex, inputWordLength);
521                     for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) {
522                         queuePool->getSubQueue(currentWordIndex, i)->dumpTopWord();
523                     }
524                 }
525             }
526         }
527         WordsPriorityQueue *queue = queuePool->getSubQueue(currentWordIndex, inputWordLength);
528         // TODO: Return the correct value depending on doAutoCompletion
529         if (!queue || queue->size() <= 0) {
530             return FLAG_MULTIPLE_SUGGEST_ABORT;
531         }
532         int score = 0;
533         const float ns = queue->getHighestNormalizedScore(
534                 correction->getPrimaryInputWord(), inputWordLength,
535                 &tempOutputWord, &score, &nextWordLength);
536         if (DEBUG_DICT) {
537             AKLOGI("NS(%d) = %f, Score = %d", currentWordIndex, ns, score);
538         }
539         // Two words correction won't be done if the score of the first word doesn't exceed the
540         // threshold.
541         if (ns < TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD
542                 || nextWordLength < SUB_QUEUE_MIN_WORD_LENGTH) {
543             return FLAG_MULTIPLE_SUGGEST_SKIP;
544         }
545         freq = score >> (nextWordLength + TWO_WORDS_PLUS_OTHER_ERROR_CORRECTION_DEMOTION_DIVIDER);
546     }
547     if (DEBUG_DICT) {
548         AKLOGI("Freq(%d): %d, length: %d, input length: %d, input start: %d (%d)",
549                 currentWordIndex, freq, nextWordLength, inputWordLength, inputWordStartPos,
550                 (currentWordIndex > 0) ? wordLengthArray[0] : 0);
551     }
552     if (freq <= 0 || nextWordLength <= 0
553             || MAX_WORD_LENGTH <= (outputWordStartPos + nextWordLength)) {
554         return FLAG_MULTIPLE_SUGGEST_SKIP;
555     }
556     for (int i = 0; i < nextWordLength; ++i) {
557         outputWord[outputWordStartPos + i] = tempOutputWord[i];
558     }
559 
560     // Put output values
561     freqArray[currentWordIndex] = freq;
562     // TODO: put output length instead of input length
563     wordLengthArray[currentWordIndex] = inputWordLength;
564     const int tempOutputWordLength = outputWordStartPos + nextWordLength;
565     if (outputWordLength) {
566         *outputWordLength = tempOutputWordLength;
567     }
568 
569     if ((inputWordStartPos + inputWordLength) < inputSize) {
570         if (outputWordStartPos + nextWordLength >= MAX_WORD_LENGTH) {
571             return FLAG_MULTIPLE_SUGGEST_SKIP;
572         }
573         outputWord[tempOutputWordLength] = SPACE;
574         if (outputWordLength) {
575             ++*outputWordLength;
576         }
577     } else if (currentWordIndex >= 1) {
578         // TODO: Handle 3 or more words
579         const int pairFreq = correction->getFreqForSplitMultipleWords(
580                 freqArray, wordLengthArray, currentWordIndex + 1, isSpaceProximity, outputWord);
581         if (DEBUG_DICT) {
582             DUMP_WORD(outputWord, tempOutputWordLength);
583             for (int i = 0; i < currentWordIndex + 1; ++i) {
584                 AKLOGI("Split %d,%d words: freq = %d, length = %d", i, currentWordIndex + 1,
585                         freqArray[i], wordLengthArray[i]);
586             }
587             AKLOGI("Split two words: freq = %d, length = %d, %d, isSpace ? %d", pairFreq,
588                     inputSize, tempOutputWordLength, isSpaceProximity);
589         }
590         addWord(outputWord, tempOutputWordLength, pairFreq, queuePool->getMasterQueue(),
591                 Dictionary::KIND_CORRECTION);
592     }
593     return FLAG_MULTIPLE_SUGGEST_CONTINUE;
594 }
595 
getMultiWordsSuggestionRec(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const bool useFullEditDistance,const int inputSize,Correction * correction,WordsPriorityQueuePool * queuePool,const bool hasAutoCorrectionCandidate,const int startInputPos,const int startWordIndex,const int outputWordLength,int * freqArray,int * wordLengthArray,unsigned short * outputWord) const596 void UnigramDictionary::getMultiWordsSuggestionRec(ProximityInfo *proximityInfo,
597         const int *xcoordinates, const int *ycoordinates, const int *codes,
598         const bool useFullEditDistance, const int inputSize, Correction *correction,
599         WordsPriorityQueuePool *queuePool, const bool hasAutoCorrectionCandidate,
600         const int startInputPos, const int startWordIndex, const int outputWordLength,
601         int *freqArray, int *wordLengthArray, unsigned short *outputWord) const {
602     if (startWordIndex >= (MULTIPLE_WORDS_SUGGESTION_MAX_WORDS - 1)) {
603         // Return if the last word index
604         return;
605     }
606     if (startWordIndex >= 1
607             && (hasAutoCorrectionCandidate
