• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* libs/pixelflinger/scanline.cpp
2 **
3 ** Copyright 2006-2011, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 
19 #define LOG_TAG "pixelflinger"
20 
21 #include <assert.h>
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <string.h>
25 
26 #include <cutils/memory.h>
27 #include <cutils/log.h>
28 
29 #include "buffer.h"
30 #include "scanline.h"
31 
32 #include "codeflinger/CodeCache.h"
33 #include "codeflinger/GGLAssembler.h"
34 #include "codeflinger/ARMAssembler.h"
35 #if defined(__mips__)
36 #include "codeflinger/MIPSAssembler.h"
37 #endif
38 //#include "codeflinger/ARMAssemblerOptimizer.h"
39 
40 // ----------------------------------------------------------------------------
41 
42 #define ANDROID_CODEGEN_GENERIC     0   // force generic pixel pipeline
43 #define ANDROID_CODEGEN_C           1   // hand-written C, fallback generic
44 #define ANDROID_CODEGEN_ASM         2   // hand-written asm, fallback generic
45 #define ANDROID_CODEGEN_GENERATED   3   // hand-written asm, fallback codegen
46 
47 #ifdef NDEBUG
48 #   define ANDROID_RELEASE
49 #   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
50 #else
51 #   define ANDROID_DEBUG
52 #   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
53 #endif
54 
55 #if defined(__arm__) || defined(__mips__)
56 #   define ANDROID_ARM_CODEGEN  1
57 #else
58 #   define ANDROID_ARM_CODEGEN  0
59 #endif
60 
61 #define DEBUG__CODEGEN_ONLY     0
62 
63 /* Set to 1 to dump to the log the states that need a new
64  * code-generated scanline callback, i.e. those that don't
65  * have a corresponding shortcut function.
66  */
67 #define DEBUG_NEEDS  0
68 
69 #ifdef __mips__
70 #define ASSEMBLY_SCRATCH_SIZE   4096
71 #else
72 #define ASSEMBLY_SCRATCH_SIZE   2048
73 #endif
74 
75 // ----------------------------------------------------------------------------
76 namespace android {
77 // ----------------------------------------------------------------------------
78 
79 static void init_y(context_t*, int32_t);
80 static void init_y_noop(context_t*, int32_t);
81 static void init_y_packed(context_t*, int32_t);
82 static void init_y_error(context_t*, int32_t);
83 
84 static void step_y__generic(context_t* c);
85 static void step_y__nop(context_t*);
86 static void step_y__smooth(context_t* c);
87 static void step_y__tmu(context_t* c);
88 static void step_y__w(context_t* c);
89 
90 static void scanline(context_t* c);
91 static void scanline_perspective(context_t* c);
92 static void scanline_perspective_single(context_t* c);
93 static void scanline_t32cb16blend(context_t* c);
94 static void scanline_t32cb16blend_dither(context_t* c);
95 static void scanline_t32cb16blend_srca(context_t* c);
96 static void scanline_t32cb16blend_clamp(context_t* c);
97 static void scanline_t32cb16blend_clamp_dither(context_t* c);
98 static void scanline_t32cb16blend_clamp_mod(context_t* c);
99 static void scanline_x32cb16blend_clamp_mod(context_t* c);
100 static void scanline_t32cb16blend_clamp_mod_dither(context_t* c);
101 static void scanline_x32cb16blend_clamp_mod_dither(context_t* c);
102 static void scanline_t32cb16(context_t* c);
103 static void scanline_t32cb16_dither(context_t* c);
104 static void scanline_t32cb16_clamp(context_t* c);
105 static void scanline_t32cb16_clamp_dither(context_t* c);
106 static void scanline_col32cb16blend(context_t* c);
107 static void scanline_t16cb16_clamp(context_t* c);
108 static void scanline_t16cb16blend_clamp_mod(context_t* c);
109 static void scanline_memcpy(context_t* c);
110 static void scanline_memset8(context_t* c);
111 static void scanline_memset16(context_t* c);
112 static void scanline_memset32(context_t* c);
113 static void scanline_noop(context_t* c);
114 static void scanline_set(context_t* c);
115 static void scanline_clear(context_t* c);
116 
117 static void rect_generic(context_t* c, size_t yc);
118 static void rect_memcpy(context_t* c, size_t yc);
119 
120 #if defined( __arm__)
121 extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t);
122 extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct);
123 extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct);
124 extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct);
125 #elif defined(__mips__)
126 extern "C" void scanline_t32cb16blend_mips(uint16_t*, uint32_t*, size_t);
127 #endif
128 
129 // ----------------------------------------------------------------------------
130 
convertAbgr8888ToRgb565(uint32_t pix)131 static inline uint16_t  convertAbgr8888ToRgb565(uint32_t  pix)
132 {
133     return uint16_t( ((pix << 8) & 0xf800) |
134                       ((pix >> 5) & 0x07e0) |
135                       ((pix >> 19) & 0x001f) );
136 }
137 
138 struct shortcut_t {
139     needs_filter_t  filter;
140     const char*     desc;
141     void            (*scanline)(context_t*);
142     void            (*init_y)(context_t*, int32_t);
143 };
144 
145 // Keep in sync with needs
146 
147 /* To understand the values here, have a look at:
148  *     system/core/include/private/pixelflinger/ggl_context.h
149  *
150  * Especially the lines defining and using GGL_RESERVE_NEEDS
151  *
152  * Quick reminders:
153  *   - the last nibble of the first value is the destination buffer format.
154  *   - the last nibble of the third value is the source texture format
155  *   - formats: 4=rgb565 1=abgr8888 2=xbgr8888
156  *
157  * In the descriptions below:
158  *
159  *   SRC      means we copy the source pixels to the destination
160  *
161  *   SRC_OVER means we blend the source pixels to the destination
162  *            with dstFactor = 1-srcA, srcFactor=1  (premultiplied source).
163  *            This mode is otherwise called 'blend'.
164  *
165  *   SRCA_OVER means we blend the source pixels to the destination
166  *             with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source).
167  *             This mode is otherwise called 'blend_srca'
168  *
169  *   clamp    means we fetch source pixels from a texture with u/v clamping
170  *
171  *   mod      means the source pixels are modulated (multiplied) by the
172  *            a/r/g/b of the current context's color. Typically used for
173  *            fade-in / fade-out.
174  *
175  *   dither   means we dither 32 bit values to 16 bits
176  */
177 static shortcut_t shortcuts[] = {
178     { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } },
179         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
180         "565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop },
181     { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } },
182         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
183         "565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop  },
184     /* same as first entry, but with dithering */
185     { { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } },
186         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
187         "565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop },
188     /* same as second entry, but with dithering */
189     { { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } },
190         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
191         "565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop  },
192     /* this is used during the boot animation - CHEAT: ignore dithering */
193     { { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } },
194         { 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } },
195         "565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop },
196     /* special case for arbitrary texture coordinates (think scaling) */
197     { { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } },
198         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
199         "565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y },
200     { { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } },
201         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
202         "565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y },
203     /* another case used during emulation */
204     { { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } },
205         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
206         "565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y },
207     /* and this */
208     { { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } },
209         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
210         "565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y },
211     { { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } },
212         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
213         "565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y },
214     { { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } },
215         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
216         "565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y },
217     { { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } },
218         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
219         "565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y  },
220     { { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } },
221         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
222         "565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y  },
223     { { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } },
224         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
225         "565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y  },
226     { { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } },
227         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
228         "565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y  },
229     { { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } },
230         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
231         "565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y  },
232     { { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } },
233         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
234         "565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y  },
235     { { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } },
236         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } },
237         "565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed  },
238     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
239         { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } },
240         "(nop) alpha test", scanline_noop, init_y_noop },
241     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
242         { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } },
243         "(nop) depth test", scanline_noop, init_y_noop },
244     { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } },
245         { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } },
246         "(nop) logic_op", scanline_noop, init_y_noop },
247     { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } },
248         { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } },
249         "(nop) color mask", scanline_noop, init_y_noop },
250     { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } },
251         { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
252         "(set) logic_op", scanline_set, init_y_noop },
253     { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } },
254         { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
255         "(clear) logic_op", scanline_clear, init_y_noop },
256     { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } },
257         { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } },
258         "(clear) blending 0/0", scanline_clear, init_y_noop },
259     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
260         { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } },
261         "(error) invalid color-buffer format", scanline_noop, init_y_error },
262 };
263 static const needs_filter_t noblend1to1 = {
264         // (disregard dithering, see below)
265         { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } },
266         { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } }
267 };
268 static  const needs_filter_t fill16noblend = {
269         { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } },
270         { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } }
271 };
272 
273 // ----------------------------------------------------------------------------
274 
275 #if ANDROID_ARM_CODEGEN
276 
277 #if defined(__mips__)
278 static CodeCache gCodeCache(32 * 1024);
279 #else
280 static CodeCache gCodeCache(12 * 1024);
281 #endif
282 
283 class ScanlineAssembly : public Assembly {
284     AssemblyKey<needs_t> mKey;
285 public:
ScanlineAssembly(needs_t needs,size_t size)286     ScanlineAssembly(needs_t needs, size_t size)
287         : Assembly(size), mKey(needs) { }
key() const288     const AssemblyKey<needs_t>& key() const { return mKey; }
289 };
290 #endif
291 
292 // ----------------------------------------------------------------------------
293 
ggl_init_scanline(context_t * c)294 void ggl_init_scanline(context_t* c)
295 {
296     c->init_y = init_y;
297     c->step_y = step_y__generic;
298     c->scanline = scanline;
299 }
300 
ggl_uninit_scanline(context_t * c)301 void ggl_uninit_scanline(context_t* c)
302 {
303     if (c->state.buffers.coverage)
304         free(c->state.buffers.coverage);
305 #if ANDROID_ARM_CODEGEN
306     if (c->scanline_as)
307         c->scanline_as->decStrong(c);
308 #endif
309 }
310 
311 // ----------------------------------------------------------------------------
312 
pick_scanline(context_t * c)313 static void pick_scanline(context_t* c)
314 {
315 #if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0))
316 
317 #if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC
318     c->init_y = init_y;
319     c->step_y = step_y__generic;
320     c->scanline = scanline;
321     return;
322 #endif
323 
324     //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n",
325     //    c->state.needs.n, c->state.needs.p,
326     //    c->state.needs.t[0], c->state.needs.t[1]);
327 
328     // first handle the special case that we cannot test with a filter
329     const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n);
330     if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) {
331         if (c->state.needs.match(noblend1to1)) {
332             // this will match regardless of dithering state, since both
333             // src and dest have the same format anyway, there is no dithering
334             // to be done.
