1 /*
2 * Copyright (C) 2010, The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <cassert>
18 #include <cstring>
19
20 #define LOG_TAG "LatinIME: unigram_dictionary.cpp"
21
22 #include "binary_format.h"
23 #include "char_utils.h"
24 #include "defines.h"
25 #include "dictionary.h"
26 #include "proximity_info.h"
27 #include "terminal_attributes.h"
28 #include "unigram_dictionary.h"
29 #include "words_priority_queue.h"
30 #include "words_priority_queue_pool.h"
31
32 namespace latinime {
33
34 const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
35 { { 'a', 'e', 0x00E4 }, // U+00E4 : LATIN SMALL LETTER A WITH DIAERESIS
36 { 'o', 'e', 0x00F6 }, // U+00F6 : LATIN SMALL LETTER O WITH DIAERESIS
37 { 'u', 'e', 0x00FC } }; // U+00FC : LATIN SMALL LETTER U WITH DIAERESIS
38
39 const UnigramDictionary::digraph_t UnigramDictionary::FRENCH_LIGATURES_DIGRAPHS[] =
40 { { 'a', 'e', 0x00E6 }, // U+00E6 : LATIN SMALL LETTER AE
41 { 'o', 'e', 0x0153 } }; // U+0153 : LATIN SMALL LIGATURE OE
42
43 // TODO: check the header
UnigramDictionary(const uint8_t * const streamStart,int typedLetterMultiplier,int fullWordMultiplier,int maxWordLength,int maxWords,const unsigned int flags)44 UnigramDictionary::UnigramDictionary(const uint8_t *const streamStart, int typedLetterMultiplier,
45 int fullWordMultiplier, int maxWordLength, int maxWords, const unsigned int flags)
46 : DICT_ROOT(streamStart), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
47 TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
48 // TODO : remove this variable.
49 ROOT_POS(0),
50 BYTES_IN_ONE_CHAR(sizeof(int)),
51 MAX_DIGRAPH_SEARCH_DEPTH(DEFAULT_MAX_DIGRAPH_SEARCH_DEPTH), FLAGS(flags) {
52 if (DEBUG_DICT) {
53 AKLOGI("UnigramDictionary - constructor");
54 }
55 }
56
~UnigramDictionary()57 UnigramDictionary::~UnigramDictionary() {
58 }
59
getCodesBufferSize(const int * codes,const int codesSize)60 static inline unsigned int getCodesBufferSize(const int *codes, const int codesSize) {
61 return static_cast<unsigned int>(sizeof(*codes)) * codesSize;
62 }
63
64 // TODO: This needs to take a const unsigned short* and not tinker with its contents
addWord(unsigned short * word,int length,int frequency,WordsPriorityQueue * queue,int type)65 static inline void addWord(unsigned short *word, int length, int frequency,
66 WordsPriorityQueue *queue, int type) {
67 queue->push(frequency, word, length, type);
68 }
69
70 // Return the replacement code point for a digraph, or 0 if none.
getDigraphReplacement(const int * codes,const int i,const int codesSize,const digraph_t * const digraphs,const unsigned int digraphsSize) const71 int UnigramDictionary::getDigraphReplacement(const int *codes, const int i, const int codesSize,
72 const digraph_t *const digraphs, const unsigned int digraphsSize) const {
73
74 // There can't be a digraph if we don't have at least 2 characters to examine
75 if (i + 2 > codesSize) return false;
76
77 // Search for the first char of some digraph
78 int lastDigraphIndex = -1;
79 const int thisChar = codes[i];
80 for (lastDigraphIndex = digraphsSize - 1; lastDigraphIndex >= 0; --lastDigraphIndex) {
81 if (thisChar == digraphs[lastDigraphIndex].first) break;
82 }
83 // No match: return early
84 if (lastDigraphIndex < 0) return 0;
85
86 // It's an interesting digraph if the second char matches too.
87 if (digraphs[lastDigraphIndex].second == codes[i + 1]) {
88 return digraphs[lastDigraphIndex].replacement;
89 } else {
90 return 0;
91 }
92 }
93
94 // Mostly the same arguments as the non-recursive version, except:
95 // codes is the original value. It points to the start of the work buffer, and gets passed as is.
96 // codesSize is the size of the user input (thus, it is the size of codesSrc).
97 // codesDest is the current point in the work buffer.
98 // codesSrc is the current point in the user-input, original, content-unmodified buffer.
99 // codesRemain is the remaining size in codesSrc.
getWordWithDigraphSuggestionsRec(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codesBuffer,int * xCoordinatesBuffer,int * yCoordinatesBuffer,const int codesBufferSize,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,const bool useFullEditDistance,const int * codesSrc,const int codesRemain,const int currentDepth,int * codesDest,Correction * correction,WordsPriorityQueuePool * queuePool,const digraph_t * const digraphs,const unsigned int digraphsSize) const100 void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo,
101 const int *xcoordinates, const int *ycoordinates, const int *codesBuffer,
102 int *xCoordinatesBuffer, int *yCoordinatesBuffer,
103 const int codesBufferSize, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
104 const bool useFullEditDistance, const int *codesSrc,
105 const int codesRemain, const int currentDepth, int *codesDest, Correction *correction,
106 WordsPriorityQueuePool *queuePool,
107 const digraph_t *const digraphs, const unsigned int digraphsSize) const {
108
109 const int startIndex = static_cast<int>(codesDest - codesBuffer);
110 if (currentDepth < MAX_DIGRAPH_SEARCH_DEPTH) {
111 for (int i = 0; i < codesRemain; ++i) {
112 xCoordinatesBuffer[startIndex + i] = xcoordinates[codesBufferSize - codesRemain + i];
113 yCoordinatesBuffer[startIndex + i] = ycoordinates[codesBufferSize - codesRemain + i];
114 const int replacementCodePoint =
115 getDigraphReplacement(codesSrc, i, codesRemain, digraphs, digraphsSize);
116 if (0 != replacementCodePoint) {
117 // Found a digraph. We will try both spellings. eg. the word is "pruefen"
118
119 // Copy the word up to the first char of the digraph, including proximity chars,
120 // and overwrite the primary code with the replacement code point. Then, continue
121 // processing on the remaining part of the word, skipping the second char of the
122 // digraph.
123 // In our example, copy "pru", replace "u" with the version with the diaeresis and
124 // continue running on "fen".
