1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* TO DO:
18 * 1. Perhaps keep several copies of the encrypted key, in case something
19 * goes horribly wrong?
20 *
21 */
22
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <fcntl.h>
26 #include <unistd.h>
27 #include <stdio.h>
28 #include <sys/ioctl.h>
29 #include <linux/dm-ioctl.h>
30 #include <libgen.h>
31 #include <stdlib.h>
32 #include <sys/param.h>
33 #include <string.h>
34 #include <sys/mount.h>
35 #include <openssl/evp.h>
36 #include <openssl/sha.h>
37 #include <errno.h>
38 #include <cutils/android_reboot.h>
39 #include <ext4.h>
40 #include <linux/kdev_t.h>
41 #include <fs_mgr.h>
42 #include "cryptfs.h"
43 #define LOG_TAG "Cryptfs"
44 #include "cutils/android_reboot.h"
45 #include "cutils/log.h"
46 #include "cutils/properties.h"
47 #include "hardware_legacy/power.h"
48 #include "VolumeManager.h"
49
50 #define DM_CRYPT_BUF_SIZE 4096
51 #define DATA_MNT_POINT "/data"
52
53 #define HASH_COUNT 2000
54 #define KEY_LEN_BYTES 16
55 #define IV_LEN_BYTES 16
56
57 #define KEY_IN_FOOTER "footer"
58
59 #define EXT4_FS 1
60 #define FAT_FS 2
61
62 #define TABLE_LOAD_RETRIES 10
63
64 char *me = "cryptfs";
65
66 static unsigned char saved_master_key[KEY_LEN_BYTES];
67 static char *saved_data_blkdev;
68 static char *saved_mount_point;
69 static int master_key_saved = 0;
70 #define FSTAB_PREFIX "/fstab."
71 static char fstab_filename[PROPERTY_VALUE_MAX + sizeof(FSTAB_PREFIX)];
72
ioctl_init(struct dm_ioctl * io,size_t dataSize,const char * name,unsigned flags)73 static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
74 {
75 memset(io, 0, dataSize);
76 io->data_size = dataSize;
77 io->data_start = sizeof(struct dm_ioctl);
78 io->version[0] = 4;
79 io->version[1] = 0;
80 io->version[2] = 0;
81 io->flags = flags;
82 if (name) {
83 strncpy(io->name, name, sizeof(io->name));
84 }
85 }
86
get_fs_size(char * dev)87 static unsigned int get_fs_size(char *dev)
88 {
89 int fd, block_size;
90 struct ext4_super_block sb;
91 off64_t len;
92
93 if ((fd = open(dev, O_RDONLY)) < 0) {
94 SLOGE("Cannot open device to get filesystem size ");
95 return 0;
96 }
97
98 if (lseek64(fd, 1024, SEEK_SET) < 0) {
99 SLOGE("Cannot seek to superblock");
100 return 0;
101 }
102
103 if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
104 SLOGE("Cannot read superblock");
105 return 0;
106 }
107
108 close(fd);
109
110 block_size = 1024 << sb.s_log_block_size;
111 /* compute length in bytes */
112 len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
113
114 /* return length in sectors */
115 return (unsigned int) (len / 512);
116 }
117
get_blkdev_size(int fd)118 static unsigned int get_blkdev_size(int fd)
119 {
120 unsigned int nr_sec;
121
122 if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) {
123 nr_sec = 0;
124 }
125
126 return nr_sec;
127 }
128
129 /* Get and cache the name of the fstab file so we don't
130 * keep talking over the socket to the property service.
131 */
get_fstab_filename(void)132 static char *get_fstab_filename(void)
133 {
134 if (fstab_filename[0] == 0) {
135 strcpy(fstab_filename, FSTAB_PREFIX);
136 property_get("ro.hardware", fstab_filename + sizeof(FSTAB_PREFIX) - 1, "");
137 }
138
139 return fstab_filename;
140 }
141
142 /* key or salt can be NULL, in which case just skip writing that value. Useful to
143 * update the failed mount count but not change the key.
144 */
put_crypt_ftr_and_key(char * real_blk_name,struct crypt_mnt_ftr * crypt_ftr,unsigned char * key,unsigned char * salt)145 static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
146 unsigned char *key, unsigned char *salt)
147 {
148 int fd;
149 unsigned int nr_sec, cnt;
150 off64_t off;
151 int rc = -1;
152 char *fname;
153 char key_loc[PROPERTY_VALUE_MAX];
154 struct stat statbuf;
155
156 fs_mgr_get_crypt_info(get_fstab_filename(), key_loc, 0, sizeof(key_loc));
157
158 if (!strcmp(key_loc, KEY_IN_FOOTER)) {
159 fname = real_blk_name;
160 if ( (fd = open(fname, O_RDWR)) < 0) {
161 SLOGE("Cannot open real block device %s\n", fname);
162 return -1;
163 }
164
165 if ( (nr_sec = get_blkdev_size(fd)) == 0) {
166 SLOGE("Cannot get size of block device %s\n", fname);
167 goto errout;
168 }
169
170 /* If it's an encrypted Android partition, the last 16 Kbytes contain the
171 * encryption info footer and key, and plenty of bytes to spare for future
172 * growth.