608                     || inputSize < MIN_INPUT_LENGTH_FOR_THREE_OR_MORE_WORDS_CORRECTION)) {
609         // Do not suggest 3+ words if already has auto correction candidate
610         return;
611     }
612     for (int i = startInputPos + 1; i < inputSize; ++i) {
613         if (DEBUG_CORRECTION_FREQ) {
614             AKLOGI("Multi words(%d), start in %d sep %d start out %d",
615                     startWordIndex, startInputPos, i, outputWordLength);
616             DUMP_WORD(outputWord, outputWordLength);
617         }
618         int tempOutputWordLength = 0;
619         // Current word
620         int inputWordStartPos = startInputPos;
621         int inputWordLength = i - startInputPos;
622         const int suggestionFlag = getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates,
623                 codes, useFullEditDistance, correction, queuePool, inputSize,
624                 hasAutoCorrectionCandidate, startWordIndex, inputWordStartPos, inputWordLength,
625                 outputWordLength, true /* not used */, freqArray, wordLengthArray, outputWord,
626                 &tempOutputWordLength);
627         if (suggestionFlag == FLAG_MULTIPLE_SUGGEST_ABORT) {
628             // TODO: break here
629             continue;
630         } else if (suggestionFlag == FLAG_MULTIPLE_SUGGEST_SKIP) {
631             continue;
632         }
633 
634         if (DEBUG_CORRECTION_FREQ) {
635             AKLOGI("Do missing space correction");
636         }
637         // Next word
638         // Missing space
639         inputWordStartPos = i;
640         inputWordLength = inputSize - i;
641         if (getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
642                 useFullEditDistance, correction, queuePool, inputSize, hasAutoCorrectionCandidate,
643                 startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength,
644                 false /* missing space */, freqArray, wordLengthArray, outputWord, 0)
645                         != FLAG_MULTIPLE_SUGGEST_CONTINUE) {
646             getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes,
647                     useFullEditDistance, inputSize, correction, queuePool,
648                     hasAutoCorrectionCandidate, inputWordStartPos, startWordIndex + 1,
649                     tempOutputWordLength, freqArray, wordLengthArray, outputWord);
650         }
651 
652         // Mistyped space
653         ++inputWordStartPos;
654         --inputWordLength;
655 
656         if (inputWordLength <= 0) {
657             continue;
658         }
659 
660         const int x = xcoordinates[inputWordStartPos - 1];
661         const int y = ycoordinates[inputWordStartPos - 1];
662         if (!proximityInfo->hasSpaceProximity(x, y)) {
663             continue;
664         }
665 
666         if (DEBUG_CORRECTION_FREQ) {
667             AKLOGI("Do mistyped space correction");
668         }
669         getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
670                 useFullEditDistance, correction, queuePool, inputSize, hasAutoCorrectionCandidate,
671                 startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength,
672                 true /* mistyped space */, freqArray, wordLengthArray, outputWord, 0);
673     }
674 }
675 
getSplitMultipleWordsSuggestions(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const bool useFullEditDistance,const int inputSize,Correction * correction,WordsPriorityQueuePool * queuePool,const bool hasAutoCorrectionCandidate) const676 void UnigramDictionary::getSplitMultipleWordsSuggestions(ProximityInfo *proximityInfo,
677         const int *xcoordinates, const int *ycoordinates, const int *codes,
678         const bool useFullEditDistance, const int inputSize,
679         Correction *correction, WordsPriorityQueuePool *queuePool,
680         const bool hasAutoCorrectionCandidate) const {
681     if (inputSize >= MAX_WORD_LENGTH) return;
682     if (DEBUG_DICT) {
683         AKLOGI("--- Suggest multiple words");
684     }
685 
686     // Allocating fixed length array on stack
687     unsigned short outputWord[MAX_WORD_LENGTH];
688     int freqArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS];
689     int wordLengthArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS];
690     const int outputWordLength = 0;
691     const int startInputPos = 0;
692     const int startWordIndex = 0;
693     getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes,
694             useFullEditDistance, inputSize, correction, queuePool, hasAutoCorrectionCandidate,
695             startInputPos, startWordIndex, outputWordLength, freqArray, wordLengthArray,
696             outputWord);
697 }
698 
699 // Wrapper for getMostFrequentWordLikeInner, which matches it to the previous
700 // interface.