125 // Make i the index of the second char of the digraph for simplicity. Forgetting
126 // to do that results in an infinite recursion so take care!
127 ++i;
128 memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR);
129 codesDest[(i - 1) * (BYTES_IN_ONE_CHAR / sizeof(codesDest[0]))] =
130 replacementCodePoint;
131 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
132 codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize,
133 bigramMap, bigramFilter, useFullEditDistance, codesSrc + i + 1,
134 codesRemain - i - 1, currentDepth + 1, codesDest + i, correction,
135 queuePool, digraphs, digraphsSize);
136
137 // Copy the second char of the digraph in place, then continue processing on
138 // the remaining part of the word.
139 // In our example, after "pru" in the buffer copy the "e", and continue on "fen"
140 memcpy(codesDest + i, codesSrc + i, BYTES_IN_ONE_CHAR);
141 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
142 codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize,
143 bigramMap, bigramFilter, useFullEditDistance, codesSrc + i, codesRemain - i,
144 currentDepth + 1, codesDest + i, correction, queuePool, digraphs,
145 digraphsSize);
146 return;
147 }
148 }
149 }
150
151 // If we come here, we hit the end of the word: let's check it against the dictionary.
152 // In our example, we'll come here once for "prufen" and then once for "pruefen".
153 // If the word contains several digraphs, we'll come it for the product of them.
154 // eg. if the word is "ueberpruefen" we'll test, in order, against
155 // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen".
156 const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain;
157 if (0 != remainingBytes) {
158 memcpy(codesDest, codesSrc, remainingBytes);
159 memcpy(&xCoordinatesBuffer[startIndex], &xcoordinates[codesBufferSize - codesRemain],
160 sizeof(int) * codesRemain);
161 memcpy(&yCoordinatesBuffer[startIndex], &ycoordinates[codesBufferSize - codesRemain],
162 sizeof(int) * codesRemain);
163 }
164
165 getWordSuggestions(proximityInfo, xCoordinatesBuffer, yCoordinatesBuffer, codesBuffer,
166 startIndex + codesRemain, bigramMap, bigramFilter, useFullEditDistance, correction,
167 queuePool);
168 }
169
170 // bigramMap contains the association <bigram address> -> <bigram frequency>
171 // bigramFilter is a bloom filter for fast rejection: see functions setInFilter and isInFilter
172 // in bigram_dictionary.cpp
getSuggestions(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const int codesSize,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,const bool useFullEditDistance,unsigned short * outWords,int * frequencies,int * outputTypes) const173 int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates,
174 const int *ycoordinates, const int *codes, const int codesSize,
175 const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
176 const bool useFullEditDistance, unsigned short *outWords, int *frequencies,
177 int *outputTypes) const {
178
179 WordsPriorityQueuePool queuePool(MAX_WORDS, SUB_QUEUE_MAX_WORDS, MAX_WORD_LENGTH);
180 queuePool.clearAll();
181 Correction masterCorrection;
182 masterCorrection.resetCorrection();
183 if (BinaryFormat::REQUIRES_GERMAN_UMLAUT_PROCESSING & FLAGS)
184 { // Incrementally tune the word and try all possibilities
185 int codesBuffer[getCodesBufferSize(codes, codesSize)];
186 int xCoordinatesBuffer[codesSize];
187 int yCoordinatesBuffer[codesSize];
188 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
189 xCoordinatesBuffer, yCoordinatesBuffer, codesSize, bigramMap, bigramFilter,
190 useFullEditDistance, codes, codesSize, 0, codesBuffer, &masterCorrection,
191 &queuePool, GERMAN_UMLAUT_DIGRAPHS,
192 sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]));
193 } else if (BinaryFormat::REQUIRES_FRENCH_LIGATURES_PROCESSING & FLAGS) {
194 int codesBuffer[getCodesBufferSize(codes, codesSize)];
195 int xCoordinatesBuffer[codesSize];
196 int yCoordinatesBuffer[codesSize];
197 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
198 xCoordinatesBuffer, yCoordinatesBuffer, codesSize, bigramMap, bigramFilter,
199 useFullEditDistance, codes, codesSize, 0, codesBuffer, &masterCorrection,
200 &queuePool, FRENCH_LIGATURES_DIGRAPHS,
201 sizeof(FRENCH_LIGATURES_DIGRAPHS) / sizeof(FRENCH_LIGATURES_DIGRAPHS[0]));
202 } else { // Normal processing
203 getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize,
204 bigramMap, bigramFilter, useFullEditDistance, &masterCorrection, &queuePool);
205 }
206
207 PROF_START(20);
208 if (DEBUG_DICT) {
209 float ns = queuePool.getMasterQueue()->getHighestNormalizedScore(
210 masterCorrection.getPrimaryInputWord(), codesSize, 0, 0, 0);
211 ns += 0;
212 AKLOGI("Max normalized score = %f", ns);
213 }
214 const int suggestedWordsCount =
215 queuePool.getMasterQueue()->outputSuggestions(masterCorrection.getPrimaryInputWord(),
216 codesSize, frequencies, outWords, outputTypes);
217
218 if (DEBUG_DICT) {
219 float ns = queuePool.getMasterQueue()->getHighestNormalizedScore(
220 masterCorrection.getPrimaryInputWord(), codesSize, 0, 0, 0);
221 ns += 0;
222 AKLOGI("Returning %d words", suggestedWordsCount);
223 /// Print the returned words
224 for (int j = 0; j < suggestedWordsCount; ++j) {
225 short unsigned int *w = outWords + j * MAX_WORD_LENGTH;
226 char s[MAX_WORD_LENGTH];
227 for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i];
228 (void)s; // To suppress compiler warning
229 AKLOGI("%s %i", s, frequencies[j]);
230 }
231 }
232 PROF_END(20);
233 PROF_CLOSE;
234 return suggestedWordsCount;
235 }
236
getWordSuggestions(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const int inputSize,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,const bool useFullEditDistance,Correction * correction,WordsPriorityQueuePool * queuePool) const237 void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
238 const int *xcoordinates, const int *ycoordinates, const int *codes,
239 const int inputSize, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
240 const bool useFullEditDistance, Correction *correction,
241 WordsPriorityQueuePool *queuePool) const {
242
243 PROF_OPEN;
244 PROF_START(0);
245 PROF_END(0);
246
247 PROF_START(1);
248 getOneWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, bigramMap, bigramFilter,
249 useFullEditDistance, inputSize, correction, queuePool);
250 PROF_END(1);
251
252 PROF_START(2);
253 // Note: This line is intentionally left blank
254 PROF_END(2);
255
256 PROF_START(3);
257 // Note: This line is intentionally left blank
258 PROF_END(3);