173 */
174 off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
175
176 if (lseek64(fd, off, SEEK_SET) == -1) {
177 SLOGE("Cannot seek to real block device footer\n");
178 goto errout;
179 }
180 } else if (key_loc[0] == '/') {
181 fname = key_loc;
182 if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) {
183 SLOGE("Cannot open footer file %s\n", fname);
184 return -1;
185 }
186 } else {
187 SLOGE("Unexpected value for crypto key location\n");
188 return -1;;
189 }
190
191 if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
192 SLOGE("Cannot write real block device footer\n");
193 goto errout;
194 }
195
196 if (key) {
197 if (crypt_ftr->keysize != KEY_LEN_BYTES) {
198 SLOGE("Keysize of %d bits not supported for real block device %s\n",
199 crypt_ftr->keysize*8, fname);
200 goto errout;
201 }
202
203 if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
204 SLOGE("Cannot write key for real block device %s\n", fname);
205 goto errout;
206 }
207 }
208
209 if (salt) {
210 /* Compute the offset from the last write to the salt */
211 off = KEY_TO_SALT_PADDING;
212 if (! key)
213 off += crypt_ftr->keysize;
214
215 if (lseek64(fd, off, SEEK_CUR) == -1) {
216 SLOGE("Cannot seek to real block device salt \n");
217 goto errout;
218 }
219
220 if ( (cnt = write(fd, salt, SALT_LEN)) != SALT_LEN) {
221 SLOGE("Cannot write salt for real block device %s\n", fname);
222 goto errout;
223 }
224 }
225
226 fstat(fd, &statbuf);
227 /* If the keys are kept on a raw block device, do not try to truncate it. */
228 if (S_ISREG(statbuf.st_mode) && (key_loc[0] == '/')) {
229 if (ftruncate(fd, 0x4000)) {
230 SLOGE("Cannot set footer file size\n", fname);
231 goto errout;
232 }
233 }
234
235 /* Success! */
236 rc = 0;
237
238 errout:
239 close(fd);
240 return rc;
241
242 }
243
get_crypt_ftr_and_key(char * real_blk_name,struct crypt_mnt_ftr * crypt_ftr,unsigned char * key,unsigned char * salt)244 static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
245 unsigned char *key, unsigned char *salt)
246 {
247 int fd;
248 unsigned int nr_sec, cnt;
249 off64_t off;
250 int rc = -1;
251 char key_loc[PROPERTY_VALUE_MAX];
252 char *fname;
253 struct stat statbuf;
254
255 fs_mgr_get_crypt_info(get_fstab_filename(), key_loc, 0, sizeof(key_loc));
256
257 if (!strcmp(key_loc, KEY_IN_FOOTER)) {
258 fname = real_blk_name;
259 if ( (fd = open(fname, O_RDONLY)) < 0) {
260 SLOGE("Cannot open real block device %s\n", fname);
261 return -1;
262 }
263
264 if ( (nr_sec = get_blkdev_size(fd)) == 0) {
265 SLOGE("Cannot get size of block device %s\n", fname);
266 goto errout;
267 }
268
269 /* If it's an encrypted Android partition, the last 16 Kbytes contain the
270 * encryption info footer and key, and plenty of bytes to spare for future
271 * growth.
272 */
273 off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
274
275 if (lseek64(fd, off, SEEK_SET) == -1) {
276 SLOGE("Cannot seek to real block device footer\n");
277 goto errout;
278 }
279 } else if (key_loc[0] == '/') {
280 fname = key_loc;
281 if ( (fd = open(fname, O_RDONLY)) < 0) {
282 SLOGE("Cannot open footer file %s\n", fname);
283 return -1;
284 }
285
286 /* Make sure it's 16 Kbytes in length */
287 fstat(fd, &statbuf);
288 if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
289 SLOGE("footer file %s is not the expected size!\n", fname);
290 goto errout;
291 }
292 } else {
293 SLOGE("Unexpected value for crypto key location\n");
294 return -1;;
295 }
296
297 if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
298 SLOGE("Cannot read real block device footer\n");
299 goto errout;
300 }
301
302 if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
303 SLOGE("Bad magic for real block device %s\n", fname);
304 goto errout;
305 }
306
307 if (crypt_ftr->major_version != 1) {
308 SLOGE("Cannot understand major version %d real block device footer\n",
309 crypt_ftr->major_version);
310 goto errout;
311 }
312
313 if (crypt_ftr->minor_version != 0) {
314 SLOGW("Warning: crypto footer minor version %d, expected 0, continuing...\n",
315 crypt_ftr->minor_version);
316 }
317
318 if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) {
319 /* the footer size is bigger than we expected.
320 * Skip to it's stated end so we can read the key.