335             const GGLFormat* f =
336                 &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]);
337             if ((f->components == GGL_RGB) ||
338                 (f->components == GGL_RGBA) ||
339                 (f->components == GGL_LUMINANCE) ||
340                 (f->components == GGL_LUMINANCE_ALPHA))
341             {
342                 // format must have all of RGB components
343                 // (so the current color doesn't show through)
344                 c->scanline = scanline_memcpy;
345                 c->init_y = init_y_noop;
346                 return;
347             }
348         }
349     }
350 
351     if (c->state.needs.match(fill16noblend)) {
352         c->init_y = init_y_packed;
353         switch (c->formats[cb_format].size) {
354         case 1: c->scanline = scanline_memset8;  return;
355         case 2: c->scanline = scanline_memset16; return;
356         case 4: c->scanline = scanline_memset32; return;
357         }
358     }
359 
360     const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t);
361     for (int i=0 ; i<numFilters ; i++) {
362         if (c->state.needs.match(shortcuts[i].filter)) {
363             c->scanline = shortcuts[i].scanline;
364             c->init_y = shortcuts[i].init_y;
365             return;
366         }
367     }
368 
369 #if DEBUG_NEEDS
370     ALOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x",
371          c->state.needs.n, c->state.needs.p,
372          c->state.needs.t[0], c->state.needs.t[1]);
373 #endif
374 
375 #endif // DEBUG__CODEGEN_ONLY
376 
377     c->init_y = init_y;
378     c->step_y = step_y__generic;
379 
380 #if ANDROID_ARM_CODEGEN
381     // we're going to have to generate some code...
382     // here, generate code for our pixel pipeline
383     const AssemblyKey<needs_t> key(c->state.needs);
384     sp<Assembly> assembly = gCodeCache.lookup(key);
385     if (assembly == 0) {
386         // create a new assembly region
387         sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs,
388                 ASSEMBLY_SCRATCH_SIZE);
389         // initialize our assembler
390 #if defined(__arm__)
391         GGLAssembler assembler( new ARMAssembler(a) );
392         //GGLAssembler assembler(
393         //        new ARMAssemblerOptimizer(new ARMAssembler(a)) );
394 #endif
395 #if defined(__mips__)
396         GGLAssembler assembler( new ArmToMipsAssembler(a) );
397 #endif
398         // generate the scanline code for the given needs
399         int err = assembler.scanline(c->state.needs, c);
400         if (ggl_likely(!err)) {
401             // finally, cache this assembly
402             err = gCodeCache.cache(a->key(), a);
403         }
404         if (ggl_unlikely(err)) {
405             ALOGE("error generating or caching assembly. Reverting to NOP.");
406             c->scanline = scanline_noop;
407             c->init_y = init_y_noop;
408             c->step_y = step_y__nop;
409             return;
410         }
411         assembly = a;
412     }
413 
414     // release the previous assembly
415     if (c->scanline_as) {
416         c->scanline_as->decStrong(c);
417     }
418 
419     //ALOGI("using generated pixel-pipeline");
420     c->scanline_as = assembly.get();
421     c->scanline_as->incStrong(c); //  hold on to assembly
422     c->scanline = (void(*)(context_t* c))assembly->base();
423 #else
424 //    ALOGW("using generic (slow) pixel-pipeline");
425     c->scanline = scanline;
426 #endif
427 }
428 
ggl_pick_scanline(context_t * c)429 void ggl_pick_scanline(context_t* c)
430 {
431     pick_scanline(c);
432     if ((c->state.enables & GGL_ENABLE_W) &&
433         (c->state.enables & GGL_ENABLE_TMUS))
434     {
435         c->span = c->scanline;
436         c->scanline = scanline_perspective;
437         if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) {
438             // only one TMU enabled
439             c->scanline = scanline_perspective_single;
440         }
441     }
442 }
443 
444 // ----------------------------------------------------------------------------
445 
446 static void blending(context_t* c, pixel_t* fragment, pixel_t* fb);
447 static void blend_factor(context_t* c, pixel_t* r, uint32_t factor,
448         const pixel_t* src, const pixel_t* dst);
449 static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv);
450 
451 #if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
452 
453 // no need to compile the generic-pipeline, it can't be reached
scanline(context_t *)454 void scanline(context_t*)
455 {
456 }
457 
458 #else
459 
rescale(uint32_t & u,uint8_t & su,uint32_t & v,uint8_t & sv)460 void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv)
461 {
462     if (su && sv) {
463         if (su > sv) {
464             v = ggl_expand(v, sv, su);
465             sv = su;
466         } else if (su < sv) {
467             u = ggl_expand(u, su, sv);
468             su = sv;
469         }
470     }
471 }
472 
blending(context_t * c,pixel_t * fragment,pixel_t * fb)473 void blending(context_t* c, pixel_t* fragment, pixel_t* fb)
474 {
475     rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]);
476     rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]);
477     rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]);
478     rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]);
479 
480     pixel_t sf, df;
481     blend_factor(c, &sf, c->state.blend.src, fragment, fb);
482     blend_factor(c, &df, c->state.blend.dst, fragment, fb);
483 
484     fragment->c[1] =
485             gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1]));
486     fragment->c[2] =
487             gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2]));
488     fragment->c[3] =
489             gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3]));
490 
491     if (c->state.blend.alpha_separate) {
492         blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb);
493         blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb);
494     }
495 
496     fragment->c[0] =
497             gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0]));
498 
499     // clamp to 1.0
500     if (fragment->c[0] >= (1LU<<fragment->s[0]))
501         fragment->c[0] = (1<<fragment->s[0])-1;
502     if (fragment->c[1] >= (1LU<<fragment->s[1]))
503         fragment->c[1] = (1<<fragment->s[1])-1;
504     if (fragment->c[2] >= (1LU<<fragment->s[2]))
505         fragment->c[2] = (1<<fragment->s[2])-1;
506     if (fragment->c[3] >= (1LU<<fragment->s[3]))
507         fragment->c[3] = (1<<fragment->s[3])-1;
508 }
509 
blendfactor(uint32_t x,uint32_t size,uint32_t def=0)510 static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0)
511 {
512     if (!size)
513         return def;
514 
515     // scale to 16 bits
516     if (size > 16) {
517         x >>= (size - 16);
518     } else if (size < 16) {
519         x = ggl_expand(x, size, 16);
520     }
521     x += x >> 15;
522     return x;
523 }
524 
blend_factor(context_t * c,pixel_t * r,uint32_t factor,const pixel_t * src,const pixel_t * dst)525 void blend_factor(context_t* c, pixel_t* r,
526         uint32_t factor, const pixel_t* src, const pixel_t* dst)
527 {
528     switch (factor) {
529         case GGL_ZERO:
530             r->c[1] =
531             r->c[2] =
532             r->c[3] =
533             r->c[0] = 0;
534             break;
535         case GGL_ONE:
536             r->c[1] =
537             r->c[2] =
538             r->c[3] =
539             r->c[0] = FIXED_ONE;
540             break;
541         case GGL_DST_COLOR:
542             r->c[1] = blendfactor(dst->c[1], dst->s[1]);
543             r->c[2] = blendfactor(dst->c[2], dst->s[2]);
544             r->c[3] = blendfactor(dst->c[3], dst->s[3]);
545             r->c[0] = blendfactor(dst->c[0], dst->s[0]);
546             break;
547         case GGL_SRC_COLOR:
548             r->c[1] = blendfactor(src->c[1], src->s[1]);
549             r->c[2] = blendfactor(src->c[2], src->s[2]);
550             r->c[3] = blendfactor(src->c[3], src->s[3]);
551             r->c[0] = blendfactor(src->c[0], src->s[0]);
552             break;
553         case GGL_ONE_MINUS_DST_COLOR:
554             r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]);
555             r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]);
556             r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]);
557             r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]);
558             break;
559         case GGL_ONE_MINUS_SRC_COLOR:
560             r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]);
561             r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]);
562             r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]);
563             r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]);
564             break;
565         case GGL_SRC_ALPHA:
566             r->c[1] =
567             r->c[2] =
568             r->c[3] =
569             r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE);
570             break;
571         case GGL_ONE_MINUS_SRC_ALPHA:
572             r->c[1] =
573             r->c[2] =
574             r->c[3] =
575             r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE);
576             break;
577         case GGL_DST_ALPHA:
578             r->c[1] =
579             r->c[2] =
580             r->c[3] =
581             r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
582             break;
583         case GGL_ONE_MINUS_DST_ALPHA:
584             r->c[1] =
585             r->c[2] =
586             r->c[3] =
587             r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
588             break;
589         case GGL_SRC_ALPHA_SATURATE:
590             // XXX: GGL_SRC_ALPHA_SATURATE
591             break;
592     }
593 }
594 
wrapping(int32_t coord,uint32_t size,int tx_wrap)595 static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap)
596 {
597     GGLfixed d;
598     if (tx_wrap == GGL_REPEAT) {
599         d = (uint32_t(coord)>>16) * size;
600     } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics
601         const GGLfixed clamp_min = FIXED_HALF;
602         const GGLfixed clamp_max = (size << 16) - FIXED_HALF;
603         if (coord < clamp_min)     coord = clamp_min;
604         if (coord > clamp_max)     coord = clamp_max;
605         d = coord;
606     } else { // 1:1
607         const GGLfixed clamp_min = 0;
608         const GGLfixed clamp_max = (size << 16);
609         if (coord < clamp_min)     coord = clamp_min;
610         if (coord > clamp_max)     coord = clamp_max;
611         d = coord;
612     }
613     return d;
614 }
615 
616 static inline
ADJUST_COLOR_ITERATOR(GGLcolor v,GGLcolor dvdx,int len)617 GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len)
618 {
619     const int32_t end = dvdx * (len-1) + v;
620     if (end < 0)
621         v -= end;
622     v &= ~(v>>31);
623     return v;
624 }
625 
scanline(context_t * c)626 void scanline(context_t* c)
627 {
628     const uint32_t enables = c->state.enables;
629     const int xs = c->iterators.xl;
630     const int x1 = c->iterators.xr;
631 	int xc = x1 - xs;
632     const int16_t* covPtr = c->state.buffers.coverage + xs;
633 
634     // All iterated values are sampled at the pixel center
635 
636     // reset iterators for that scanline...