259
260 PROF_START(4);
261 bool hasAutoCorrectionCandidate = false;
262 WordsPriorityQueue *masterQueue = queuePool->getMasterQueue();
263 if (masterQueue->size() > 0) {
264 float nsForMaster = masterQueue->getHighestNormalizedScore(
265 correction->getPrimaryInputWord(), inputSize, 0, 0, 0);
266 hasAutoCorrectionCandidate = (nsForMaster > START_TWO_WORDS_CORRECTION_THRESHOLD);
267 }
268 PROF_END(4);
269
270 PROF_START(5);
271 // Multiple word suggestions
272 if (SUGGEST_MULTIPLE_WORDS
273 && inputSize >= MIN_USER_TYPED_LENGTH_FOR_MULTIPLE_WORD_SUGGESTION) {
274 getSplitMultipleWordsSuggestions(proximityInfo, xcoordinates, ycoordinates, codes,
275 useFullEditDistance, inputSize, correction, queuePool,
276 hasAutoCorrectionCandidate);
277 }
278 PROF_END(5);
279
280 PROF_START(6);
281 // Note: This line is intentionally left blank
282 PROF_END(6);
283
284 if (DEBUG_DICT) {
285 queuePool->dumpSubQueue1TopSuggestions();
286 for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) {
287 WordsPriorityQueue *queue = queuePool->getSubQueue(FIRST_WORD_INDEX, i);
288 if (queue->size() > 0) {
289 WordsPriorityQueue::SuggestedWord *sw = queue->top();
290 const int score = sw->mScore;
291 const unsigned short *word = sw->mWord;
292 const int wordLength = sw->mWordLength;
293 float ns = Correction::RankingAlgorithm::calcNormalizedScore(
294 correction->getPrimaryInputWord(), i, word, wordLength, score);
295 ns += 0;
296 AKLOGI("--- TOP SUB WORDS for %d --- %d %f [%d]", i, score, ns,
297 (ns > TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD));
298 DUMP_WORD(correction->getPrimaryInputWord(), i);
299 DUMP_WORD(word, wordLength);
300 }
301 }
302 }
303 }
304
initSuggestions(ProximityInfo * proximityInfo,const int * xCoordinates,const int * yCoordinates,const int * codes,const int inputSize,Correction * correction) const305 void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xCoordinates,
306 const int *yCoordinates, const int *codes, const int inputSize,
307 Correction *correction) const {
308 if (DEBUG_DICT) {
309 AKLOGI("initSuggest");
310 DUMP_WORD_INT(codes, inputSize);
311 }
312 correction->initInputParams(proximityInfo, codes, inputSize, xCoordinates, yCoordinates);
313 const int maxDepth = min(inputSize * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
314 correction->initCorrection(proximityInfo, inputSize, maxDepth);
315 }
316
317 static const char SPACE = ' ';
318
getOneWordSuggestions(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,const bool useFullEditDistance,const int inputSize,Correction * correction,WordsPriorityQueuePool * queuePool) const319 void UnigramDictionary::getOneWordSuggestions(ProximityInfo *proximityInfo,
320 const int *xcoordinates, const int *ycoordinates, const int *codes,
321 const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
322 const bool useFullEditDistance, const int inputSize,
323 Correction *correction, WordsPriorityQueuePool *queuePool) const {
324 initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, inputSize, correction);
325 getSuggestionCandidates(useFullEditDistance, inputSize, bigramMap, bigramFilter, correction,
326 queuePool, true /* doAutoCompletion */, DEFAULT_MAX_ERRORS, FIRST_WORD_INDEX);
327 }
328
getSuggestionCandidates(const bool useFullEditDistance,const int inputSize,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,Correction * correction,WordsPriorityQueuePool * queuePool,const bool doAutoCompletion,const int maxErrors,const int currentWordIndex) const329 void UnigramDictionary::getSuggestionCandidates(const bool useFullEditDistance,
330 const int inputSize, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
331 Correction *correction, WordsPriorityQueuePool *queuePool,
332 const bool doAutoCompletion, const int maxErrors, const int currentWordIndex) const {
333 uint8_t totalTraverseCount = correction->pushAndGetTotalTraverseCount();
334 if (DEBUG_DICT) {
335 AKLOGI("Traverse count %d", totalTraverseCount);
336 }
337 if (totalTraverseCount > MULTIPLE_WORDS_SUGGESTION_MAX_TOTAL_TRAVERSE_COUNT) {
338 if (DEBUG_DICT) {
339 AKLOGI("Abort traversing %d", totalTraverseCount);
340 }
341 return;
342 }
343 // TODO: Remove setCorrectionParams
344 correction->setCorrectionParams(0, 0, 0,
345 -1 /* spaceProximityPos */, -1 /* missingSpacePos */, useFullEditDistance,
346 doAutoCompletion, maxErrors);
347 int rootPosition = ROOT_POS;
348 // Get the number of children of root, then increment the position
349 int childCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &rootPosition);
350 int outputIndex = 0;
351
352 correction->initCorrectionState(rootPosition, childCount, (inputSize <= 0));
353
354 // Depth first search
355 while (outputIndex >= 0) {
356 if (correction->initProcessState(outputIndex)) {
357 int siblingPos = correction->getTreeSiblingPos(outputIndex);
358 int firstChildPos;
359
360 const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
361 bigramMap, bigramFilter, correction, &childCount, &firstChildPos, &siblingPos,
362 queuePool, currentWordIndex);
363 // Update next sibling pos
364 correction->setTreeSiblingPos(outputIndex, siblingPos);
365
366 if (needsToTraverseChildrenNodes) {
367 // Goes to child node
368 outputIndex = correction->goDownTree(outputIndex, childCount, firstChildPos);
369 }
370 } else {
371 // Goes to parent sibling node
372 outputIndex = correction->getTreeParentIndex(outputIndex);
373 }
374 }
375 }
376
onTerminal(const int probability,const TerminalAttributes & terminalAttributes,Correction * correction,WordsPriorityQueuePool * queuePool,const bool addToMasterQueue,const int currentWordIndex) const377 inline void UnigramDictionary::onTerminal(const int probability,
378 const TerminalAttributes& terminalAttributes, Correction *correction,
379 WordsPriorityQueuePool *queuePool, const bool addToMasterQueue,
380 const int currentWordIndex) const {
381 const int inputIndex = correction->getInputIndex();
382 const bool addToSubQueue = inputIndex < SUB_QUEUE_MAX_COUNT;
383
384 int wordLength;
385 unsigned short *wordPointer;
386
387 if ((currentWordIndex == FIRST_WORD_INDEX) && addToMasterQueue) {
388 WordsPriorityQueue *masterQueue = queuePool->getMasterQueue();
389 const int finalProbability =
390 correction->getFinalProbability(probability, &wordPointer, &wordLength);
391
392 if (0 != finalProbability && !terminalAttributes.isBlacklistedOrNotAWord()) {
393 // If the probability is 0, we don't want to add this word. However we still
394 // want to add its shortcuts (including a possible whitelist entry) if any.