321 */
322 if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr), SEEK_CUR) == -1) {
323 SLOGE("Cannot seek to start of key\n");
324 goto errout;
325 }
326 }
327
328 if (crypt_ftr->keysize != KEY_LEN_BYTES) {
329 SLOGE("Keysize of %d bits not supported for real block device %s\n",
330 crypt_ftr->keysize * 8, fname);
331 goto errout;
332 }
333
334 if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
335 SLOGE("Cannot read key for real block device %s\n", fname);
336 goto errout;
337 }
338
339 if (lseek64(fd, KEY_TO_SALT_PADDING, SEEK_CUR) == -1) {
340 SLOGE("Cannot seek to real block device salt\n");
341 goto errout;
342 }
343
344 if ( (cnt = read(fd, salt, SALT_LEN)) != SALT_LEN) {
345 SLOGE("Cannot read salt for real block device %s\n", fname);
346 goto errout;
347 }
348
349 /* Success! */
350 rc = 0;
351
352 errout:
353 close(fd);
354 return rc;
355 }
356
357 /* Convert a binary key of specified length into an ascii hex string equivalent,
358 * without the leading 0x and with null termination
359 */
convert_key_to_hex_ascii(unsigned char * master_key,unsigned int keysize,char * master_key_ascii)360 void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
361 char *master_key_ascii)
362 {
363 unsigned int i, a;
364 unsigned char nibble;
365
366 for (i=0, a=0; i<keysize; i++, a+=2) {
367 /* For each byte, write out two ascii hex digits */
368 nibble = (master_key[i] >> 4) & 0xf;
369 master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
370
371 nibble = master_key[i] & 0xf;
372 master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
373 }
374
375 /* Add the null termination */
376 master_key_ascii[a] = '\0';
377
378 }
379
create_crypto_blk_dev(struct crypt_mnt_ftr * crypt_ftr,unsigned char * master_key,char * real_blk_name,char * crypto_blk_name,const char * name)380 static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
381 char *real_blk_name, char *crypto_blk_name, const char *name)
382 {
383 char buffer[DM_CRYPT_BUF_SIZE];
384 char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
385 char *crypt_params;
386 struct dm_ioctl *io;
387 struct dm_target_spec *tgt;
388 unsigned int minor;
389 int fd;
390 int i;
391 int retval = -1;
392
393 if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
394 SLOGE("Cannot open device-mapper\n");
395 goto errout;
396 }
397
398 io = (struct dm_ioctl *) buffer;
399
400 ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
401 if (ioctl(fd, DM_DEV_CREATE, io)) {
402 SLOGE("Cannot create dm-crypt device\n");
403 goto errout;
404 }
405
406 /* Get the device status, in particular, the name of it's device file */
407 ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
408 if (ioctl(fd, DM_DEV_STATUS, io)) {
409 SLOGE("Cannot retrieve dm-crypt device status\n");
410 goto errout;
411 }
412 minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
413 snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
414
415 /* Load the mapping table for this device */
416 tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
417
418 ioctl_init(io, 4096, name, 0);
419 io->target_count = 1;
420 tgt->status = 0;
421 tgt->sector_start = 0;
422 tgt->length = crypt_ftr->fs_size;
423 strcpy(tgt->target_type, "crypt");
424
425 crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
426 convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
427 sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name,
428 master_key_ascii, real_blk_name);
429 crypt_params += strlen(crypt_params) + 1;
430 crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
431 tgt->next = crypt_params - buffer;
432
433 for (i = 0; i < TABLE_LOAD_RETRIES; i++) {
434 if (! ioctl(fd, DM_TABLE_LOAD, io)) {
435 break;
436 }
437 usleep(500000);
438 }
439
440 if (i == TABLE_LOAD_RETRIES) {
441 SLOGE("Cannot load dm-crypt mapping table.\n");
442 goto errout;
443 } else if (i) {
444 SLOGI("Took %d tries to load dmcrypt table.\n", i + 1);
445 }
446
447 /* Resume this device to activate it */
448 ioctl_init(io, 4096, name, 0);
449
450 if (ioctl(fd, DM_DEV_SUSPEND, io)) {
451 SLOGE("Cannot resume the dm-crypt device\n");
452 goto errout;
453 }
454
455 /* We made it here with no errors. Woot! */
456 retval = 0;
457
458 errout:
459 close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
460
461 return retval;
462 }
463
delete_crypto_blk_dev(char * name)464 static int delete_crypto_blk_dev(char *name)
465 {
466 int fd;
467 char buffer[DM_CRYPT_BUF_SIZE];
468 struct dm_ioctl *io;
469 int retval = -1;
470
471 if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
472 SLOGE("Cannot open device-mapper\n");
473 goto errout;
474 }
475
476 io = (struct dm_ioctl *) buffer;
477
478 ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
479 if (ioctl(fd, DM_DEV_REMOVE, io)) {
480 SLOGE("Cannot remove dm-crypt device\n");
481 goto errout;
482 }
483
484 /* We made it here with no errors. Woot! */
485 retval = 0;
486
487 errout:
488 close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
489
490 return retval;
491
492 }
493
pbkdf2(char * passwd,unsigned char * salt,unsigned char * ikey)494 static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey)
495 {
496 /* Turn the password into a key and IV that can decrypt the master key */