getMostFrequentWordLike(const int startInputIndex,const int inputSize,Correction * correction,unsigned short * word) const701 inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex,
702         const int inputSize, Correction *correction, unsigned short *word) const {
703     uint16_t inWord[inputSize];
704 
705     for (int i = 0; i < inputSize; ++i) {
706         inWord[i] = (uint16_t)correction->getPrimaryCharAt(startInputIndex + i);
707     }
708     return getMostFrequentWordLikeInner(inWord, inputSize, word);
709 }
710 
711 // This function will take the position of a character array within a CharGroup,
712 // and check it actually like-matches the word in inWord starting at startInputIndex,
713 // that is, it matches it with case and accents squashed.
714 // The function returns true if there was a full match, false otherwise.
715 // The function will copy on-the-fly the characters in the CharGroup to outNewWord.
716 // It will also place the end position of the array in outPos; in outInputIndex,
717 // it will place the index of the first char AFTER the match if there was a match,
718 // and the initial position if there was not. It makes sense because if there was
719 // a match we want to continue searching, but if there was not, we want to go to
720 // the next CharGroup.
721 // In and out parameters may point to the same location. This function takes care
722 // not to use any input parameters after it wrote into its outputs.
testCharGroupForContinuedLikeness(const uint8_t flags,const uint8_t * const root,const int startPos,const uint16_t * const inWord,const int startInputIndex,const int inputSize,int32_t * outNewWord,int * outInputIndex,int * outPos)723 static inline bool testCharGroupForContinuedLikeness(const uint8_t flags,
724         const uint8_t *const root, const int startPos, const uint16_t *const inWord,
725         const int startInputIndex, const int inputSize, int32_t *outNewWord, int *outInputIndex,
726         int *outPos) {
727     const bool hasMultipleChars = (0 != (BinaryFormat::FLAG_HAS_MULTIPLE_CHARS & flags));
728     int pos = startPos;
729     int32_t codePoint = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
730     int32_t baseChar = toBaseLowerCase(codePoint);
731     const uint16_t wChar = toBaseLowerCase(inWord[startInputIndex]);
732 
733     if (baseChar != wChar) {
734         *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos;
735         *outInputIndex = startInputIndex;
736         return false;
737     }
738     int inputIndex = startInputIndex;
739     outNewWord[inputIndex] = codePoint;
740     if (hasMultipleChars) {
741         codePoint = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
742         while (NOT_A_CODE_POINT != codePoint) {
743             baseChar = toBaseLowerCase(codePoint);
744             if (inputIndex + 1 >= inputSize || toBaseLowerCase(inWord[++inputIndex]) != baseChar) {
745                 *outPos = BinaryFormat::skipOtherCharacters(root, pos);
746                 *outInputIndex = startInputIndex;
747                 return false;
748             }
749             outNewWord[inputIndex] = codePoint;
750             codePoint = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
751         }
752     }
753     *outInputIndex = inputIndex + 1;
754     *outPos = pos;
755     return true;
756 }
757 
758 // This function is invoked when a word like the word searched for is found.