395 // Furthermore, if this is not a word (shortcut only for example) or a blacklisted
396 // entry then we never want to suggest this.
397 addWord(wordPointer, wordLength, finalProbability, masterQueue,
398 Dictionary::KIND_CORRECTION);
399 }
400
401 const int shortcutProbability = finalProbability > 0 ? finalProbability - 1 : 0;
402 // Please note that the shortcut candidates will be added to the master queue only.
403 TerminalAttributes::ShortcutIterator iterator =
404 terminalAttributes.getShortcutIterator();
405 while (iterator.hasNextShortcutTarget()) {
406 // TODO: addWord only supports weak ordering, meaning we have no means
407 // to control the order of the shortcuts relative to one another or to the word.
408 // We need to either modulate the probability of each shortcut according
409 // to its own shortcut probability or to make the queue
410 // so that the insert order is protected inside the queue for words
411 // with the same score. For the moment we use -1 to make sure the shortcut will
412 // never be in front of the word.
413 uint16_t shortcutTarget[MAX_WORD_LENGTH_INTERNAL];
414 int shortcutFrequency;
415 const int shortcutTargetStringLength = iterator.getNextShortcutTarget(
416 MAX_WORD_LENGTH_INTERNAL, shortcutTarget, &shortcutFrequency);
417 int shortcutScore;
418 int kind;
419 if (shortcutFrequency == BinaryFormat::WHITELIST_SHORTCUT_FREQUENCY
420 && correction->sameAsTyped()) {
421 shortcutScore = S_INT_MAX;
422 kind = Dictionary::KIND_WHITELIST;
423 } else {
424 shortcutScore = shortcutProbability;
425 kind = Dictionary::KIND_CORRECTION;
426 }
427 addWord(shortcutTarget, shortcutTargetStringLength, shortcutScore,
428 masterQueue, kind);
429 }
430 }
431
432 // We only allow two words + other error correction for words with SUB_QUEUE_MIN_WORD_LENGTH
433 // or more length.
434 if (inputIndex >= SUB_QUEUE_MIN_WORD_LENGTH && addToSubQueue) {
435 WordsPriorityQueue *subQueue;
436 subQueue = queuePool->getSubQueue(currentWordIndex, inputIndex);
437 if (!subQueue) {
438 return;
439 }
440 const int finalProbability = correction->getFinalProbabilityForSubQueue(
441 probability, &wordPointer, &wordLength, inputIndex);
442 addWord(wordPointer, wordLength, finalProbability, subQueue, Dictionary::KIND_CORRECTION);
443 }
444 }
445
getSubStringSuggestion(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const bool useFullEditDistance,Correction * correction,WordsPriorityQueuePool * queuePool,const int inputSize,const bool hasAutoCorrectionCandidate,const int currentWordIndex,const int inputWordStartPos,const int inputWordLength,const int outputWordStartPos,const bool isSpaceProximity,int * freqArray,int * wordLengthArray,unsigned short * outputWord,int * outputWordLength) const446 int UnigramDictionary::getSubStringSuggestion(
447 ProximityInfo *proximityInfo, const int *xcoordinates, const int *ycoordinates,
448 const int *codes, const bool useFullEditDistance, Correction *correction,
449 WordsPriorityQueuePool *queuePool, const int inputSize,
450 const bool hasAutoCorrectionCandidate, const int currentWordIndex,
451 const int inputWordStartPos, const int inputWordLength,
452 const int outputWordStartPos, const bool isSpaceProximity, int *freqArray,
453 int *wordLengthArray, unsigned short *outputWord, int *outputWordLength) const {
454 if (inputWordLength > MULTIPLE_WORDS_SUGGESTION_MAX_WORD_LENGTH) {
455 return FLAG_MULTIPLE_SUGGEST_ABORT;
456 }
457
458 /////////////////////////////////////////////
459 // safety net for multiple word suggestion //
460 // TODO: Remove this safety net //
461 /////////////////////////////////////////////
462 int smallWordCount = 0;
463 int singleLetterWordCount = 0;
464 if (inputWordLength == 1) {
465 ++singleLetterWordCount;
466 }
467 if (inputWordLength <= 2) {
468 // small word == single letter or 2-letter word
469 ++smallWordCount;
470 }
471 for (int i = 0; i < currentWordIndex; ++i) {
472 const int length = wordLengthArray[i];
473 if (length == 1) {
474 ++singleLetterWordCount;
475 // Safety net to avoid suggesting sequential single letter words
476 if (i < (currentWordIndex - 1)) {
477 if (wordLengthArray[i + 1] == 1) {
478 return FLAG_MULTIPLE_SUGGEST_ABORT;
479 }
480 } else if (inputWordLength == 1) {
481 return FLAG_MULTIPLE_SUGGEST_ABORT;
482 }
483 }
484 if (length <= 2) {
485 ++smallWordCount;
486 }
487 // Safety net to avoid suggesting multiple words with many (4 or more, for now) small words
488 if (singleLetterWordCount >= 3 || smallWordCount >= 4) {
489 return FLAG_MULTIPLE_SUGGEST_ABORT;
490 }
491 }
492 //////////////////////////////////////////////
493 // TODO: Remove the safety net above //
494 //////////////////////////////////////////////
495
496 unsigned short *tempOutputWord = 0;
497 int nextWordLength = 0;
498 // TODO: Optimize init suggestion
499 initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes,
500 inputSize, correction);
501
502 unsigned short word[MAX_WORD_LENGTH_INTERNAL];
503 int freq = getMostFrequentWordLike(
504 inputWordStartPos, inputWordLength, correction, word);
505 if (freq > 0) {
506 nextWordLength = inputWordLength;
507 tempOutputWord = word;
508 } else if (!hasAutoCorrectionCandidate) {
509 if (inputWordStartPos > 0) {
510 const int offset = inputWordStartPos;
511 initSuggestions(proximityInfo, &xcoordinates[offset], &ycoordinates[offset],
512 codes + offset, inputWordLength, correction);
513 queuePool->clearSubQueue(currentWordIndex);
514 // TODO: pass the bigram list for substring suggestion
515 getSuggestionCandidates(useFullEditDistance, inputWordLength,
516 0 /* bigramMap */, 0 /* bigramFilter */, correction, queuePool,
517 false /* doAutoCompletion */, MAX_ERRORS_FOR_TWO_WORDS, currentWordIndex);