637     GGLcolor r, g, b, a;
638     iterators_t& ci = c->iterators;
639     if (enables & GGL_ENABLE_SMOOTH) {
640         r = (xs * c->shade.drdx) + ci.ydrdy;
641         g = (xs * c->shade.dgdx) + ci.ydgdy;
642         b = (xs * c->shade.dbdx) + ci.ydbdy;
643         a = (xs * c->shade.dadx) + ci.ydady;
644         r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc);
645         g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc);
646         b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc);
647         a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc);
648     } else {
649         r = ci.ydrdy;
650         g = ci.ydgdy;
651         b = ci.ydbdy;
652         a = ci.ydady;
653     }
654 
655     // z iterators are 1.31
656     GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy;
657     GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy;
658 
659     struct {
660         GGLfixed s, t;
661     } tc[GGL_TEXTURE_UNIT_COUNT];
662     if (enables & GGL_ENABLE_TMUS) {
663         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
664             if (c->state.texture[i].enable) {
665                 texture_iterators_t& ti = c->state.texture[i].iterators;
666                 if (enables & GGL_ENABLE_W) {
667                     tc[i].s = ti.ydsdy;
668                     tc[i].t = ti.ydtdy;
669                 } else {
670                     tc[i].s = (xs * ti.dsdx) + ti.ydsdy;
671                     tc[i].t = (xs * ti.dtdx) + ti.ydtdy;
672                 }
673             }
674         }
675     }
676 
677     pixel_t fragment;
678     pixel_t texel;
679     pixel_t fb;
680 
681 	uint32_t x = xs;
682 	uint32_t y = c->iterators.y;
683 
684 	while (xc--) {
685 
686         { // just a scope
687 
688 		// read color (convert to 8 bits by keeping only the integer part)
689         fragment.s[1] = fragment.s[2] =
690         fragment.s[3] = fragment.s[0] = 8;
691         fragment.c[1] = r >> (GGL_COLOR_BITS-8);
692         fragment.c[2] = g >> (GGL_COLOR_BITS-8);
693         fragment.c[3] = b >> (GGL_COLOR_BITS-8);
694         fragment.c[0] = a >> (GGL_COLOR_BITS-8);
695 
696 		// texturing
697         if (enables & GGL_ENABLE_TMUS) {
698             for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
699                 texture_t& tx = c->state.texture[i];
700                 if (!tx.enable)
701                     continue;
702                 texture_iterators_t& ti = tx.iterators;
703                 int32_t u, v;
704 
705                 // s-coordinate
706                 if (tx.s_coord != GGL_ONE_TO_ONE) {
707                     const int w = tx.surface.width;
708                     u = wrapping(tc[i].s, w, tx.s_wrap);
709                     tc[i].s += ti.dsdx;
710                 } else {
711                     u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF;
712                 }
713 
714                 // t-coordinate
715                 if (tx.t_coord != GGL_ONE_TO_ONE) {
716                     const int h = tx.surface.height;
717                     v = wrapping(tc[i].t, h, tx.t_wrap);
718                     tc[i].t += ti.dtdx;
719                 } else {
720                     v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF;
721                 }
722 
723                 // read texture
724                 if (tx.mag_filter == GGL_NEAREST &&
725                     tx.min_filter == GGL_NEAREST)
726                 {
727                     u >>= 16;
728                     v >>= 16;
729                     tx.surface.read(&tx.surface, c, u, v, &texel);
730                 } else {
731                     const int w = tx.surface.width;
732                     const int h = tx.surface.height;
733                     u -= FIXED_HALF;
734                     v -= FIXED_HALF;
735                     int u0 = u >> 16;
736                     int v0 = v >> 16;
737                     int u1 = u0 + 1;
738                     int v1 = v0 + 1;
739                     if (tx.s_wrap == GGL_REPEAT) {
740                         if (u0<0)  u0 += w;
741                         if (u1<0)  u1 += w;
742                         if (u0>=w) u0 -= w;
743                         if (u1>=w) u1 -= w;
744                     } else {
745                         if (u0<0)  u0 = 0;
746                         if (u1<0)  u1 = 0;
747                         if (u0>=w) u0 = w-1;
748                         if (u1>=w) u1 = w-1;
749                     }
750                     if (tx.t_wrap == GGL_REPEAT) {
751                         if (v0<0)  v0 += h;
752                         if (v1<0)  v1 += h;
753                         if (v0>=h) v0 -= h;
754                         if (v1>=h) v1 -= h;
755                     } else {
756                         if (v0<0)  v0 = 0;
757                         if (v1<0)  v1 = 0;
758                         if (v0>=h) v0 = h-1;
759                         if (v1>=h) v1 = h-1;
760                     }
761                     pixel_t texels[4];
762                     uint32_t mm[4];
763                     tx.surface.read(&tx.surface, c, u0, v0, &texels[0]);
764                     tx.surface.read(&tx.surface, c, u0, v1, &texels[1]);
765                     tx.surface.read(&tx.surface, c, u1, v0, &texels[2]);
766                     tx.surface.read(&tx.surface, c, u1, v1, &texels[3]);
767                     u = (u >> 12) & 0xF;
768                     v = (v >> 12) & 0xF;
769                     u += u>>3;
770                     v += v>>3;
771                     mm[0] = (0x10 - u) * (0x10 - v);
772                     mm[1] = (0x10 - u) * v;
773                     mm[2] = u * (0x10 - v);
774                     mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]);
775                     for (int j=0 ; j<4 ; j++) {
776                         texel.s[j] = texels[0].s[j];
777                         if (!texel.s[j]) continue;
778                         texel.s[j] += 8;
779                         texel.c[j] =    texels[0].c[j]*mm[0] +
780                                         texels[1].c[j]*mm[1] +
781                                         texels[2].c[j]*mm[2] +
782                                         texels[3].c[j]*mm[3] ;
783                     }
784                 }
785 
786                 // Texture environnement...
787                 for (int j=0 ; j<4 ; j++) {
788                     uint32_t& Cf = fragment.c[j];
789                     uint32_t& Ct = texel.c[j];
790                     uint8_t& sf  = fragment.s[j];
791                     uint8_t& st  = texel.s[j];
792                     uint32_t At = texel.c[0];
793                     uint8_t sat = texel.s[0];
794                     switch (tx.env) {
795                     case GGL_REPLACE:
796                         if (st) {
797                             Cf = Ct;
798                             sf = st;
799                         }
800                         break;
801                     case GGL_MODULATE:
802                         if (st) {
803                             uint32_t factor = Ct + (Ct>>(st-1));
804                             Cf = (Cf * factor) >> st;
805                         }
806                         break;
807                     case GGL_DECAL:
808                         if (sat) {
809                             rescale(Cf, sf, Ct, st);
810                             Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat;
811                         }
812                         break;
813                     case GGL_BLEND:
814                         if (st) {
815                             uint32_t Cc = tx.env_color[i];
816                             if (sf>8)       Cc = (Cc * ((1<<sf)-1))>>8;
817                             else if (sf<8)  Cc = (Cc - (Cc>>(8-sf)))>>(8-sf);
818                             uint32_t factor = Ct + (Ct>>(st-1));
819                             Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st;
820                         }
821                         break;
822                     case GGL_ADD:
823                         if (st) {
824                             rescale(Cf, sf, Ct, st);
825                             Cf += Ct;
826                         }
827                         break;
828                     }
829                 }
830             }
831 		}
832 
833         // coverage application
834         if (enables & GGL_ENABLE_AA) {
835             int16_t cf = *covPtr++;
836             fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15;
837         }
838 
839         // alpha-test
840         if (enables & GGL_ENABLE_ALPHA_TEST) {
841             GGLcolor ref = c->state.alpha_test.ref;
842             GGLcolor alpha = (uint64_t(fragment.c[0]) *
843                     ((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1);
844             switch (c->state.alpha_test.func) {
845             case GGL_NEVER:     goto discard;
846             case GGL_LESS:      if (alpha<ref)  break; goto discard;
847             case GGL_EQUAL:     if (alpha==ref) break; goto discard;
848             case GGL_LEQUAL:    if (alpha<=ref) break; goto discard;
849             case GGL_GREATER:   if (alpha>ref)  break; goto discard;
850             case GGL_NOTEQUAL:  if (alpha!=ref) break; goto discard;
851             case GGL_GEQUAL:    if (alpha>=ref) break; goto discard;
852             }
853         }
854 
855         // depth test
856         if (c->state.buffers.depth.format) {
857             if (enables & GGL_ENABLE_DEPTH_TEST) {
858                 surface_t* cb = &(c->state.buffers.depth);
859                 uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y));
860                 uint16_t zz = uint32_t(z)>>(16);
861                 uint16_t depth = *p;
862                 switch (c->state.depth_test.func) {
863                 case GGL_NEVER:     goto discard;
864                 case GGL_LESS:      if (zz<depth)    break; goto discard;
865                 case GGL_EQUAL:     if (zz==depth)   break; goto discard;
866                 case GGL_LEQUAL:    if (zz<=depth)   break; goto discard;
867                 case GGL_GREATER:   if (zz>depth)    break; goto discard;
868                 case GGL_NOTEQUAL:  if (zz!=depth)   break; goto discard;
869                 case GGL_GEQUAL:    if (zz>=depth)   break; goto discard;
870                 }
871                 // depth buffer is not enabled, if depth-test is not enabled
872 /*
873         fragment.s[1] = fragment.s[2] =
874         fragment.s[3] = fragment.s[0] = 8;
875         fragment.c[1] =
876         fragment.c[2] =
877         fragment.c[3] =
878         fragment.c[0] = 255 - (zz>>8);
879 */
880                 if (c->state.mask.depth) {
881                     *p = zz;
882                 }
883             }
884         }
885 
886         // fog
887         if (enables & GGL_ENABLE_FOG) {
888             for (int i=1 ; i<=3 ; i++) {
889                 GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF;
890                 uint32_t& c = fragment.c[i];
891                 uint8_t& s  = fragment.s[i];
892                 c = (c * 0x10000) / ((1<<s)-1);
893                 c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f));
894                 s = 16;
895             }
896         }
897 
898         // blending
899         if (enables & GGL_ENABLE_BLENDING) {
900             fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind
901             fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0;
902             c->state.buffers.color.read(
903                     &(c->state.buffers.color), c, x, y, &fb);
904             blending( c, &fragment, &fb );
905         }
906 
907 		// write
908         c->state.buffers.color.write(
909                 &(c->state.buffers.color), c, x, y, &fragment);
910         }
911 
912 discard:
913 		// iterate...
914         x += 1;
915         if (enables & GGL_ENABLE_SMOOTH) {
916             r += c->shade.drdx;
917             g += c->shade.dgdx;
918             b += c->shade.dbdx;
919             a += c->shade.dadx;
920         }
921         z += c->shade.dzdx;
922         f += c->shade.dfdx;
923 	}
924 }
925 
926 #endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
927 
928 // ----------------------------------------------------------------------------
929 #if 0
930 #pragma mark -
931 #pragma mark Scanline
932 #endif
933 
934 /* Used to parse a 32-bit source texture linearly. Usage is:
935  *
936  * horz_iterator32  hi(context);
937  * while (...) {
938  *    uint32_t  src_pixel = hi.get_pixel32();
939  *    ...