497 PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN,
498 HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
499 }
500
encrypt_master_key(char * passwd,unsigned char * salt,unsigned char * decrypted_master_key,unsigned char * encrypted_master_key)501 static int encrypt_master_key(char *passwd, unsigned char *salt,
502 unsigned char *decrypted_master_key,
503 unsigned char *encrypted_master_key)
504 {
505 unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
506 EVP_CIPHER_CTX e_ctx;
507 int encrypted_len, final_len;
508
509 /* Turn the password into a key and IV that can decrypt the master key */
510 pbkdf2(passwd, salt, ikey);
511
512 /* Initialize the decryption engine */
513 if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
514 SLOGE("EVP_EncryptInit failed\n");
515 return -1;
516 }
517 EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
518
519 /* Encrypt the master key */
520 if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
521 decrypted_master_key, KEY_LEN_BYTES)) {
522 SLOGE("EVP_EncryptUpdate failed\n");
523 return -1;
524 }
525 if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
526 SLOGE("EVP_EncryptFinal failed\n");
527 return -1;
528 }
529
530 if (encrypted_len + final_len != KEY_LEN_BYTES) {
531 SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
532 return -1;
533 } else {
534 return 0;
535 }
536 }
537
decrypt_master_key(char * passwd,unsigned char * salt,unsigned char * encrypted_master_key,unsigned char * decrypted_master_key)538 static int decrypt_master_key(char *passwd, unsigned char *salt,
539 unsigned char *encrypted_master_key,
540 unsigned char *decrypted_master_key)
541 {
542 unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
543 EVP_CIPHER_CTX d_ctx;
544 int decrypted_len, final_len;
545
546 /* Turn the password into a key and IV that can decrypt the master key */
547 pbkdf2(passwd, salt, ikey);
548
549 /* Initialize the decryption engine */
550 if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
551 return -1;
552 }
553 EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
554 /* Decrypt the master key */
555 if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
556 encrypted_master_key, KEY_LEN_BYTES)) {
557 return -1;
558 }
559 if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
560 return -1;
561 }
562
563 if (decrypted_len + final_len != KEY_LEN_BYTES) {
564 return -1;
565 } else {
566 return 0;
567 }
568 }
569
create_encrypted_random_key(char * passwd,unsigned char * master_key,unsigned char * salt)570 static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt)
571 {
572 int fd;
573 unsigned char key_buf[KEY_LEN_BYTES];
574 EVP_CIPHER_CTX e_ctx;
575 int encrypted_len, final_len;
576
577 /* Get some random bits for a key */
578 fd = open("/dev/urandom", O_RDONLY);
579 read(fd, key_buf, sizeof(key_buf));
580 read(fd, salt, SALT_LEN);
581 close(fd);
582
583 /* Now encrypt it with the password */
584 return encrypt_master_key(passwd, salt, key_buf, master_key);
585 }
586
wait_and_unmount(char * mountpoint)587 static int wait_and_unmount(char *mountpoint)
588 {
589 int i, rc;
590 #define WAIT_UNMOUNT_COUNT 20
591
592 /* Now umount the tmpfs filesystem */
593 for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
594 if (umount(mountpoint)) {
595 if (errno == EINVAL) {
596 /* EINVAL is returned if the directory is not a mountpoint,
597 * i.e. there is no filesystem mounted there. So just get out.
598 */
599 break;
600 }
601 sleep(1);
602 i++;
603 } else {
604 break;
605 }
606 }
607
608 if (i < WAIT_UNMOUNT_COUNT) {
609 SLOGD("unmounting %s succeeded\n", mountpoint);
610 rc = 0;
611 } else {
612 SLOGE("unmounting %s failed\n", mountpoint);
613 rc = -1;
614 }
615
616 return rc;
617 }
618
619 #define DATA_PREP_TIMEOUT 100
prep_data_fs(void)620 static int prep_data_fs(void)
621 {
622 int i;
623
624 /* Do the prep of the /data filesystem */
625 property_set("vold.post_fs_data_done", "0");
626 property_set("vold.decrypt", "trigger_post_fs_data");
627 SLOGD("Just triggered post_fs_data\n");
628
629 /* Wait a max of 25 seconds, hopefully it takes much less */
630 for (i=0; i<DATA_PREP_TIMEOUT; i++) {
631 char p[PROPERTY_VALUE_MAX];
632
633 property_get("vold.post_fs_data_done", p, "0");
634 if (*p == '1') {
635 break;
636 } else {
637 usleep(250000);
638 }
639 }
640 if (i == DATA_PREP_TIMEOUT) {
641 /* Ugh, we failed to prep /data in time. Bail. */
642 return -1;
643 } else {
644 SLOGD("post_fs_data done\n");
645 return 0;
646 }
647 }
648
cryptfs_restart(void)649 int cryptfs_restart(void)
650 {
651 char fs_type[32];
652 char real_blkdev[MAXPATHLEN];
653 char crypto_blkdev[MAXPATHLEN];
654 char fs_options[256];
655 unsigned long mnt_flags;
656 struct stat statbuf;
657 int rc = -1, i;
658 static int restart_successful = 0;
659
660 /* Validate that it's OK to call this routine */
661 if (! master_key_saved) {
662 SLOGE("Encrypted filesystem not validated, aborting");
663 return -1;
664 }
665
666 if (restart_successful) {
667 SLOGE("System already restarted with encrypted disk, aborting");
668 return -1;
669 }
670
671 /* Here is where we shut down the framework. The init scripts
672 * start all services in one of three classes: core, main or late_start.