518 if (DEBUG_DICT) {
519 if (currentWordIndex < MULTIPLE_WORDS_SUGGESTION_MAX_WORDS) {
520 AKLOGI("Dump word candidates(%d) %d", currentWordIndex, inputWordLength);
521 for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) {
522 queuePool->getSubQueue(currentWordIndex, i)->dumpTopWord();
523 }
524 }
525 }
526 }
527 WordsPriorityQueue *queue = queuePool->getSubQueue(currentWordIndex, inputWordLength);
528 // TODO: Return the correct value depending on doAutoCompletion
529 if (!queue || queue->size() <= 0) {
530 return FLAG_MULTIPLE_SUGGEST_ABORT;
531 }
532 int score = 0;
533 const float ns = queue->getHighestNormalizedScore(
534 correction->getPrimaryInputWord(), inputWordLength,
535 &tempOutputWord, &score, &nextWordLength);
536 if (DEBUG_DICT) {
537 AKLOGI("NS(%d) = %f, Score = %d", currentWordIndex, ns, score);
538 }
539 // Two words correction won't be done if the score of the first word doesn't exceed the
540 // threshold.
541 if (ns < TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD
542 || nextWordLength < SUB_QUEUE_MIN_WORD_LENGTH) {
543 return FLAG_MULTIPLE_SUGGEST_SKIP;
544 }
545 freq = score >> (nextWordLength + TWO_WORDS_PLUS_OTHER_ERROR_CORRECTION_DEMOTION_DIVIDER);
546 }
547 if (DEBUG_DICT) {
548 AKLOGI("Freq(%d): %d, length: %d, input length: %d, input start: %d (%d)",
549 currentWordIndex, freq, nextWordLength, inputWordLength, inputWordStartPos,
550 (currentWordIndex > 0) ? wordLengthArray[0] : 0);
551 }
552 if (freq <= 0 || nextWordLength <= 0
553 || MAX_WORD_LENGTH <= (outputWordStartPos + nextWordLength)) {
554 return FLAG_MULTIPLE_SUGGEST_SKIP;
555 }
556 for (int i = 0; i < nextWordLength; ++i) {
557 outputWord[outputWordStartPos + i] = tempOutputWord[i];
558 }
559
560 // Put output values
561 freqArray[currentWordIndex] = freq;
562 // TODO: put output length instead of input length
563 wordLengthArray[currentWordIndex] = inputWordLength;
564 const int tempOutputWordLength = outputWordStartPos + nextWordLength;
565 if (outputWordLength) {
566 *outputWordLength = tempOutputWordLength;
567 }
568
569 if ((inputWordStartPos + inputWordLength) < inputSize) {
570 if (outputWordStartPos + nextWordLength >= MAX_WORD_LENGTH) {
571 return FLAG_MULTIPLE_SUGGEST_SKIP;
572 }
573 outputWord[tempOutputWordLength] = SPACE;
574 if (outputWordLength) {
575 ++*outputWordLength;
576 }
577 } else if (currentWordIndex >= 1) {
578 // TODO: Handle 3 or more words
579 const int pairFreq = correction->getFreqForSplitMultipleWords(
580 freqArray, wordLengthArray, currentWordIndex + 1, isSpaceProximity, outputWord);
581 if (DEBUG_DICT) {
582 DUMP_WORD(outputWord, tempOutputWordLength);
583 for (int i = 0; i < currentWordIndex + 1; ++i) {
584 AKLOGI("Split %d,%d words: freq = %d, length = %d", i, currentWordIndex + 1,
585 freqArray[i], wordLengthArray[i]);
586 }
587 AKLOGI("Split two words: freq = %d, length = %d, %d, isSpace ? %d", pairFreq,
588 inputSize, tempOutputWordLength, isSpaceProximity);
589 }
590 addWord(outputWord, tempOutputWordLength, pairFreq, queuePool->getMasterQueue(),
591 Dictionary::KIND_CORRECTION);
592 }
593 return FLAG_MULTIPLE_SUGGEST_CONTINUE;
594 }
595
getMultiWordsSuggestionRec(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const bool useFullEditDistance,const int inputSize,Correction * correction,WordsPriorityQueuePool * queuePool,const bool hasAutoCorrectionCandidate,const int startInputPos,const int startWordIndex,const int outputWordLength,int * freqArray,int * wordLengthArray,unsigned short * outputWord) const596 void UnigramDictionary::getMultiWordsSuggestionRec(ProximityInfo *proximityInfo,
597 const int *xcoordinates, const int *ycoordinates, const int *codes,
598 const bool useFullEditDistance, const int inputSize, Correction *correction,
599 WordsPriorityQueuePool *queuePool, const bool hasAutoCorrectionCandidate,
600 const int startInputPos, const int startWordIndex, const int outputWordLength,
601 int *freqArray, int *wordLengthArray, unsigned short *outputWord) const {
602 if (startWordIndex >= (MULTIPLE_WORDS_SUGGESTION_MAX_WORDS - 1)) {
603 // Return if the last word index
604 return;
605 }
606 if (startWordIndex >= 1
607 && (hasAutoCorrectionCandidate
608 || inputSize < MIN_INPUT_LENGTH_FOR_THREE_OR_MORE_WORDS_CORRECTION)) {
609 // Do not suggest 3+ words if already has auto correction candidate
610 return;
611 }
612 for (int i = startInputPos + 1; i < inputSize; ++i) {
613 if (DEBUG_CORRECTION_FREQ) {
614 AKLOGI("Multi words(%d), start in %d sep %d start out %d",
615 startWordIndex, startInputPos, i, outputWordLength);
616 DUMP_WORD(outputWord, outputWordLength);
617 }
618 int tempOutputWordLength = 0;
619 // Current word
620 int inputWordStartPos = startInputPos;
621 int inputWordLength = i - startInputPos;
622 const int suggestionFlag = getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates,
623 codes, useFullEditDistance, correction, queuePool, inputSize,
624 hasAutoCorrectionCandidate, startWordIndex, inputWordStartPos, inputWordLength,
625 outputWordLength, true /* not used */, freqArray, wordLengthArray, outputWord,
626 &tempOutputWordLength);
627 if (suggestionFlag == FLAG_MULTIPLE_SUGGEST_ABORT) {
628 // TODO: break here
629 continue;
630 } else if (suggestionFlag == FLAG_MULTIPLE_SUGGEST_SKIP) {
631 continue;
632 }
633
634 if (DEBUG_CORRECTION_FREQ) {
635 AKLOGI("Do missing space correction");
636 }
637 // Next word
638 // Missing space
639 inputWordStartPos = i;
640 inputWordLength = inputSize - i;
641 if (getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
642 useFullEditDistance, correction, queuePool, inputSize, hasAutoCorrectionCandidate,
643 startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength,