759 // It will compare the frequency to the max frequency, and if greater, will
760 // copy the word into the output buffer. In output value maxFreq, it will
761 // write the new maximum frequency if it changed.
onTerminalWordLike(const int freq,int32_t * newWord,const int length,short unsigned int * outWord,int * maxFreq)762 static inline void onTerminalWordLike(const int freq, int32_t *newWord, const int length,
763         short unsigned int *outWord, int *maxFreq) {
764     if (freq > *maxFreq) {
765         for (int q = 0; q < length; ++q) {
766             outWord[q] = newWord[q];
767         }
768         outWord[length] = 0;
769         *maxFreq = freq;
770     }
771 }
772 
773 // Will find the highest frequency of the words like the one passed as an argument,
774 // that is, everything that only differs by case/accents.
getMostFrequentWordLikeInner(const uint16_t * const inWord,const int inputSize,short unsigned int * outWord) const775 int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t *const inWord,
776         const int inputSize, short unsigned int *outWord) const {
777     int32_t newWord[MAX_WORD_LENGTH_INTERNAL];
778     int depth = 0;
779     int maxFreq = -1;
780     const uint8_t *const root = DICT_ROOT;
781     int stackChildCount[MAX_WORD_LENGTH_INTERNAL];
782     int stackInputIndex[MAX_WORD_LENGTH_INTERNAL];
783     int stackSiblingPos[MAX_WORD_LENGTH_INTERNAL];
784 
785     int startPos = 0;
786     stackChildCount[0] = BinaryFormat::getGroupCountAndForwardPointer(root, &startPos);
787     stackInputIndex[0] = 0;
788     stackSiblingPos[0] = startPos;
789     while (depth >= 0) {
790         const int charGroupCount = stackChildCount[depth];
791         int pos = stackSiblingPos[depth];
792         for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) {
793             int inputIndex = stackInputIndex[depth];
794             const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
795             // Test whether all chars in this group match with the word we are searching for. If so,
796             // we want to traverse its children (or if the inputSize match, evaluate its frequency).
797             // Note that this function will output the position regardless, but will only write
798             // into inputIndex if there is a match.
799             const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord,
800                     inputIndex, inputSize, newWord, &inputIndex, &pos);
801             if (isAlike && (!(BinaryFormat::FLAG_IS_NOT_A_WORD & flags))
802                     && (BinaryFormat::FLAG_IS_TERMINAL & flags) && (inputIndex == inputSize)) {
803                 const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
804                 onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq);
805             }
806             pos = BinaryFormat::skipFrequency(flags, pos);
807             const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
808             const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos);
809             // If we had a match and the word has children, we want to traverse them. We don't have
810             // to traverse words longer than the one we are searching for, since they will not match
811             // anyway, so don't traverse unless inputIndex < inputSize.
812             if (isAlike && (-1 != childrenNodePos) && (inputIndex < inputSize)) {
813                 // Save position for this depth, to get back to this once children are done
814                 stackChildCount[depth] = charGroupIndex;
815                 stackSiblingPos[depth] = siblingPos;
816                 // Prepare stack values for next depth
817                 ++depth;
818                 int childrenPos = childrenNodePos;
819                 stackChildCount[depth] =
820                         BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos);
821                 stackSiblingPos[depth] = childrenPos;
822                 stackInputIndex[depth] = inputIndex;
823                 pos = childrenPos;
824                 // Go to the next depth level.
825                 ++depth;
826                 break;
827             } else {
828                 // No match, or no children, or word too long to ever match: go the next sibling.
829                 pos = siblingPos;
830             }
831         }
832         --depth;
833     }
834     return maxFreq;
835 }
836 
getFrequency(const int32_t * const inWord,const int length) const837 int UnigramDictionary::getFrequency(const int32_t *const inWord, const int length) const {
838     const uint8_t *const root = DICT_ROOT;
839     int pos = BinaryFormat::getTerminalPosition(root, inWord, length,
840             false /* forceLowerCaseSearch */);
841     if (NOT_VALID_WORD == pos) {
842         return NOT_A_PROBABILITY;
843     }
844     const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
845     if (flags & (BinaryFormat::FLAG_IS_BLACKLISTED | BinaryFormat::FLAG_IS_NOT_A_WORD)) {
846         // If this is not a word, or if it's a blacklisted entry, it should behave as
847         // having no frequency outside of the suggestion process (where it should be used
848         // for shortcuts).