673 * On boot, we start core and main. Now, we stop main, but not core,
674 * as core includes vold and a few other really important things that
675 * we need to keep running. Once main has stopped, we should be able
676 * to umount the tmpfs /data, then mount the encrypted /data.
677 * We then restart the class main, and also the class late_start.
678 * At the moment, I've only put a few things in late_start that I know
679 * are not needed to bring up the framework, and that also cause problems
680 * with unmounting the tmpfs /data, but I hope to add add more services
681 * to the late_start class as we optimize this to decrease the delay
682 * till the user is asked for the password to the filesystem.
683 */
684
685 /* The init files are setup to stop the class main when vold.decrypt is
686 * set to trigger_reset_main.
687 */
688 property_set("vold.decrypt", "trigger_reset_main");
689 SLOGD("Just asked init to shut down class main\n");
690
691 /* Ugh, shutting down the framework is not synchronous, so until it
692 * can be fixed, this horrible hack will wait a moment for it all to
693 * shut down before proceeding. Without it, some devices cannot
694 * restart the graphics services.
695 */
696 sleep(2);
697
698 /* Now that the framework is shutdown, we should be able to umount()
699 * the tmpfs filesystem, and mount the real one.
700 */
701
702 property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
703 if (strlen(crypto_blkdev) == 0) {
704 SLOGE("fs_crypto_blkdev not set\n");
705 return -1;
706 }
707
708 if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) {
709 /* If that succeeded, then mount the decrypted filesystem */
710 fs_mgr_do_mount(get_fstab_filename(), DATA_MNT_POINT, crypto_blkdev, 0);
711
712 property_set("vold.decrypt", "trigger_load_persist_props");
713 /* Create necessary paths on /data */
714 if (prep_data_fs()) {
715 return -1;
716 }
717
718 /* startup service classes main and late_start */
719 property_set("vold.decrypt", "trigger_restart_framework");
720 SLOGD("Just triggered restart_framework\n");
721
722 /* Give it a few moments to get started */
723 sleep(1);
724 }
725
726 if (rc == 0) {
727 restart_successful = 1;
728 }
729
730 return rc;
731 }
732
do_crypto_complete(char * mount_point)733 static int do_crypto_complete(char *mount_point)
734 {
735 struct crypt_mnt_ftr crypt_ftr;
736 unsigned char encrypted_master_key[32];
737 unsigned char salt[SALT_LEN];
738 char real_blkdev[MAXPATHLEN];
739 char encrypted_state[PROPERTY_VALUE_MAX];
740 char key_loc[PROPERTY_VALUE_MAX];
741
742 property_get("ro.crypto.state", encrypted_state, "");
743 if (strcmp(encrypted_state, "encrypted") ) {
744 SLOGE("not running with encryption, aborting");
745 return 1;
746 }
747
748 fs_mgr_get_crypt_info(get_fstab_filename(), 0, real_blkdev, sizeof(real_blkdev));
749
750 if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
751 fs_mgr_get_crypt_info(get_fstab_filename(), key_loc, 0, sizeof(key_loc));
752
753 /*
754 * Only report this error if key_loc is a file and it exists.
755 * If the device was never encrypted, and /data is not mountable for
756 * some reason, returning 1 should prevent the UI from presenting the
757 * a "enter password" screen, or worse, a "press button to wipe the
758 * device" screen.
759 */
760 if ((key_loc[0] == '/') && (access("key_loc", F_OK) == -1)) {
761 SLOGE("master key file does not exist, aborting");
762 return 1;
763 } else {
764 SLOGE("Error getting crypt footer and key\n");
765 return -1;
766 }
767 }
768
769 if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
770 SLOGE("Encryption process didn't finish successfully\n");
771 return -2; /* -2 is the clue to the UI that there is no usable data on the disk,
772 * and give the user an option to wipe the disk */
773 }
774
775 /* We passed the test! We shall diminish, and return to the west */
776 return 0;
777 }
778
test_mount_encrypted_fs(char * passwd,char * mount_point,char * label)779 static int test_mount_encrypted_fs(char *passwd, char *mount_point, char *label)
780 {
781 struct crypt_mnt_ftr crypt_ftr;
782 /* Allocate enough space for a 256 bit key, but we may use less */
783 unsigned char encrypted_master_key[32], decrypted_master_key[32];
784 unsigned char salt[SALT_LEN];
785 char crypto_blkdev[MAXPATHLEN];
786 char real_blkdev[MAXPATHLEN];
787 char tmp_mount_point[64];
788 unsigned int orig_failed_decrypt_count;
789 char encrypted_state[PROPERTY_VALUE_MAX];
790 int rc;
791
792 property_get("ro.crypto.state", encrypted_state, "");
793 if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
794 SLOGE("encrypted fs already validated or not running with encryption, aborting");
795 return -1;
796 }
797
798 fs_mgr_get_crypt_info(get_fstab_filename(), 0, real_blkdev, sizeof(real_blkdev));
799
800 if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
801 SLOGE("Error getting crypt footer and key\n");
802 return -1;
803 }
804
805 SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size);
806 orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count;
807
808 if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
809 decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
810 }
811
812 if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key,
813 real_blkdev, crypto_blkdev, label)) {
814 SLOGE("Error creating decrypted block device\n");
815 return -1;
816 }
817
818 /* If init detects an encrypted filesystme, it writes a file for each such
819 * encrypted fs into the tmpfs /data filesystem, and then the framework finds those
820 * files and passes that data to me */
821 /* Create a tmp mount point to try mounting the decryptd fs
822 * Since we're here, the mount_point should be a tmpfs filesystem, so make
823 * a directory in it to test mount the decrypted filesystem.