940  * }
941  *
942  * Use only for one-to-one texture mapping.
943  */
944 struct horz_iterator32 {
horz_iterator32android::horz_iterator32945     horz_iterator32(context_t* c) {
946         const int x = c->iterators.xl;
947         const int y = c->iterators.y;
948         texture_t& tx = c->state.texture[0];
949         const int32_t u = (tx.shade.is0>>16) + x;
950         const int32_t v = (tx.shade.it0>>16) + y;
951         m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
952     }
get_pixel32android::horz_iterator32953     uint32_t  get_pixel32() {
954         return *m_src++;
955     }
956 protected:
957     uint32_t* m_src;
958 };
959 
960 /* A variant for 16-bit source textures. */
961 struct horz_iterator16 {
horz_iterator16android::horz_iterator16962     horz_iterator16(context_t* c) {
963         const int x = c->iterators.xl;
964         const int y = c->iterators.y;
965         texture_t& tx = c->state.texture[0];
966         const int32_t u = (tx.shade.is0>>16) + x;
967         const int32_t v = (tx.shade.it0>>16) + y;
968         m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
969     }
get_pixel16android::horz_iterator16970     uint16_t  get_pixel16() {
971         return *m_src++;
972     }
973 protected:
974     uint16_t* m_src;
975 };
976 
977 /* A clamp iterator is used to iterate inside a texture with GGL_CLAMP.
978  * After initialization, call get_src16() or get_src32() to get the current
979  * texture pixel value.
980  */
981 struct clamp_iterator {
clamp_iteratorandroid::clamp_iterator982     clamp_iterator(context_t* c) {
983         const int xs = c->iterators.xl;
984         texture_t& tx = c->state.texture[0];
985         texture_iterators_t& ti = tx.iterators;
986         m_s = (xs * ti.dsdx) + ti.ydsdy;
987         m_t = (xs * ti.dtdx) + ti.ydtdy;
988         m_ds = ti.dsdx;
989         m_dt = ti.dtdx;
990         m_width_m1 = tx.surface.width - 1;
991         m_height_m1 = tx.surface.height - 1;
992         m_data = tx.surface.data;
993         m_stride = tx.surface.stride;
994     }
get_pixel16android::clamp_iterator995     uint16_t get_pixel16() {
996         int  u, v;
997         get_uv(u, v);
998         uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v));
999         return src[0];
1000     }
get_pixel32android::clamp_iterator1001     uint32_t get_pixel32() {
1002         int  u, v;
1003         get_uv(u, v);
1004         uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v));
1005         return src[0];
1006     }
1007 private:
get_uvandroid::clamp_iterator1008     void   get_uv(int& u, int& v) {
1009         int  uu = m_s >> 16;
1010         int  vv = m_t >> 16;
1011         if (uu < 0)
1012             uu = 0;
1013         if (uu > m_width_m1)
1014             uu = m_width_m1;
1015         if (vv < 0)
1016             vv = 0;
1017         if (vv > m_height_m1)
1018             vv = m_height_m1;
1019         u = uu;
1020         v = vv;
1021         m_s += m_ds;
1022         m_t += m_dt;
1023     }
1024 
1025     GGLfixed  m_s, m_t;
1026     GGLfixed  m_ds, m_dt;
1027     int       m_width_m1, m_height_m1;
1028     uint8_t*  m_data;
1029     int       m_stride;
1030 };
1031 
1032 /*
1033  * The 'horizontal clamp iterator' variant corresponds to the case where
1034  * the 'v' coordinate doesn't change. This is useful to avoid one mult and
1035  * extra adds / checks per pixels, if the blending/processing operation after
1036  * this is very fast.
1037  */
is_context_horizontal(const context_t * c)1038 static int is_context_horizontal(const context_t* c) {
1039     return (c->state.texture[0].iterators.dtdx == 0);
1040 }
1041 
1042 struct horz_clamp_iterator {
get_pixel16android::horz_clamp_iterator1043     uint16_t  get_pixel16() {
1044         int  u = m_s >> 16;
1045         m_s += m_ds;
1046         if (u < 0)
1047             u = 0;
1048         if (u > m_width_m1)
1049             u = m_width_m1;
1050         const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data);
1051         return src[u];
1052     }
get_pixel32android::horz_clamp_iterator1053     uint32_t  get_pixel32() {
1054         int  u = m_s >> 16;
1055         m_s += m_ds;
1056         if (u < 0)
1057             u = 0;
1058         if (u > m_width_m1)
1059             u = m_width_m1;
1060         const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data);
1061         return src[u];
1062     }
1063 protected:
1064     void init(const context_t* c, int shift);
1065     GGLfixed       m_s;
1066     GGLfixed       m_ds;
1067     int            m_width_m1;
1068     const uint8_t* m_data;
1069 };
1070 
init(const context_t * c,int shift)1071 void horz_clamp_iterator::init(const context_t* c, int shift)
1072 {
1073     const int xs = c->iterators.xl;
1074     const texture_t& tx = c->state.texture[0];
1075     const texture_iterators_t& ti = tx.iterators;
1076     m_s = (xs * ti.dsdx) + ti.ydsdy;
1077     m_ds = ti.dsdx;
1078     m_width_m1 = tx.surface.width-1;
1079     m_data = tx.surface.data;
1080 
1081     GGLfixed t = (xs * ti.dtdx) + ti.ydtdy;
1082     int      v = t >> 16;
1083     if (v < 0)
1084         v = 0;
1085     else if (v >= (int)tx.surface.height)
1086         v = (int)tx.surface.height-1;
1087 
1088     m_data += (tx.surface.stride*v) << shift;
1089 }
1090 
1091 struct horz_clamp_iterator16 : horz_clamp_iterator {
horz_clamp_iterator16android::horz_clamp_iterator161092     horz_clamp_iterator16(const context_t* c) {
1093         init(c,1);
1094     };
1095 };
1096 
1097 struct horz_clamp_iterator32 : horz_clamp_iterator {
horz_clamp_iterator32android::horz_clamp_iterator321098     horz_clamp_iterator32(context_t* c) {
1099         init(c,2);
1100     };
1101 };
1102 
1103 /* This is used to perform dithering operations.
1104  */
1105 struct ditherer {
dithererandroid::ditherer1106     ditherer(const context_t* c) {
1107         const int x = c->iterators.xl;
1108         const int y = c->iterators.y;
1109         m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
1110         m_index = x & GGL_DITHER_MASK;
1111     }
stepandroid::ditherer1112     void step(void) {
1113         m_index++;
1114     }
get_valueandroid::ditherer1115     int  get_value(void) {
1116         int ret = m_line[m_index & GGL_DITHER_MASK];
1117         m_index++;
1118         return ret;
1119     }
abgr8888ToRgb565android::ditherer1120     uint16_t abgr8888ToRgb565(uint32_t s) {
1121         uint32_t r = s & 0xff;
1122         uint32_t g = (s >> 8) & 0xff;
1123         uint32_t b = (s >> 16) & 0xff;
1124         return rgb888ToRgb565(r,g,b);
1125     }
1126     /* The following assumes that r/g/b are in the 0..255 range each */
rgb888ToRgb565android::ditherer1127     uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) {
1128         int threshold = get_value();
1129         /* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */
1130         r += (threshold >> (GGL_DITHER_BITS-8 +5));
1131         g += (threshold >> (GGL_DITHER_BITS-8 +6));
1132         b += (threshold >> (GGL_DITHER_BITS-8 +5));
1133         if (r > 0xff)
1134             r = 0xff;
1135         if (g > 0xff)
1136             g = 0xff;
1137         if (b > 0xff)
1138             b = 0xff;
1139         return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3));
1140     }
1141 protected:
1142     const uint8_t* m_line;
1143     int            m_index;
1144 };
1145 
1146 /* This structure is used to blend (SRC_OVER) 32-bit source pixels
1147  * onto 16-bit destination ones. Usage is simply:
1148  *
1149  *   blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>)
1150  */
1151 struct blender_32to16 {
blender_32to16android::blender_32to161152     blender_32to16(context_t* c) { }
writeandroid::blender_32to161153     void write(uint32_t s, uint16_t* dst) {
1154         if (s == 0)
1155             return;
1156         s = GGL_RGBA_TO_HOST(s);
1157         int sA = (s>>24);
1158         if (sA == 0xff) {
1159             *dst = convertAbgr8888ToRgb565(s);
1160         } else {
1161             int f = 0x100 - (sA + (sA>>7));
1162             int sR = (s >> (   3))&0x1F;
1163             int sG = (s >> ( 8+2))&0x3F;
1164             int sB = (s >> (16+3))&0x1F;
1165             uint16_t d = *dst;
1166             int dR = (d>>11)&0x1f;
1167             int dG = (d>>5)&0x3f;
1168             int dB = (d)&0x1f;
1169             sR += (f*dR)>>8;
1170             sG += (f*dG)>>8;
1171             sB += (f*dB)>>8;
1172             *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1173         }
1174     }
writeandroid::blender_32to161175     void write(uint32_t s, uint16_t* dst, ditherer& di) {
1176         if (s == 0) {
1177             di.step();
1178             return;
1179         }
1180         s = GGL_RGBA_TO_HOST(s);
1181         int sA = (s>>24);
1182         if (sA == 0xff) {
1183             *dst = di.abgr8888ToRgb565(s);
1184         } else {
1185             int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1186             int f = 0x100 - (sA + (sA>>7));
1187             int sR = (s >> (   3))&0x1F;
1188             int sG = (s >> ( 8+2))&0x3F;
1189             int sB = (s >> (16+3))&0x1F;
1190             uint16_t d = *dst;
1191             int dR = (d>>11)&0x1f;
1192             int dG = (d>>5)&0x3f;
1193             int dB = (d)&0x1f;
1194             sR = ((sR << 8) + f*dR + threshold)>>8;
1195             sG = ((sG << 8) + f*dG + threshold)>>8;
1196             sB = ((sB << 8) + f*dB + threshold)>>8;
1197             if (sR > 0x1f) sR = 0x1f;
1198             if (sG > 0x3f) sG = 0x3f;
1199             if (sB > 0x1f) sB = 0x1f;
1200             *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1201         }
1202     }
1203 };
1204 
1205 /* This blender does the same for the 'blend_srca' operation.