644 false /* missing space */, freqArray, wordLengthArray, outputWord, 0)
645 != FLAG_MULTIPLE_SUGGEST_CONTINUE) {
646 getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes,
647 useFullEditDistance, inputSize, correction, queuePool,
648 hasAutoCorrectionCandidate, inputWordStartPos, startWordIndex + 1,
649 tempOutputWordLength, freqArray, wordLengthArray, outputWord);
650 }
651
652 // Mistyped space
653 ++inputWordStartPos;
654 --inputWordLength;
655
656 if (inputWordLength <= 0) {
657 continue;
658 }
659
660 const int x = xcoordinates[inputWordStartPos - 1];
661 const int y = ycoordinates[inputWordStartPos - 1];
662 if (!proximityInfo->hasSpaceProximity(x, y)) {
663 continue;
664 }
665
666 if (DEBUG_CORRECTION_FREQ) {
667 AKLOGI("Do mistyped space correction");
668 }
669 getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
670 useFullEditDistance, correction, queuePool, inputSize, hasAutoCorrectionCandidate,
671 startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength,
672 true /* mistyped space */, freqArray, wordLengthArray, outputWord, 0);
673 }
674 }
675
getSplitMultipleWordsSuggestions(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const bool useFullEditDistance,const int inputSize,Correction * correction,WordsPriorityQueuePool * queuePool,const bool hasAutoCorrectionCandidate) const676 void UnigramDictionary::getSplitMultipleWordsSuggestions(ProximityInfo *proximityInfo,
677 const int *xcoordinates, const int *ycoordinates, const int *codes,
678 const bool useFullEditDistance, const int inputSize,
679 Correction *correction, WordsPriorityQueuePool *queuePool,
680 const bool hasAutoCorrectionCandidate) const {
681 if (inputSize >= MAX_WORD_LENGTH) return;
682 if (DEBUG_DICT) {
683 AKLOGI("--- Suggest multiple words");
684 }
685
686 // Allocating fixed length array on stack
687 unsigned short outputWord[MAX_WORD_LENGTH];
688 int freqArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS];
689 int wordLengthArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS];
690 const int outputWordLength = 0;
691 const int startInputPos = 0;
692 const int startWordIndex = 0;
693 getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes,
694 useFullEditDistance, inputSize, correction, queuePool, hasAutoCorrectionCandidate,
695 startInputPos, startWordIndex, outputWordLength, freqArray, wordLengthArray,
696 outputWord);
697 }
698
699 // Wrapper for getMostFrequentWordLikeInner, which matches it to the previous
700 // interface.
getMostFrequentWordLike(const int startInputIndex,const int inputSize,Correction * correction,unsigned short * word) const701 inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex,
702 const int inputSize, Correction *correction, unsigned short *word) const {
703 uint16_t inWord[inputSize];
704
705 for (int i = 0; i < inputSize; ++i) {
706 inWord[i] = (uint16_t)correction->getPrimaryCharAt(startInputIndex + i);
707 }
708 return getMostFrequentWordLikeInner(inWord, inputSize, word);
709 }
710
711 // This function will take the position of a character array within a CharGroup,
712 // and check it actually like-matches the word in inWord starting at startInputIndex,
713 // that is, it matches it with case and accents squashed.
714 // The function returns true if there was a full match, false otherwise.
715 // The function will copy on-the-fly the characters in the CharGroup to outNewWord.
716 // It will also place the end position of the array in outPos; in outInputIndex,
717 // it will place the index of the first char AFTER the match if there was a match,
718 // and the initial position if there was not. It makes sense because if there was
719 // a match we want to continue searching, but if there was not, we want to go to
720 // the next CharGroup.
721 // In and out parameters may point to the same location. This function takes care
722 // not to use any input parameters after it wrote into its outputs.
testCharGroupForContinuedLikeness(const uint8_t flags,const uint8_t * const root,const int startPos,const uint16_t * const inWord,const int startInputIndex,const int inputSize,int32_t * outNewWord,int * outInputIndex,int * outPos)723 static inline bool testCharGroupForContinuedLikeness(const uint8_t flags,
724 const uint8_t *const root, const int startPos, const uint16_t *const inWord,
725 const int startInputIndex, const int inputSize, int32_t *outNewWord, int *outInputIndex,
726 int *outPos) {
727 const bool hasMultipleChars = (0 != (BinaryFormat::FLAG_HAS_MULTIPLE_CHARS & flags));
728 int pos = startPos;
729 int32_t codePoint = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
730 int32_t baseChar = toBaseLowerCase(codePoint);
731 const uint16_t wChar = toBaseLowerCase(inWord[startInputIndex]);
732
733 if (baseChar != wChar) {
734 *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos;
735 *outInputIndex = startInputIndex;
736 return false;
737 }
738 int inputIndex = startInputIndex;
739 outNewWord[inputIndex] = codePoint;
740 if (hasMultipleChars) {
741 codePoint = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
742 while (NOT_A_CODE_POINT != codePoint) {
743 baseChar = toBaseLowerCase(codePoint);
744 if (inputIndex + 1 >= inputSize || toBaseLowerCase(inWord[++inputIndex]) != baseChar) {
745 *outPos = BinaryFormat::skipOtherCharacters(root, pos);
746 *outInputIndex = startInputIndex;
747 return false;
748 }
749 outNewWord[inputIndex] = codePoint;
750 codePoint = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
751 }
752 }
753 *outInputIndex = inputIndex + 1;
754 *outPos = pos;
755 return true;
756 }
757
758 // This function is invoked when a word like the word searched for is found.