824 */
825 sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
826 mkdir(tmp_mount_point, 0755);
827 if (fs_mgr_do_mount(get_fstab_filename(), DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) {
828 SLOGE("Error temp mounting decrypted block device\n");
829 delete_crypto_blk_dev(label);
830 crypt_ftr.failed_decrypt_count++;
831 } else {
832 /* Success, so just umount and we'll mount it properly when we restart
833 * the framework.
834 */
835 umount(tmp_mount_point);
836 crypt_ftr.failed_decrypt_count = 0;
837 }
838
839 if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) {
840 put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
841 }
842
843 if (crypt_ftr.failed_decrypt_count) {
844 /* We failed to mount the device, so return an error */
845 rc = crypt_ftr.failed_decrypt_count;
846
847 } else {
848 /* Woot! Success! Save the name of the crypto block device
849 * so we can mount it when restarting the framework.
850 */
851 property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
852
853 /* Also save a the master key so we can reencrypted the key
854 * the key when we want to change the password on it.
855 */
856 memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
857 saved_data_blkdev = strdup(real_blkdev);
858 saved_mount_point = strdup(mount_point);
859 master_key_saved = 1;
860 rc = 0;
861 }
862
863 return rc;
864 }
865
866 /* Called by vold when it wants to undo the crypto mapping of a volume it
867 * manages. This is usually in response to a factory reset, when we want
868 * to undo the crypto mapping so the volume is formatted in the clear.
869 */
cryptfs_revert_volume(const char * label)870 int cryptfs_revert_volume(const char *label)
871 {
872 return delete_crypto_blk_dev((char *)label);
873 }
874
875 /*
876 * Called by vold when it's asked to mount an encrypted, nonremovable volume.
877 * Setup a dm-crypt mapping, use the saved master key from
878 * setting up the /data mapping, and return the new device path.
879 */
cryptfs_setup_volume(const char * label,int major,int minor,char * crypto_sys_path,unsigned int max_path,int * new_major,int * new_minor)880 int cryptfs_setup_volume(const char *label, int major, int minor,
881 char *crypto_sys_path, unsigned int max_path,
882 int *new_major, int *new_minor)
883 {
884 char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN];
885 struct crypt_mnt_ftr sd_crypt_ftr;
886 unsigned char key[32], salt[32];
887 struct stat statbuf;
888 int nr_sec, fd;
889
890 sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor);
891
892 /* Just want the footer, but gotta get it all */
893 get_crypt_ftr_and_key(saved_data_blkdev, &sd_crypt_ftr, key, salt);
894
895 /* Update the fs_size field to be the size of the volume */
896 fd = open(real_blkdev, O_RDONLY);
897 nr_sec = get_blkdev_size(fd);
898 close(fd);
899 if (nr_sec == 0) {
900 SLOGE("Cannot get size of volume %s\n", real_blkdev);
901 return -1;
902 }
903
904 sd_crypt_ftr.fs_size = nr_sec;
905 create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev,
906 crypto_blkdev, label);
907
908 stat(crypto_blkdev, &statbuf);
909 *new_major = MAJOR(statbuf.st_rdev);
910 *new_minor = MINOR(statbuf.st_rdev);
911
912 /* Create path to sys entry for this block device */
913 snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1);
914
915 return 0;
916 }
917
cryptfs_crypto_complete(void)918 int cryptfs_crypto_complete(void)
919 {
920 return do_crypto_complete("/data");
921 }
922
cryptfs_check_passwd(char * passwd)923 int cryptfs_check_passwd(char *passwd)
924 {
925 int rc = -1;
926
927 rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata");
928
929 return rc;
930 }
931
cryptfs_verify_passwd(char * passwd)932 int cryptfs_verify_passwd(char *passwd)
933 {
934 struct crypt_mnt_ftr crypt_ftr;
935 /* Allocate enough space for a 256 bit key, but we may use less */
936 unsigned char encrypted_master_key[32], decrypted_master_key[32];
937 unsigned char salt[SALT_LEN];
938 char real_blkdev[MAXPATHLEN];
939 char encrypted_state[PROPERTY_VALUE_MAX];
940 int rc;
941
942 property_get("ro.crypto.state", encrypted_state, "");
943 if (strcmp(encrypted_state, "encrypted") ) {
944 SLOGE("device not encrypted, aborting");
945 return -2;
946 }
947
948 if (!master_key_saved) {
949 SLOGE("encrypted fs not yet mounted, aborting");
950 return -1;
951 }
952
953 if (!saved_mount_point) {
954 SLOGE("encrypted fs failed to save mount point, aborting");
955 return -1;
956 }
957
958 fs_mgr_get_crypt_info(get_fstab_filename(), 0, real_blkdev, sizeof(real_blkdev));
959
960 if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
961 SLOGE("Error getting crypt footer and key\n");
962 return -1;
963 }
964
965 if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
966 /* If the device has no password, then just say the password is valid */
967 rc = 0;
968 } else {
969 decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
970 if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
971 /* They match, the password is correct */
972 rc = 0;
973 } else {
974 /* If incorrect, sleep for a bit to prevent dictionary attacks */
975 sleep(1);
976 rc = 1;
977 }
978 }
979
980 return rc;
981 }
982
983 /* Initialize a crypt_mnt_ftr structure. The keysize is
984 * defaulted to 16 bytes, and the filesystem size to 0.