1206  * where dstFactor=srcA*(1-srcA) srcFactor=srcA
1207  */
1208 struct blender_32to16_srcA {
blender_32to16_srcAandroid::blender_32to16_srcA1209     blender_32to16_srcA(const context_t* c) { }
writeandroid::blender_32to16_srcA1210     void write(uint32_t s, uint16_t* dst) {
1211         if (!s) {
1212             return;
1213         }
1214         uint16_t d = *dst;
1215         s = GGL_RGBA_TO_HOST(s);
1216         int sR = (s >> (   3))&0x1F;
1217         int sG = (s >> ( 8+2))&0x3F;
1218         int sB = (s >> (16+3))&0x1F;
1219         int sA = (s>>24);
1220         int f1 = (sA + (sA>>7));
1221         int f2 = 0x100-f1;
1222         int dR = (d>>11)&0x1f;
1223         int dG = (d>>5)&0x3f;
1224         int dB = (d)&0x1f;
1225         sR = (f1*sR + f2*dR)>>8;
1226         sG = (f1*sG + f2*dG)>>8;
1227         sB = (f1*sB + f2*dB)>>8;
1228         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1229     }
1230 };
1231 
1232 /* Common init code the modulating blenders */
1233 struct blender_modulate {
initandroid::blender_modulate1234     void init(const context_t* c) {
1235         const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8);
1236         const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8);
1237         const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8);
1238         const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
1239         m_r = r + (r >> 7);
1240         m_g = g + (g >> 7);
1241         m_b = b + (b >> 7);
1242         m_a = a + (a >> 7);
1243     }
1244 protected:
1245     int m_r, m_g, m_b, m_a;
1246 };
1247 
1248 /* This blender does a normal blend after modulation.
1249  */
1250 struct blender_32to16_modulate : blender_modulate {
blender_32to16_modulateandroid::blender_32to16_modulate1251     blender_32to16_modulate(const context_t* c) {
1252         init(c);
1253     }
writeandroid::blender_32to16_modulate1254     void write(uint32_t s, uint16_t* dst) {
1255         // blend source and destination
1256         if (!s) {
1257             return;
1258         }
1259         s = GGL_RGBA_TO_HOST(s);
1260 
1261         /* We need to modulate s */
1262         uint32_t  sA = (s >> 24);
1263         uint32_t  sB = (s >> 16) & 0xff;
1264         uint32_t  sG = (s >> 8) & 0xff;
1265         uint32_t  sR = s & 0xff;
1266 
1267         sA = (sA*m_a) >> 8;
1268         /* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1269         sR = (sR*m_r) >> (8 - 5);
1270         sG = (sG*m_g) >> (8 - 6);
1271         sB = (sB*m_b) >> (8 - 5);
1272 
1273         /* Now do a normal blend */
1274         int f = 0x100 - (sA + (sA>>7));
1275         uint16_t d = *dst;
1276         int dR = (d>>11)&0x1f;
1277         int dG = (d>>5)&0x3f;
1278         int dB = (d)&0x1f;
1279         sR = (sR + f*dR)>>8;
1280         sG = (sG + f*dG)>>8;
1281         sB = (sB + f*dB)>>8;
1282         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1283     }
writeandroid::blender_32to16_modulate1284     void write(uint32_t s, uint16_t* dst, ditherer& di) {
1285         // blend source and destination
1286         if (!s) {
1287             di.step();
1288             return;
1289         }
1290         s = GGL_RGBA_TO_HOST(s);
1291 
1292         /* We need to modulate s */
1293         uint32_t  sA = (s >> 24);
1294         uint32_t  sB = (s >> 16) & 0xff;
1295         uint32_t  sG = (s >> 8) & 0xff;
1296         uint32_t  sR = s & 0xff;
1297 
1298         sA = (sA*m_a) >> 8;
1299         /* keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1300         sR = (sR*m_r) >> (8 - 5);
1301         sG = (sG*m_g) >> (8 - 6);
1302         sB = (sB*m_b) >> (8 - 5);
1303 
1304         /* Scale threshold to 0.8 fixed float format */
1305         int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1306         int f = 0x100 - (sA + (sA>>7));
1307         uint16_t d = *dst;
1308         int dR = (d>>11)&0x1f;
1309         int dG = (d>>5)&0x3f;
1310         int dB = (d)&0x1f;
1311         sR = (sR + f*dR + threshold)>>8;
1312         sG = (sG + f*dG + threshold)>>8;
1313         sB = (sB + f*dB + threshold)>>8;
1314         if (sR > 0x1f) sR = 0x1f;
1315         if (sG > 0x3f) sG = 0x3f;
1316         if (sB > 0x1f) sB = 0x1f;
1317         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1318     }
1319 };
1320 
1321 /* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */
1322 struct blender_x32to16_modulate : blender_modulate {
blender_x32to16_modulateandroid::blender_x32to16_modulate1323     blender_x32to16_modulate(const context_t* c) {
1324         init(c);
1325     }
writeandroid::blender_x32to16_modulate1326     void write(uint32_t s, uint16_t* dst) {
1327         s = GGL_RGBA_TO_HOST(s);
1328 
1329         uint32_t  sB = (s >> 16) & 0xff;
1330         uint32_t  sG = (s >> 8) & 0xff;
1331         uint32_t  sR = s & 0xff;
1332 
1333         /* Keep R/G/B in 5.8 or 6.8 format */
1334         sR = (sR*m_r) >> (8 - 5);
1335         sG = (sG*m_g) >> (8 - 6);
1336         sB = (sB*m_b) >> (8 - 5);
1337 
1338         int f = 0x100 - m_a;
1339         uint16_t d = *dst;
1340         int dR = (d>>11)&0x1f;
1341         int dG = (d>>5)&0x3f;
1342         int dB = (d)&0x1f;
1343         sR = (sR + f*dR)>>8;
1344         sG = (sG + f*dG)>>8;
1345         sB = (sB + f*dB)>>8;
1346         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1347     }
writeandroid::blender_x32to16_modulate1348     void write(uint32_t s, uint16_t* dst, ditherer& di) {
1349         s = GGL_RGBA_TO_HOST(s);
1350 
1351         uint32_t  sB = (s >> 16) & 0xff;
1352         uint32_t  sG = (s >> 8) & 0xff;
1353         uint32_t  sR = s & 0xff;
1354 
1355         sR = (sR*m_r) >> (8 - 5);
1356         sG = (sG*m_g) >> (8 - 6);
1357         sB = (sB*m_b) >> (8 - 5);
1358 
1359         /* Now do a normal blend */
1360         int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1361         int f = 0x100 - m_a;
1362         uint16_t d = *dst;
1363         int dR = (d>>11)&0x1f;
1364         int dG = (d>>5)&0x3f;
1365         int dB = (d)&0x1f;
1366         sR = (sR + f*dR + threshold)>>8;
1367         sG = (sG + f*dG + threshold)>>8;
1368         sB = (sB + f*dB + threshold)>>8;
1369         if (sR > 0x1f) sR = 0x1f;
1370         if (sG > 0x3f) sG = 0x3f;
1371         if (sB > 0x1f) sB = 0x1f;
1372         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1373     }
1374 };
1375 
1376 /* Same as above, but source is 16bit rgb565 */
1377 struct blender_16to16_modulate : blender_modulate {
blender_16to16_modulateandroid::blender_16to16_modulate1378     blender_16to16_modulate(const context_t* c) {
1379         init(c);
1380     }
writeandroid::blender_16to16_modulate1381     void write(uint16_t s16, uint16_t* dst) {
1382         uint32_t  s = s16;
1383 
1384         uint32_t  sR = s >> 11;
1385         uint32_t  sG = (s >> 5) & 0x3f;
1386         uint32_t  sB = s & 0x1f;
1387 
1388         sR = (sR*m_r);
1389         sG = (sG*m_g);
1390         sB = (sB*m_b);
1391 
1392         int f = 0x100 - m_a;
1393         uint16_t d = *dst;
1394         int dR = (d>>11)&0x1f;
1395         int dG = (d>>5)&0x3f;
1396         int dB = (d)&0x1f;
1397         sR = (sR + f*dR)>>8;
1398         sG = (sG + f*dG)>>8;
1399         sB = (sB + f*dB)>>8;
1400         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1401     }
1402 };
1403 
1404 /* This is used to iterate over a 16-bit destination color buffer.