759 // It will compare the frequency to the max frequency, and if greater, will
760 // copy the word into the output buffer. In output value maxFreq, it will
761 // write the new maximum frequency if it changed.
onTerminalWordLike(const int freq,int32_t * newWord,const int length,short unsigned int * outWord,int * maxFreq)762 static inline void onTerminalWordLike(const int freq, int32_t *newWord, const int length,
763 short unsigned int *outWord, int *maxFreq) {
764 if (freq > *maxFreq) {
765 for (int q = 0; q < length; ++q) {
766 outWord[q] = newWord[q];
767 }
768 outWord[length] = 0;
769 *maxFreq = freq;
770 }
771 }
772
773 // Will find the highest frequency of the words like the one passed as an argument,
774 // that is, everything that only differs by case/accents.
getMostFrequentWordLikeInner(const uint16_t * const inWord,const int inputSize,short unsigned int * outWord) const775 int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t *const inWord,
776 const int inputSize, short unsigned int *outWord) const {
777 int32_t newWord[MAX_WORD_LENGTH_INTERNAL];
778 int depth = 0;
779 int maxFreq = -1;
780 const uint8_t *const root = DICT_ROOT;
781 int stackChildCount[MAX_WORD_LENGTH_INTERNAL];
782 int stackInputIndex[MAX_WORD_LENGTH_INTERNAL];
783 int stackSiblingPos[MAX_WORD_LENGTH_INTERNAL];
784
785 int startPos = 0;
786 stackChildCount[0] = BinaryFormat::getGroupCountAndForwardPointer(root, &startPos);
787 stackInputIndex[0] = 0;
788 stackSiblingPos[0] = startPos;
789 while (depth >= 0) {
790 const int charGroupCount = stackChildCount[depth];
791 int pos = stackSiblingPos[depth];
792 for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) {
793 int inputIndex = stackInputIndex[depth];
794 const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
795 // Test whether all chars in this group match with the word we are searching for. If so,
796 // we want to traverse its children (or if the inputSize match, evaluate its frequency).
797 // Note that this function will output the position regardless, but will only write
798 // into inputIndex if there is a match.
799 const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord,
800 inputIndex, inputSize, newWord, &inputIndex, &pos);
801 if (isAlike && (!(BinaryFormat::FLAG_IS_NOT_A_WORD & flags))
802 && (BinaryFormat::FLAG_IS_TERMINAL & flags) && (inputIndex == inputSize)) {
803 const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
804 onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq);
805 }
806 pos = BinaryFormat::skipFrequency(flags, pos);
807 const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
808 const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos);
809 // If we had a match and the word has children, we want to traverse them. We don't have
810 // to traverse words longer than the one we are searching for, since they will not match
811 // anyway, so don't traverse unless inputIndex < inputSize.
812 if (isAlike && (-1 != childrenNodePos) && (inputIndex < inputSize)) {
813 // Save position for this depth, to get back to this once children are done
814 stackChildCount[depth] = charGroupIndex;
815 stackSiblingPos[depth] = siblingPos;
816 // Prepare stack values for next depth
817 ++depth;
818 int childrenPos = childrenNodePos;
819 stackChildCount[depth] =
820 BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos);
821 stackSiblingPos[depth] = childrenPos;
822 stackInputIndex[depth] = inputIndex;
823 pos = childrenPos;
824 // Go to the next depth level.
825 ++depth;
826 break;
827 } else {
828 // No match, or no children, or word too long to ever match: go the next sibling.
829 pos = siblingPos;
830 }
831 }
832 --depth;
833 }
834 return maxFreq;
835 }
836
getFrequency(const int32_t * const inWord,const int length) const837 int UnigramDictionary::getFrequency(const int32_t *const inWord, const int length) const {
838 const uint8_t *const root = DICT_ROOT;
839 int pos = BinaryFormat::getTerminalPosition(root, inWord, length,
840 false /* forceLowerCaseSearch */);
841 if (NOT_VALID_WORD == pos) {
842 return NOT_A_PROBABILITY;
843 }
844 const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
845 if (flags & (BinaryFormat::FLAG_IS_BLACKLISTED | BinaryFormat::FLAG_IS_NOT_A_WORD)) {
846 // If this is not a word, or if it's a blacklisted entry, it should behave as
847 // having no frequency outside of the suggestion process (where it should be used
848 // for shortcuts).
849 return NOT_A_PROBABILITY;
850 }
851 const bool hasMultipleChars = (0 != (BinaryFormat::FLAG_HAS_MULTIPLE_CHARS & flags));
852 if (hasMultipleChars) {
853 pos = BinaryFormat::skipOtherCharacters(root, pos);
854 } else {
855 BinaryFormat::getCodePointAndForwardPointer(DICT_ROOT, &pos);
856 }
857 const int unigramFreq = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
858 return unigramFreq;
859 }
860
861 // TODO: remove this function.
getBigramPosition(int pos,unsigned short * word,int offset,int length) const862 int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
863 int length) const {
864 return -1;
865 }
866
867 // ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not.
868 // If the return value is false, then the caller should read in the output "nextSiblingPosition"
869 // to find out the address of the next sibling node and pass it to a new call of processCurrentNode.
870 // It is worthy to note that when false is returned, the output values other than
871 // nextSiblingPosition are undefined.