849         return NOT_A_PROBABILITY;
850     }
851     const bool hasMultipleChars = (0 != (BinaryFormat::FLAG_HAS_MULTIPLE_CHARS & flags));
852     if (hasMultipleChars) {
853         pos = BinaryFormat::skipOtherCharacters(root, pos);
854     } else {
855         BinaryFormat::getCodePointAndForwardPointer(DICT_ROOT, &pos);
856     }
857     const int unigramFreq = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
858     return unigramFreq;
859 }
860 
861 // TODO: remove this function.
getBigramPosition(int pos,unsigned short * word,int offset,int length) const862 int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
863         int length) const {
864     return -1;
865 }
866 
867 // ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not.
868 // If the return value is false, then the caller should read in the output "nextSiblingPosition"
869 // to find out the address of the next sibling node and pass it to a new call of processCurrentNode.
870 // It is worthy to note that when false is returned, the output values other than
871 // nextSiblingPosition are undefined.
872 // If the return value is true, then the caller must proceed to traverse the children of this
873 // node. processCurrentNode will output the information about the children: their count in
874 // newCount, their position in newChildrenPosition, the traverseAllNodes flag in
875 // newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the
876 // diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into
877 // newOutputIndex. Please also note the following caveat: processCurrentNode does not know when
878 // there aren't any more nodes at this level, it merely returns the address of the first byte after
879 // the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
880 // given level, as output into newCount when traversing this level's parent.
processCurrentNode(const int initialPos,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,Correction * correction,int * newCount,int * newChildrenPosition,int * nextSiblingPosition,WordsPriorityQueuePool * queuePool,const int currentWordIndex) const881 inline bool UnigramDictionary::processCurrentNode(const int initialPos,
882         const std::map<int, int> *bigramMap, const uint8_t *bigramFilter, Correction *correction,
883         int *newCount, int *newChildrenPosition, int *nextSiblingPosition,
884         WordsPriorityQueuePool *queuePool, const int currentWordIndex) const {
885     if (DEBUG_DICT) {
886         correction->checkState();
887     }
888     int pos = initialPos;
889 
890     // Flags contain the following information:
891     // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
892     //   - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address
893     //     is on the specified number of bytes.
894     //   - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address.
895     // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not.
896     // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children)
897     // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
898     const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
899     const bool hasMultipleChars = (0 != (BinaryFormat::FLAG_HAS_MULTIPLE_CHARS & flags));
900     const bool isTerminalNode = (0 != (BinaryFormat::FLAG_IS_TERMINAL & flags));
901 
902     bool needsToInvokeOnTerminal = false;
903 
904     // This gets only ONE character from the stream. Next there will be:
905     // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
906     // else if FLAG_IS_TERMINAL: the frequency
907     // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address
908     // Note that you can't have a node that both is not a terminal and has no children.
909     int32_t c = BinaryFormat::getCodePointAndForwardPointer(DICT_ROOT, &pos);
910     assert(NOT_A_CODE_POINT != c);
911 
912     // We are going to loop through each character and make it look like it's a different
913     // node each time. To do that, we will process characters in this node in order until
914     // we find the character terminator. This is signalled by getCodePoint* returning
915     // NOT_A_CODE_POINT.
916     // As a special case, if there is only one character in this node, we must not read the
917     // next bytes so we will simulate the NOT_A_CODE_POINT return by testing the flags.
918     // This way, each loop run will look like a "virtual node".
919     do {
920         // We prefetch the next char. If 'c' is the last char of this node, we will have
921         // NOT_A_CODE_POINT in the next char. From this we can decide whether this virtual node
922         // should behave as a terminal or not and whether we have children.
923         const int32_t nextc = hasMultipleChars
924                 ? BinaryFormat::getCodePointAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CODE_POINT;
925         const bool isLastChar = (NOT_A_CODE_POINT == nextc);
926         // If there are more chars in this nodes, then this virtual node is not a terminal.