985 * Presumably, at a minimum, the caller will update the
986 * filesystem size and crypto_type_name after calling this function.
987 */
cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr * ftr)988 static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
989 {
990 ftr->magic = CRYPT_MNT_MAGIC;
991 ftr->major_version = 1;
992 ftr->minor_version = 0;
993 ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
994 ftr->flags = 0;
995 ftr->keysize = KEY_LEN_BYTES;
996 ftr->spare1 = 0;
997 ftr->fs_size = 0;
998 ftr->failed_decrypt_count = 0;
999 ftr->crypto_type_name[0] = '\0';
1000 }
1001
cryptfs_enable_wipe(char * crypto_blkdev,off64_t size,int type)1002 static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
1003 {
1004 char cmdline[256];
1005 int rc = -1;
1006
1007 if (type == EXT4_FS) {
1008 snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s",
1009 size * 512, crypto_blkdev);
1010 SLOGI("Making empty filesystem with command %s\n", cmdline);
1011 } else if (type== FAT_FS) {
1012 snprintf(cmdline, sizeof(cmdline), "/system/bin/newfs_msdos -F 32 -O android -c 8 -s %lld %s",
1013 size, crypto_blkdev);
1014 SLOGI("Making empty filesystem with command %s\n", cmdline);
1015 } else {
1016 SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
1017 return -1;
1018 }
1019
1020 if (system(cmdline)) {
1021 SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev);
1022 } else {
1023 SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev);
1024 rc = 0;
1025 }
1026
1027 return rc;
1028 }
1029
unix_read(int fd,void * buff,int len)1030 static inline int unix_read(int fd, void* buff, int len)
1031 {
1032 int ret;
1033 do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR);
1034 return ret;
1035 }
1036
unix_write(int fd,const void * buff,int len)1037 static inline int unix_write(int fd, const void* buff, int len)
1038 {
1039 int ret;
1040 do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR);
1041 return ret;
1042 }
1043
1044 #define CRYPT_INPLACE_BUFSIZE 4096
1045 #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512)
cryptfs_enable_inplace(char * crypto_blkdev,char * real_blkdev,off64_t size,off64_t * size_already_done,off64_t tot_size)1046 static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size,
1047 off64_t *size_already_done, off64_t tot_size)
1048 {
1049 int realfd, cryptofd;
1050 char *buf[CRYPT_INPLACE_BUFSIZE];
1051 int rc = -1;
1052 off64_t numblocks, i, remainder;
1053 off64_t one_pct, cur_pct, new_pct;
1054 off64_t blocks_already_done, tot_numblocks;
1055
1056 if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) {
1057 SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
1058 return -1;
1059 }
1060
1061 if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
1062 SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1063 close(realfd);
1064 return -1;
1065 }
1066
1067 /* This is pretty much a simple loop of reading 4K, and writing 4K.
1068 * The size passed in is the number of 512 byte sectors in the filesystem.
1069 * So compute the number of whole 4K blocks we should read/write,
1070 * and the remainder.