1405  * Usage is:
1406  *
1407  *   dst_iterator16  di(context);
1408  *   while (di.count--) {
1409  *       <do stuff with dest pixel at di.dst>
1410  *       di.dst++;
1411  *   }
1412  */
1413 struct dst_iterator16 {
dst_iterator16android::dst_iterator161414     dst_iterator16(const context_t* c) {
1415         const int x = c->iterators.xl;
1416         const int width = c->iterators.xr - x;
1417         const int32_t y = c->iterators.y;
1418         const surface_t* cb = &(c->state.buffers.color);
1419         count = width;
1420         dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
1421     }
1422     int        count;
1423     uint16_t*  dst;
1424 };
1425 
1426 
scanline_t32cb16_clamp(context_t * c)1427 static void scanline_t32cb16_clamp(context_t* c)
1428 {
1429     dst_iterator16  di(c);
1430 
1431     if (is_context_horizontal(c)) {
1432         /* Special case for simple horizontal scaling */
1433         horz_clamp_iterator32 ci(c);
1434         while (di.count--) {
1435             uint32_t s = ci.get_pixel32();
1436             *di.dst++ = convertAbgr8888ToRgb565(s);
1437         }
1438     } else {
1439         /* General case */
1440         clamp_iterator ci(c);
1441         while (di.count--) {
1442             uint32_t s = ci.get_pixel32();
1443             *di.dst++ = convertAbgr8888ToRgb565(s);
1444         }
1445     }
1446 }
1447 
scanline_t32cb16_dither(context_t * c)1448 static void scanline_t32cb16_dither(context_t* c)
1449 {
1450     horz_iterator32 si(c);
1451     dst_iterator16  di(c);
1452     ditherer        dither(c);
1453 
1454     while (di.count--) {
1455         uint32_t s = si.get_pixel32();
1456         *di.dst++ = dither.abgr8888ToRgb565(s);
1457     }
1458 }
1459 
scanline_t32cb16_clamp_dither(context_t * c)1460 static void scanline_t32cb16_clamp_dither(context_t* c)
1461 {
1462     dst_iterator16  di(c);
1463     ditherer        dither(c);
1464 
1465     if (is_context_horizontal(c)) {
1466         /* Special case for simple horizontal scaling */
1467         horz_clamp_iterator32 ci(c);
1468         while (di.count--) {
1469             uint32_t s = ci.get_pixel32();
1470             *di.dst++ = dither.abgr8888ToRgb565(s);
1471         }
1472     } else {
1473         /* General case */
1474         clamp_iterator ci(c);
1475         while (di.count--) {
1476             uint32_t s = ci.get_pixel32();
1477             *di.dst++ = dither.abgr8888ToRgb565(s);
1478         }
1479     }
1480 }
1481 
scanline_t32cb16blend_dither(context_t * c)1482 static void scanline_t32cb16blend_dither(context_t* c)
1483 {
1484     dst_iterator16 di(c);
1485     ditherer       dither(c);
1486     blender_32to16 bl(c);
1487     horz_iterator32  hi(c);
1488     while (di.count--) {
1489         uint32_t s = hi.get_pixel32();
1490         bl.write(s, di.dst, dither);
1491         di.dst++;
1492     }
1493 }
1494 
scanline_t32cb16blend_clamp(context_t * c)1495 static void scanline_t32cb16blend_clamp(context_t* c)
1496 {
1497     dst_iterator16  di(c);
1498     blender_32to16  bl(c);
1499 
1500     if (is_context_horizontal(c)) {
1501         horz_clamp_iterator32 ci(c);
1502         while (di.count--) {
1503             uint32_t s = ci.get_pixel32();
1504             bl.write(s, di.dst);
1505             di.dst++;
1506         }
1507     } else {
1508         clamp_iterator ci(c);
1509         while (di.count--) {
1510             uint32_t s = ci.get_pixel32();
1511             bl.write(s, di.dst);
1512             di.dst++;
1513         }
1514     }
1515 }
1516 
scanline_t32cb16blend_clamp_dither(context_t * c)1517 static void scanline_t32cb16blend_clamp_dither(context_t* c)
1518 {
1519     dst_iterator16 di(c);
1520     ditherer       dither(c);
1521     blender_32to16 bl(c);
1522 
1523     clamp_iterator ci(c);
1524     while (di.count--) {
1525         uint32_t s = ci.get_pixel32();
1526         bl.write(s, di.dst, dither);
1527         di.dst++;
1528     }
1529 }
1530 
scanline_t32cb16blend_clamp_mod(context_t * c)1531 void scanline_t32cb16blend_clamp_mod(context_t* c)
1532 {
1533     dst_iterator16 di(c);
1534     blender_32to16_modulate bl(c);
1535 
1536     clamp_iterator ci(c);
1537     while (di.count--) {
1538         uint32_t s = ci.get_pixel32();
1539         bl.write(s, di.dst);
1540         di.dst++;
1541     }
1542 }
1543 
scanline_t32cb16blend_clamp_mod_dither(context_t * c)1544 void scanline_t32cb16blend_clamp_mod_dither(context_t* c)
1545 {
1546     dst_iterator16 di(c);
1547     blender_32to16_modulate bl(c);
1548     ditherer dither(c);
1549 
1550     clamp_iterator ci(c);
1551     while (di.count--) {
1552         uint32_t s = ci.get_pixel32();
1553         bl.write(s, di.dst, dither);
1554         di.dst++;
1555     }
1556 }
1557 
1558 /* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */
scanline_x32cb16blend_clamp_mod(context_t * c)1559 void scanline_x32cb16blend_clamp_mod(context_t* c)
1560 {
1561     dst_iterator16 di(c);
1562     blender_x32to16_modulate  bl(c);
1563 
1564     clamp_iterator ci(c);
1565     while (di.count--) {
1566         uint32_t s = ci.get_pixel32();
1567         bl.write(s, di.dst);
1568         di.dst++;
1569     }
1570 }
1571 
scanline_x32cb16blend_clamp_mod_dither(context_t * c)1572 void scanline_x32cb16blend_clamp_mod_dither(context_t* c)
1573 {
1574     dst_iterator16 di(c);
1575     blender_x32to16_modulate  bl(c);
1576     ditherer dither(c);
1577 
1578     clamp_iterator ci(c);
1579     while (di.count--) {
1580         uint32_t s = ci.get_pixel32();
1581         bl.write(s, di.dst, dither);
1582         di.dst++;
1583     }
1584 }
1585 
scanline_t16cb16_clamp(context_t * c)1586 void scanline_t16cb16_clamp(context_t* c)
1587 {
1588     dst_iterator16  di(c);
1589 
1590     /* Special case for simple horizontal scaling */
1591     if (is_context_horizontal(c)) {
1592         horz_clamp_iterator16 ci(c);
1593         while (di.count--) {
1594             *di.dst++ = ci.get_pixel16();
1595         }
1596     } else {
1597         clamp_iterator ci(c);
1598         while (di.count--) {
1599             *di.dst++ = ci.get_pixel16();
1600         }
1601     }
1602 }
1603 
1604 
1605 
1606 template <typename T, typename U>
1607 static inline __attribute__((const))
interpolate(int y,T v0,U dvdx,U dvdy)1608 T interpolate(int y, T v0, U dvdx, U dvdy) {
1609     // interpolates in pixel's centers
1610     // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx)
1611     return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1));
1612 }
1613 
1614 // ----------------------------------------------------------------------------
1615 #if 0
1616 #pragma mark -
1617 #endif
1618 
init_y(context_t * c,int32_t ys)1619 void init_y(context_t* c, int32_t ys)
1620 {
1621     const uint32_t enables = c->state.enables;
1622 
1623     // compute iterators...
1624     iterators_t& ci = c->iterators;
1625 
1626     // sample in the center
1627     ci.y = ys;
1628 
1629     if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) {
1630         ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy);
1631         ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy);
1632         ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy);
1633     }
1634 
1635     if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) {
1636         ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy);
1637         ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy);
1638         ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy);
1639         ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady);
1640         c->step_y = step_y__smooth;
1641     } else {
1642         ci.ydrdy = c->shade.r0;
1643         ci.ydgdy = c->shade.g0;
1644         ci.ydbdy = c->shade.b0;
1645         ci.ydady = c->shade.a0;
1646         // XXX: do only if needed, or make sure this is fast
1647         c->packed = ggl_pack_color(c, c->state.buffers.color.format,
1648                 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1649         c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1650                 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1651     }
1652 
1653     // initialize the variables we need in the shader
1654     generated_vars_t& gen = c->generated_vars;
1655     gen.argb[GGLFormat::ALPHA].c  = ci.ydady;
1656     gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx;
1657     gen.argb[GGLFormat::RED  ].c  = ci.ydrdy;
1658     gen.argb[GGLFormat::RED  ].dx = c->shade.drdx;
1659     gen.argb[GGLFormat::GREEN].c  = ci.ydgdy;
1660     gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx;
1661     gen.argb[GGLFormat::BLUE ].c  = ci.ydbdy;
1662     gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx;
1663     gen.dzdx = c->shade.dzdx;
1664     gen.f    = ci.ydfdy;
1665     gen.dfdx = c->shade.dfdx;
1666 
1667     if (enables & GGL_ENABLE_TMUS) {
1668         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1669             texture_t& t = c->state.texture[i];
1670             if (!t.enable) continue;
1671 
1672             texture_iterators_t& ti = t.iterators;
1673             if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) {
1674                 // we need to set all of these to 0 because in some cases
1675                 // step_y__generic() or step_y__tmu() will be used and
1676                 // therefore will update dtdy, however, in 1:1 mode
1677                 // this is always done by the scanline rasterizer.
1678                 ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0;
1679                 ti.ydsdy = t.shade.is0;
1680                 ti.ydtdy = t.shade.it0;
1681             } else {
1682                 const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16);
1683                 const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16);
1684                 ti.sscale = t.shade.sscale + adjustSWrap;
1685                 ti.tscale = t.shade.tscale + adjustTWrap;
1686                 if (!(enables & GGL_ENABLE_W)) {
1687                     // S coordinate
1688                     const int32_t sscale = ti.sscale;
1689                     const int32_t sy = interpolate(ys,
1690                             t.shade.is0, t.shade.idsdx, t.shade.idsdy);
1691                     if (sscale>=0) {
1692                         ti.ydsdy= sy            << sscale;
1693                         ti.dsdx = t.shade.idsdx << sscale;
1694                         ti.dsdy = t.shade.idsdy << sscale;
1695                     } else {
1696                         ti.ydsdy= sy            >> -sscale;
1697                         ti.dsdx = t.shade.idsdx >> -sscale;
1698                         ti.dsdy = t.shade.idsdy >> -sscale;
1699                     }
1700                     // T coordinate
1701                     const int32_t tscale = ti.tscale;
1702                     const int32_t ty = interpolate(ys,
1703                             t.shade.it0, t.shade.idtdx, t.shade.idtdy);
1704                     if (tscale>=0) {
1705                         ti.ydtdy= ty            << tscale;
1706                         ti.dtdx = t.shade.idtdx << tscale;
1707                         ti.dtdy = t.shade.idtdy << tscale;
1708                     } else {
1709                         ti.ydtdy= ty            >> -tscale;
1710                         ti.dtdx = t.shade.idtdx >> -tscale;
1711                         ti.dtdy = t.shade.idtdy >> -tscale;
1712                     }
1713                 }
1714             }
1715             // mirror for generated code...
1716             generated_tex_vars_t& gen = c->generated_vars.texture[i];
1717             gen.width   = t.surface.width;
1718             gen.height  = t.surface.height;
1719             gen.stride  = t.surface.stride;
1720             gen.data    = int32_t(t.surface.data);
1721             gen.dsdx = ti.dsdx;
1722             gen.dtdx = ti.dtdx;
1723         }
1724     }
1725 
1726     // choose the y-stepper
1727     c->step_y = step_y__nop;
1728     if (enables & GGL_ENABLE_FOG) {
1729         c->step_y = step_y__generic;
1730     } else if (enables & GGL_ENABLE_TMUS) {
1731         if (enables & GGL_ENABLE_SMOOTH) {
1732             c->step_y = step_y__generic;
1733         } else if (enables & GGL_ENABLE_W) {
1734             c->step_y = step_y__w;
1735         } else {
1736             c->step_y = step_y__tmu;
1737         }
1738     } else {
1739         if (enables & GGL_ENABLE_SMOOTH) {
1740             c->step_y = step_y__smooth;
1741         }
1742     }
1743 
1744     // choose the rectangle blitter
1745     c->rect = rect_generic;
1746     if ((c->step_y == step_y__nop) &&
1747         (c->scanline == scanline_memcpy))
1748     {
1749         c->rect = rect_memcpy;
1750     }
1751 }
1752 
init_y_packed(context_t * c,int32_t y0)1753 void init_y_packed(context_t* c, int32_t y0)
1754 {
1755     uint8_t f = c->state.buffers.color.format;
1756     c->packed = ggl_pack_color(c, f,
1757             c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1758     c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1759             c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1760     c->iterators.y = y0;
1761     c->step_y = step_y__nop;
1762     // choose the rectangle blitter
1763     c->rect = rect_generic;
1764     if (c->scanline == scanline_memcpy) {
1765         c->rect = rect_memcpy;
1766     }
1767 }
1768 
init_y_noop(context_t * c,int32_t y0)1769 void init_y_noop(context_t* c, int32_t y0)
1770 {
1771     c->iterators.y = y0;
1772     c->step_y = step_y__nop;
1773     // choose the rectangle blitter
1774     c->rect = rect_generic;
1775     if (c->scanline == scanline_memcpy) {
1776         c->rect = rect_memcpy;
1777     }
1778 }
1779 
init_y_error(context_t * c,int32_t y0)1780 void init_y_error(context_t* c, int32_t y0)
1781 {
1782     // woooops, shoud never happen,
1783     // fail gracefully (don't display anything)
1784     init_y_noop(c, y0);
1785     ALOGE("color-buffer has an invalid format!");
1786 }
1787 
1788 // ----------------------------------------------------------------------------
1789 #if 0
1790 #pragma mark -
1791 #endif
1792 
step_y__generic(context_t * c)1793 void step_y__generic(context_t* c)
1794 {
1795     const uint32_t enables = c->state.enables;
1796 
1797     // iterate...