927         // If we are on the last char, this virtual node is a terminal if this node is.
928         const bool isTerminal = isLastChar && isTerminalNode;
929 
930         Correction::CorrectionType stateType = correction->processCharAndCalcState(
931                 c, isTerminal);
932         if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL
933                 || stateType == Correction::ON_TERMINAL) {
934             needsToInvokeOnTerminal = true;
935         } else if (stateType == Correction::UNRELATED || correction->needsToPrune()) {
936             // We found that this is an unrelated character, so we should give up traversing
937             // this node and its children entirely.
938             // However we may not be on the last virtual node yet so we skip the remaining
939             // characters in this node, the frequency if it's there, read the next sibling
940             // position to output it, then return false.
941             // We don't have to output other values because we return false, as in
942             // "don't traverse children".
943             if (!isLastChar) {
944                 pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
945             }
946             pos = BinaryFormat::skipFrequency(flags, pos);
947             *nextSiblingPosition =
948                     BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
949             return false;
950         }
951 
952         // Prepare for the next character. Promote the prefetched char to current char - the loop
953         // will take care of prefetching the next. If we finally found our last char, nextc will
954         // contain NOT_A_CODE_POINT.
955         c = nextc;
956     } while (NOT_A_CODE_POINT != c);
957 
958     if (isTerminalNode) {
959         // The frequency should be here, because we come here only if this is actually
960         // a terminal node, and we are on its last char.
961         const int unigramFreq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
962         const int childrenAddressPos = BinaryFormat::skipFrequency(flags, pos);
963         const int attributesPos = BinaryFormat::skipChildrenPosition(flags, childrenAddressPos);
964         TerminalAttributes terminalAttributes(DICT_ROOT, flags, attributesPos);
965         // bigramMap contains the bigram frequencies indexed by addresses for fast lookup.
966         // bigramFilter is a bloom filter of said frequencies for even faster rejection.
967         const int probability = BinaryFormat::getProbability(initialPos, bigramMap, bigramFilter,
968                 unigramFreq);
969         onTerminal(probability, terminalAttributes, correction, queuePool, needsToInvokeOnTerminal,
970                 currentWordIndex);
971 
972         // If there are more chars in this node, then this virtual node has children.
973         // If we are on the last char, this virtual node has children if this node has.
974         const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags);
975 
976         // This character matched the typed character (enough to traverse the node at least)
977         // so we just evaluated it. Now we should evaluate this virtual node's children - that
978         // is, if it has any. If it has no children, we're done here - so we skip the end of
979         // the node, output the siblings position, and return false "don't traverse children".
980         // Note that !hasChildren implies isLastChar, so we know we don't have to skip any
981         // remaining char in this group for there can't be any.
982         if (!hasChildren) {
983             pos = BinaryFormat::skipFrequency(flags, pos);
984             *nextSiblingPosition =
985                     BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
986             return false;
987         }
988 
989         // Optimization: Prune out words that are too long compared to how much was typed.
990         if (correction->needsToPrune()) {
991             pos = BinaryFormat::skipFrequency(flags, pos);
992             *nextSiblingPosition =
993                     BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
994             if (DEBUG_DICT_FULL) {
995                 AKLOGI("Traversing was pruned.");
996             }
997             return false;
998         }
999     }
1000 
1001     // Now we finished processing this node, and we want to traverse children. If there are no
1002     // children, we can't come here.
1003     assert(BinaryFormat::hasChildrenInFlags(flags));
1004 
1005     // If this node was a terminal it still has the frequency under the pointer (it may have been
1006     // read, but not skipped - see readFrequencyWithoutMovingPointer).
1007     // Next come the children position, then possibly attributes (attributes are bigrams only for
1008     // now, maybe something related to shortcuts in the future).
1009     // Once this is read, we still need to output the number of nodes in the immediate children of
1010     // this node, so we read and output it before returning true, as in "please traverse children".
1011     pos = BinaryFormat::skipFrequency(flags, pos);
1012     int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos);
1013     *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
1014     *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos);
1015     *newChildrenPosition = childrenPos;
1016     return true;
1017 }
1018 } // namespace latinime
1019