872 // If the return value is true, then the caller must proceed to traverse the children of this
873 // node. processCurrentNode will output the information about the children: their count in
874 // newCount, their position in newChildrenPosition, the traverseAllNodes flag in
875 // newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the
876 // diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into
877 // newOutputIndex. Please also note the following caveat: processCurrentNode does not know when
878 // there aren't any more nodes at this level, it merely returns the address of the first byte after
879 // the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
880 // given level, as output into newCount when traversing this level's parent.
processCurrentNode(const int initialPos,const std::map<int,int> * bigramMap,const uint8_t * bigramFilter,Correction * correction,int * newCount,int * newChildrenPosition,int * nextSiblingPosition,WordsPriorityQueuePool * queuePool,const int currentWordIndex) const881 inline bool UnigramDictionary::processCurrentNode(const int initialPos,
882 const std::map<int, int> *bigramMap, const uint8_t *bigramFilter, Correction *correction,
883 int *newCount, int *newChildrenPosition, int *nextSiblingPosition,
884 WordsPriorityQueuePool *queuePool, const int currentWordIndex) const {
885 if (DEBUG_DICT) {
886 correction->checkState();
887 }
888 int pos = initialPos;
889
890 // Flags contain the following information:
891 // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
892 // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address
893 // is on the specified number of bytes.
894 // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address.
895 // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not.
896 // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children)
897 // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
898 const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
899 const bool hasMultipleChars = (0 != (BinaryFormat::FLAG_HAS_MULTIPLE_CHARS & flags));
900 const bool isTerminalNode = (0 != (BinaryFormat::FLAG_IS_TERMINAL & flags));
901
902 bool needsToInvokeOnTerminal = false;
903
904 // This gets only ONE character from the stream. Next there will be:
905 // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
906 // else if FLAG_IS_TERMINAL: the frequency
907 // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address
908 // Note that you can't have a node that both is not a terminal and has no children.
909 int32_t c = BinaryFormat::getCodePointAndForwardPointer(DICT_ROOT, &pos);
910 assert(NOT_A_CODE_POINT != c);
911
912 // We are going to loop through each character and make it look like it's a different
913 // node each time. To do that, we will process characters in this node in order until
914 // we find the character terminator. This is signalled by getCodePoint* returning
915 // NOT_A_CODE_POINT.
916 // As a special case, if there is only one character in this node, we must not read the
917 // next bytes so we will simulate the NOT_A_CODE_POINT return by testing the flags.
918 // This way, each loop run will look like a "virtual node".
919 do {
920 // We prefetch the next char. If 'c' is the last char of this node, we will have
921 // NOT_A_CODE_POINT in the next char. From this we can decide whether this virtual node
922 // should behave as a terminal or not and whether we have children.
923 const int32_t nextc = hasMultipleChars
924 ? BinaryFormat::getCodePointAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CODE_POINT;
925 const bool isLastChar = (NOT_A_CODE_POINT == nextc);
926 // If there are more chars in this nodes, then this virtual node is not a terminal.
927 // If we are on the last char, this virtual node is a terminal if this node is.
928 const bool isTerminal = isLastChar && isTerminalNode;
929
930 Correction::CorrectionType stateType = correction->processCharAndCalcState(
931 c, isTerminal);
932 if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL
933 || stateType == Correction::ON_TERMINAL) {
934 needsToInvokeOnTerminal = true;
935 } else if (stateType == Correction::UNRELATED || correction->needsToPrune()) {
936 // We found that this is an unrelated character, so we should give up traversing
937 // this node and its children entirely.
938 // However we may not be on the last virtual node yet so we skip the remaining
939 // characters in this node, the frequency if it's there, read the next sibling
940 // position to output it, then return false.
941 // We don't have to output other values because we return false, as in
942 // "don't traverse children".
943 if (!isLastChar) {
944 pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
945 }
946 pos = BinaryFormat::skipFrequency(flags, pos);
947 *nextSiblingPosition =
948 BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
949 return false;
950 }
951
952 // Prepare for the next character. Promote the prefetched char to current char - the loop
953 // will take care of prefetching the next. If we finally found our last char, nextc will
954 // contain NOT_A_CODE_POINT.
955 c = nextc;
956 } while (NOT_A_CODE_POINT != c);
957
958 if (isTerminalNode) {
959 // The frequency should be here, because we come here only if this is actually
960 // a terminal node, and we are on its last char.
961 const int unigramFreq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
962 const int childrenAddressPos = BinaryFormat::skipFrequency(flags, pos);
963 const int attributesPos = BinaryFormat::skipChildrenPosition(flags, childrenAddressPos);
964 TerminalAttributes terminalAttributes(DICT_ROOT, flags, attributesPos);
965 // bigramMap contains the bigram frequencies indexed by addresses for fast lookup.
966 // bigramFilter is a bloom filter of said frequencies for even faster rejection.
967 const int probability = BinaryFormat::getProbability(initialPos, bigramMap, bigramFilter,
968 unigramFreq);
969 onTerminal(probability, terminalAttributes, correction, queuePool, needsToInvokeOnTerminal,
970 currentWordIndex);
971
972 // If there are more chars in this node, then this virtual node has children.
973 // If we are on the last char, this virtual node has children if this node has.
974 const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags);
975
976 // This character matched the typed character (enough to traverse the node at least)
977 // so we just evaluated it. Now we should evaluate this virtual node's children - that
978 // is, if it has any. If it has no children, we're done here - so we skip the end of
979 // the node, output the siblings position, and return false "don't traverse children".
980 // Note that !hasChildren implies isLastChar, so we know we don't have to skip any
981 // remaining char in this group for there can't be any.
982 if (!hasChildren) {
983 pos = BinaryFormat::skipFrequency(flags, pos);
984 *nextSiblingPosition =
985 BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
986 return false;
987 }
988
989 // Optimization: Prune out words that are too long compared to how much was typed.
990 if (correction->needsToPrune()) {
991 pos = BinaryFormat::skipFrequency(flags, pos);
992 *nextSiblingPosition =
993 BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
994 if (DEBUG_DICT_FULL) {
995 AKLOGI("Traversing was pruned.");
996 }
997 return false;
998 }
999 }
1000
1001 // Now we finished processing this node, and we want to traverse children. If there are no
1002 // children, we can't come here.
1003 assert(BinaryFormat::hasChildrenInFlags(flags));
1004
1005 // If this node was a terminal it still has the frequency under the pointer (it may have been
1006 // read, but not skipped - see readFrequencyWithoutMovingPointer).
1007 // Next come the children position, then possibly attributes (attributes are bigrams only for
1008 // now, maybe something related to shortcuts in the future).
1009 // Once this is read, we still need to output the number of nodes in the immediate children of
1010 // this node, so we read and output it before returning true, as in "please traverse children".
1011 pos = BinaryFormat::skipFrequency(flags, pos);
1012 int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos);
1013 *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
1014 *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos);
1015 *newChildrenPosition = childrenPos;
1016 return true;
1017 }
1018 } // namespace latinime
1019