1798     iterators_t& ci = c->iterators;
1799     ci.y += 1;
1800 
1801     if (enables & GGL_ENABLE_SMOOTH) {
1802         ci.ydrdy += c->shade.drdy;
1803         ci.ydgdy += c->shade.dgdy;
1804         ci.ydbdy += c->shade.dbdy;
1805         ci.ydady += c->shade.dady;
1806     }
1807 
1808     const uint32_t mask =
1809             GGL_ENABLE_DEPTH_TEST |
1810             GGL_ENABLE_W |
1811             GGL_ENABLE_FOG;
1812     if (enables & mask) {
1813         ci.ydzdy += c->shade.dzdy;
1814         ci.ydwdy += c->shade.dwdy;
1815         ci.ydfdy += c->shade.dfdy;
1816     }
1817 
1818     if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) {
1819         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1820             if (c->state.texture[i].enable) {
1821                 texture_iterators_t& ti = c->state.texture[i].iterators;
1822                 ti.ydsdy += ti.dsdy;
1823                 ti.ydtdy += ti.dtdy;
1824             }
1825         }
1826     }
1827 }
1828 
step_y__nop(context_t * c)1829 void step_y__nop(context_t* c)
1830 {
1831     c->iterators.y += 1;
1832     c->iterators.ydzdy += c->shade.dzdy;
1833 }
1834 
step_y__smooth(context_t * c)1835 void step_y__smooth(context_t* c)
1836 {
1837     iterators_t& ci = c->iterators;
1838     ci.y += 1;
1839     ci.ydrdy += c->shade.drdy;
1840     ci.ydgdy += c->shade.dgdy;
1841     ci.ydbdy += c->shade.dbdy;
1842     ci.ydady += c->shade.dady;
1843     ci.ydzdy += c->shade.dzdy;
1844 }
1845 
step_y__w(context_t * c)1846 void step_y__w(context_t* c)
1847 {
1848     iterators_t& ci = c->iterators;
1849     ci.y += 1;
1850     ci.ydzdy += c->shade.dzdy;
1851     ci.ydwdy += c->shade.dwdy;
1852 }
1853 
step_y__tmu(context_t * c)1854 void step_y__tmu(context_t* c)
1855 {
1856     iterators_t& ci = c->iterators;
1857     ci.y += 1;
1858     ci.ydzdy += c->shade.dzdy;
1859     for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1860         if (c->state.texture[i].enable) {
1861             texture_iterators_t& ti = c->state.texture[i].iterators;
1862             ti.ydsdy += ti.dsdy;
1863             ti.ydtdy += ti.dtdy;
1864         }
1865     }
1866 }
1867 
1868 // ----------------------------------------------------------------------------
1869 #if 0
1870 #pragma mark -
1871 #endif
1872 
scanline_perspective(context_t * c)1873 void scanline_perspective(context_t* c)
1874 {
1875     struct {
1876         union {
1877             struct {
1878                 int32_t s, sq;
1879                 int32_t t, tq;
1880             };
1881             struct {
1882                 int32_t v, q;
1883             } st[2];
1884         };
1885     } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16)));
1886 
1887     // XXX: we should have a special case when dwdx = 0
1888 
1889     // 32 pixels spans works okay. 16 is a lot better,
1890     // but hey, it's a software renderer...
1891     const uint32_t SPAN_BITS = 5;
1892     const uint32_t ys = c->iterators.y;
1893     const uint32_t xs = c->iterators.xl;
1894     const uint32_t x1 = c->iterators.xr;
1895 	const uint32_t xc = x1 - xs;
1896     uint32_t remainder = xc & ((1<<SPAN_BITS)-1);
1897     uint32_t numSpans = xc >> SPAN_BITS;
1898 
1899     const iterators_t& ci = c->iterators;
1900     int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy;
1901     int32_t q0 = gglRecipQ(w0, 30);
1902     const int iwscale = 32 - gglClz(q0);
1903 
1904     const int32_t dwdx = c->shade.dwdx << SPAN_BITS;
1905     int32_t xl = c->iterators.xl;
1906 
1907     // We process s & t with a loop to reduce the code size
1908     // (and i-cache pressure).
1909 
1910     for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1911         const texture_t& tmu = c->state.texture[i];
1912         if (!tmu.enable) continue;
1913         int32_t s =   tmu.shade.is0 +
1914                      (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
1915                      ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
1916         int32_t t =   tmu.shade.it0 +
1917                      (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
1918                      ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
1919         tc[i].s  = s;
1920         tc[i].t  = t;
1921         tc[i].sq = gglMulx(s, q0, iwscale);
1922         tc[i].tq = gglMulx(t, q0, iwscale);
1923     }
1924 
1925     int32_t span = 0;
1926     do {
1927         int32_t w1;
1928         if (ggl_likely(numSpans)) {
1929             w1 = w0 + dwdx;
1930         } else {
1931             if (remainder) {
1932                 // finish off the scanline...
1933                 span = remainder;
1934                 w1 = (c->shade.dwdx * span) + w0;
1935             } else {
1936                 break;
1937             }
1938         }
1939         int32_t q1 = gglRecipQ(w1, 30);
1940         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1941             texture_t& tmu = c->state.texture[i];
1942             if (!tmu.enable) continue;
1943             texture_iterators_t& ti = tmu.iterators;
1944 
1945             for (int j=0 ; j<2 ; j++) {
1946                 int32_t v = tc[i].st[j].v;
1947                 if (span)   v += (tmu.shade.st[j].dx)*span;
1948                 else        v += (tmu.shade.st[j].dx)<<SPAN_BITS;
1949                 const int32_t v0 = tc[i].st[j].q;
1950                 const int32_t v1 = gglMulx(v, q1, iwscale);
1951                 int32_t dvdx = v1 - v0;
1952                 if (span)   dvdx /= span;
1953                 else        dvdx >>= SPAN_BITS;
1954                 tc[i].st[j].v = v;
1955                 tc[i].st[j].q = v1;
1956 
1957                 const int scale = ti.st[j].scale + (iwscale - 30);
1958                 if (scale >= 0) {
1959                     ti.st[j].ydvdy = v0   << scale;
1960                     ti.st[j].dvdx  = dvdx << scale;
1961                 } else {
1962                     ti.st[j].ydvdy = v0   >> -scale;
1963                     ti.st[j].dvdx  = dvdx >> -scale;
1964                 }
1965             }
1966             generated_tex_vars_t& gen = c->generated_vars.texture[i];
1967             gen.dsdx = ti.st[0].dvdx;
1968             gen.dtdx = ti.st[1].dvdx;
1969         }
1970         c->iterators.xl = xl;
1971         c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS));
1972         w0 = w1;
1973         q0 = q1;
1974         c->span(c);
1975     } while(numSpans--);
1976 }
1977 
scanline_perspective_single(context_t * c)1978 void scanline_perspective_single(context_t* c)
1979 {
1980     // 32 pixels spans works okay. 16 is a lot better,
1981     // but hey, it's a software renderer...
1982     const uint32_t SPAN_BITS = 5;
1983     const uint32_t ys = c->iterators.y;
1984     const uint32_t xs = c->iterators.xl;
1985     const uint32_t x1 = c->iterators.xr;
1986 	const uint32_t xc = x1 - xs;
1987 
1988     const iterators_t& ci = c->iterators;
1989     int32_t w = (xs * c->shade.dwdx) + ci.ydwdy;
1990     int32_t iw = gglRecipQ(w, 30);
1991     const int iwscale = 32 - gglClz(iw);
1992 
1993     const int i = 31 - gglClz(c->state.enabled_tmu);
1994     generated_tex_vars_t& gen = c->generated_vars.texture[i];
1995     texture_t& tmu = c->state.texture[i];
1996     texture_iterators_t& ti = tmu.iterators;
1997     const int sscale = ti.sscale + (iwscale - 30);
1998     const int tscale = ti.tscale + (iwscale - 30);
1999     int32_t s =   tmu.shade.is0 +
2000                  (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
2001                  ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
2002     int32_t t =   tmu.shade.it0 +
2003                  (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
2004                  ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
2005     int32_t s0 = gglMulx(s, iw, iwscale);
2006     int32_t t0 = gglMulx(t, iw, iwscale);
2007     int32_t xl = c->iterators.xl;
2008 
2009     int32_t sq, tq, dsdx, dtdx;
2010     int32_t premainder = xc & ((1<<SPAN_BITS)-1);
2011     uint32_t numSpans = xc >> SPAN_BITS;
2012     if (c->shade.dwdx == 0) {
2013         // XXX: we could choose to do this if the error is small enough
2014         numSpans = 0;
2015         premainder = xc;
2016         goto no_perspective;
2017     }
2018 
2019     if (premainder) {
2020         w += c->shade.dwdx   * premainder;
2021         iw = gglRecipQ(w, 30);
2022 no_perspective:
2023         s += tmu.shade.idsdx * premainder;
2024         t += tmu.shade.idtdx * premainder;
2025         sq = gglMulx(s, iw, iwscale);
2026         tq = gglMulx(t, iw, iwscale);
2027         dsdx = (sq - s0) / premainder;
2028         dtdx = (tq - t0) / premainder;
2029         c->iterators.xl = xl;
2030         c->iterators.xr = xl = xl + premainder;
2031         goto finish;
2032     }
2033 
2034     while (numSpans--) {
2035         w += c->shade.dwdx   << SPAN_BITS;
2036         s += tmu.shade.idsdx << SPAN_BITS;
2037         t += tmu.shade.idtdx << SPAN_BITS;
2038         iw = gglRecipQ(w, 30);
2039         sq = gglMulx(s, iw, iwscale);
2040         tq = gglMulx(t, iw, iwscale);
2041         dsdx = (sq - s0) >> SPAN_BITS;
2042         dtdx = (tq - t0) >> SPAN_BITS;
2043         c->iterators.xl = xl;
2044         c->iterators.xr = xl = xl + (1<<SPAN_BITS);
2045 finish:
2046         if (sscale >= 0) {
2047             ti.ydsdy = s0   << sscale;
2048             ti.dsdx  = dsdx << sscale;
2049         } else {
2050             ti.ydsdy = s0   >>-sscale;
2051             ti.dsdx  = dsdx >>-sscale;
2052         }
2053         if (tscale >= 0) {
2054             ti.ydtdy = t0   << tscale;
2055             ti.dtdx  = dtdx << tscale;
2056         } else {
2057             ti.ydtdy = t0   >>-tscale;
2058             ti.dtdx  = dtdx >>-tscale;
2059         }
2060         s0 = sq;
2061         t0 = tq;
2062         gen.dsdx = ti.dsdx;
2063         gen.dtdx = ti.dtdx;
2064         c->span(c);
2065     }
2066 }
2067 
2068 // ----------------------------------------------------------------------------
2069 
scanline_col32cb16blend(context_t * c)2070 void scanline_col32cb16blend(context_t* c)
2071 {
2072     int32_t x = c->iterators.xl;
2073     size_t ct = c->iterators.xr - x;
2074     int32_t y = c->iterators.y;
2075     surface_t* cb = &(c->state.buffers.color);
2076     union {
2077         uint16_t* dst;
2078         uint32_t* dst32;
2079     };
2080     dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2081 
2082 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
2083 #if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2084     scanline_col32cb16blend_neon(dst, &(c->packed8888), ct);
2085 #else  // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2086     scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2087 #endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2088 #else
2089     uint32_t s = GGL_RGBA_TO_HOST(c->packed8888);
2090     int sA = (s>>24);
2091     int f = 0x100 - (sA + (sA>>7));
2092     while (ct--) {
2093         uint16_t d = *dst;
2094         int dR = (d>>11)&0x1f;
2095         int dG = (d>>5)&0x3f;
2096         int dB = (d)&0x1f;
2097         int sR = (s >> (   3))&0x1F;
2098         int sG = (s >> ( 8+2))&0x3F;
2099         int sB = (s >> (16+3))&0x1F;
2100         sR += (f*dR)>>8;
2101         sG += (f*dG)>>8;
2102         sB += (f*dB)>>8;
2103         *dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
2104     }
2105 #endif
2106 
2107 }
2108 
scanline_t32cb16(context_t * c)2109 void scanline_t32cb16(context_t* c)
2110 {
2111     int32_t x = c->iterators.xl;
2112     size_t ct = c->iterators.xr - x;
2113     int32_t y = c->iterators.y;
2114     surface_t* cb = &(c->state.buffers.color);
2115     union {
2116         uint16_t* dst;
2117         uint32_t* dst32;
2118     };
2119     dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2120 
2121     surface_t* tex = &(c->state.texture[0].surface);
2122     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2123     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2124     uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2125     int sR, sG, sB;
2126     uint32_t s, d;
2127 
2128     if (ct==1 || uint32_t(dst)&2) {
2129 last_one:
2130         s = GGL_RGBA_TO_HOST( *src++ );
2131         *dst++ = convertAbgr8888ToRgb565(s);
2132         ct--;
2133     }
2134 
2135     while (ct >= 2) {
2136 #if BYTE_ORDER == BIG_ENDIAN
2137         s = GGL_RGBA_TO_HOST( *src++ );
2138         d = convertAbgr8888ToRgb565_hi16(s);
2139 
2140         s = GGL_RGBA_TO_HOST( *src++ );
2141         d |= convertAbgr8888ToRgb565(s);
2142 #else
2143         s = GGL_RGBA_TO_HOST( *src++ );
2144         d = convertAbgr8888ToRgb565(s);
2145 
2146         s = GGL_RGBA_TO_HOST( *src++ );
2147         d |= convertAbgr8888ToRgb565(s) << 16;
2148 #endif
2149         *dst32++ = d;
2150         ct -= 2;
2151     }
2152 
2153     if (ct > 0) {
2154         goto last_one;
2155     }
2156 }
2157 
scanline_t32cb16blend(context_t * c)2158 void scanline_t32cb16blend(context_t* c)
2159 {
2160 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__arm__) || defined(__mips)))
2161     int32_t x = c->iterators.xl;
2162     size_t ct = c->iterators.xr - x;
2163     int32_t y = c->iterators.y;
2164     surface_t* cb = &(c->state.buffers.color);
2165     uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2166 
2167     surface_t* tex = &(c->state.texture[0].surface);
2168     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2169     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2170     uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2171 
2172 #ifdef __arm__
2173     scanline_t32cb16blend_arm(dst, src, ct);
2174 #else
2175     scanline_t32cb16blend_mips(dst, src, ct);
2176 #endif
2177 #else
2178     dst_iterator16  di(c);
2179     horz_iterator32  hi(c);
2180     blender_32to16  bl(c);
2181     while (di.count--) {
2182         uint32_t s = hi.get_pixel32();
2183         bl.write(s, di.dst);
2184         di.dst++;
2185     }
2186 #endif
2187 }
2188 
scanline_t32cb16blend_srca(context_t * c)2189 void scanline_t32cb16blend_srca(context_t* c)
2190 {
2191     dst_iterator16  di(c);
2192     horz_iterator32  hi(c);
2193     blender_32to16_srcA  blender(c);
2194 
2195     while (di.count--) {
2196         uint32_t s = hi.get_pixel32();
2197         blender.write(s,di.dst);
2198         di.dst++;
2199     }
2200 }
2201 
scanline_t16cb16blend_clamp_mod(context_t * c)2202 void scanline_t16cb16blend_clamp_mod(context_t* c)
2203 {
2204     const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
2205     if (a == 0) {
2206         return;
2207     }
2208 
2209     if (a == 255) {
2210         scanline_t16cb16_clamp(c);
2211         return;
2212     }
2213 
2214     dst_iterator16  di(c);
2215     blender_16to16_modulate  blender(c);
2216     clamp_iterator  ci(c);
2217 
2218     while (di.count--) {
2219         uint16_t s = ci.get_pixel16();
2220         blender.write(s, di.dst);
2221         di.dst++;
2222     }
2223 }
2224 
scanline_memcpy(context_t * c)2225 void scanline_memcpy(context_t* c)
2226 {
2227     int32_t x = c->iterators.xl;
2228     size_t ct = c->iterators.xr - x;
2229     int32_t y = c->iterators.y;
2230     surface_t* cb = &(c->state.buffers.color);
2231     const GGLFormat* fp = &(c->formats[cb->format]);
2232     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2233                             (x + (cb->stride * y)) * fp->size;
2234 
2235     surface_t* tex = &(c->state.texture[0].surface);
2236     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2237     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2238     uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2239                             (u + (tex->stride * v)) * fp->size;
2240 
2241     const size_t size = ct * fp->size;
2242     memcpy(dst, src, size);
2243 }
2244 
scanline_memset8(context_t * c)2245 void scanline_memset8(context_t* c)
2246 {
2247     int32_t x = c->iterators.xl;
2248     size_t ct = c->iterators.xr - x;
2249     int32_t y = c->iterators.y;
2250     surface_t* cb = &(c->state.buffers.color);
2251     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y));
2252     uint32_t packed = c->packed;
2253     memset(dst, packed, ct);
2254 }
2255 
scanline_memset16(context_t * c)2256 void scanline_memset16(context_t* c)
2257 {
2258     int32_t x = c->iterators.xl;
2259     size_t ct = c->iterators.xr - x;
2260     int32_t y = c->iterators.y;
2261     surface_t* cb = &(c->state.buffers.color);
2262     uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2263     uint32_t packed = c->packed;
2264     android_memset16(dst, packed, ct*2);
2265 }
2266 
scanline_memset32(context_t * c)2267 void scanline_memset32(context_t* c)
2268 {
2269     int32_t x = c->iterators.xl;
2270     size_t ct = c->iterators.xr - x;
2271     int32_t y = c->iterators.y;
2272     surface_t* cb = &(c->state.buffers.color);
2273     uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y));
2274     uint32_t packed = GGL_HOST_TO_RGBA(c->packed);
2275     android_memset32(dst, packed, ct*4);
2276 }
2277 
scanline_clear(context_t * c)2278 void scanline_clear(context_t* c)
2279 {
2280     int32_t x = c->iterators.xl;
2281     size_t ct = c->iterators.xr - x;
2282     int32_t y = c->iterators.y;
2283     surface_t* cb = &(c->state.buffers.color);
2284     const GGLFormat* fp = &(c->formats[cb->format]);
2285     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2286                             (x + (cb->stride * y)) * fp->size;
2287     const size_t size = ct * fp->size;
2288     memset(dst, 0, size);
2289 }
2290 
scanline_set(context_t * c)2291 void scanline_set(context_t* c)
2292 {
2293     int32_t x = c->iterators.xl;
2294     size_t ct = c->iterators.xr - x;
2295     int32_t y = c->iterators.y;
2296     surface_t* cb = &(c->state.buffers.color);
2297     const GGLFormat* fp = &(c->formats[cb->format]);
2298     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2299                             (x + (cb->stride * y)) * fp->size;
2300     const size_t size = ct * fp->size;
2301     memset(dst, 0xFF, size);
2302 }
2303 
scanline_noop(context_t * c)2304 void scanline_noop(context_t* c)
2305 {
2306 }
2307 
rect_generic(context_t * c,size_t yc)2308 void rect_generic(context_t* c, size_t yc)
2309 {
2310     do {
2311         c->scanline(c);
2312         c->step_y(c);
2313     } while (--yc);
2314 }
2315 
rect_memcpy(context_t * c,size_t yc)2316 void rect_memcpy(context_t* c, size_t yc)
2317 {
2318     int32_t x = c->iterators.xl;
2319     size_t ct = c->iterators.xr - x;
2320     int32_t y = c->iterators.y;
2321     surface_t* cb = &(c->state.buffers.color);
2322     const GGLFormat* fp = &(c->formats[cb->format]);
2323     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2324                             (x + (cb->stride * y)) * fp->size;
2325 
2326     surface_t* tex = &(c->state.texture[0].surface);
2327     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2328     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2329     uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2330                             (u + (tex->stride * v)) * fp->size;
2331 
2332     if (cb->stride == tex->stride && ct == size_t(cb->stride)) {
2333         memcpy(dst, src, ct * fp->size * yc);
2334     } else {
2335         const size_t size = ct * fp->size;
2336         const size_t dbpr = cb->stride  * fp->size;
2337         const size_t sbpr = tex->stride * fp->size;
2338         do {
2339             memcpy(dst, src, size);
2340             dst += dbpr;
2341             src += sbpr;
2342         } while (--yc);
2343     }
2344 }
2345 // ----------------------------------------------------------------------------
2346 }; // namespace android
2347 
2348