1071 */
1072 numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
1073 remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
1074 tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
1075 blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
1076
1077 SLOGE("Encrypting filesystem in place...");
1078
1079 one_pct = tot_numblocks / 100;
1080 cur_pct = 0;
1081 /* process the majority of the filesystem in blocks */
1082 for (i=0; i<numblocks; i++) {
1083 new_pct = (i + blocks_already_done) / one_pct;
1084 if (new_pct > cur_pct) {
1085 char buf[8];
1086
1087 cur_pct = new_pct;
1088 snprintf(buf, sizeof(buf), "%lld", cur_pct);
1089 property_set("vold.encrypt_progress", buf);
1090 }
1091 if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
1092 SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev);
1093 goto errout;
1094 }
1095 if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
1096 SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1097 goto errout;
1098 }
1099 }
1100
1101 /* Do any remaining sectors */
1102 for (i=0; i<remainder; i++) {
1103 if (unix_read(realfd, buf, 512) <= 0) {
1104 SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev);
1105 goto errout;
1106 }
1107 if (unix_write(cryptofd, buf, 512) <= 0) {
1108 SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1109 goto errout;
1110 }
1111 }
1112
1113 *size_already_done += size;
1114 rc = 0;
1115
1116 errout:
1117 close(realfd);
1118 close(cryptofd);
1119
1120 return rc;
1121 }
1122
1123 #define CRYPTO_ENABLE_WIPE 1
1124 #define CRYPTO_ENABLE_INPLACE 2
1125
1126 #define FRAMEWORK_BOOT_WAIT 60
1127
should_encrypt(struct volume_info * volume)1128 static inline int should_encrypt(struct volume_info *volume)
1129 {
1130 return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) ==
1131 (VOL_ENCRYPTABLE | VOL_NONREMOVABLE);
1132 }
1133
cryptfs_enable(char * howarg,char * passwd)1134 int cryptfs_enable(char *howarg, char *passwd)
1135 {
1136 int how = 0;
1137 char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN], sd_crypto_blkdev[MAXPATHLEN];
1138 unsigned long nr_sec;
1139 unsigned char master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES];
1140 unsigned char salt[SALT_LEN];
1141 int rc=-1, fd, i, ret;
1142 struct crypt_mnt_ftr crypt_ftr, sd_crypt_ftr;;
1143 char tmpfs_options[PROPERTY_VALUE_MAX];
1144 char encrypted_state[PROPERTY_VALUE_MAX];
1145 char lockid[32] = { 0 };
1146 char key_loc[PROPERTY_VALUE_MAX];
1147 char fuse_sdcard[PROPERTY_VALUE_MAX];
1148 char *sd_mnt_point;
1149 char sd_blk_dev[256] = { 0 };
1150 int num_vols;
1151 struct volume_info *vol_list = 0;
1152 off64_t cur_encryption_done=0, tot_encryption_size=0;
1153
1154 property_get("ro.crypto.state", encrypted_state, "");
1155 if (strcmp(encrypted_state, "unencrypted")) {
1156 SLOGE("Device is already running encrypted, aborting");
1157 goto error_unencrypted;
1158 }
1159
1160 fs_mgr_get_crypt_info(get_fstab_filename(), key_loc, 0, sizeof(key_loc));
1161
1162 if (!strcmp(howarg, "wipe")) {
1163 how = CRYPTO_ENABLE_WIPE;
1164 } else if (! strcmp(howarg, "inplace")) {
1165 how = CRYPTO_ENABLE_INPLACE;
1166 } else {
1167 /* Shouldn't happen, as CommandListener vets the args */
1168 goto error_unencrypted;
1169 }
1170
1171 fs_mgr_get_crypt_info(get_fstab_filename(), 0, real_blkdev, sizeof(real_blkdev));
1172
1173 /* Get the size of the real block device */
1174 fd = open(real_blkdev, O_RDONLY);
1175 if ( (nr_sec = get_blkdev_size(fd)) == 0) {
1176 SLOGE("Cannot get size of block device %s\n", real_blkdev);
1177 goto error_unencrypted;
1178 }
1179 close(fd);
1180
1181 /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
1182 if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
1183 unsigned int fs_size_sec, max_fs_size_sec;
1184
1185 fs_size_sec = get_fs_size(real_blkdev);
1186 max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
1187
1188 if (fs_size_sec > max_fs_size_sec) {
1189 SLOGE("Orig filesystem overlaps crypto footer region. Cannot encrypt in place.");
1190 goto error_unencrypted;
1191 }
1192 }
1193
1194 /* Get a wakelock as this may take a while, and we don't want the
1195 * device to sleep on us. We'll grab a partial wakelock, and if the UI
1196 * wants to keep the screen on, it can grab a full wakelock.
1197 */
1198 snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
1199 acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);
1200
1201 /* Get the sdcard mount point */
1202 sd_mnt_point = getenv("EMULATED_STORAGE_SOURCE");
1203 if (!sd_mnt_point) {
1204 sd_mnt_point = getenv("EXTERNAL_STORAGE");
1205 }
1206 if (!sd_mnt_point) {
1207 sd_mnt_point = "/mnt/sdcard";
1208 }
1209
1210 num_vols=vold_getNumDirectVolumes();
1211 vol_list = malloc(sizeof(struct volume_info) * num_vols);
1212 vold_getDirectVolumeList(vol_list);
1213
1214 for (i=0; i<num_vols; i++) {
1215 if (should_encrypt(&vol_list[i])) {
1216 fd = open(vol_list[i].blk_dev, O_RDONLY);
1217 if ( (vol_list[i].size = get_blkdev_size(fd)) == 0) {
1218 SLOGE("Cannot get size of block device %s\n", vol_list[i].blk_dev);
1219 goto error_unencrypted;
1220 }
1221 close(fd);
1222
1223 ret=vold_disableVol(vol_list[i].label);
1224 if ((ret < 0) && (ret != UNMOUNT_NOT_MOUNTED_ERR)) {
1225 /* -2 is returned when the device exists but is not currently mounted.
1226 * ignore the error and continue. */
1227 SLOGE("Failed to unmount volume %s\n", vol_list[i].label);
1228 goto error_unencrypted;
1229 }
1230 }
1231 }
1232
1233 /* The init files are setup to stop the class main and late start when
1234 * vold sets trigger_shutdown_framework.
1235 */
1236 property_set("vold.decrypt", "trigger_shutdown_framework");
1237 SLOGD("Just asked init to shut down class main\n");
1238
1239 if (vold_unmountAllAsecs()) {
1240 /* Just report the error. If any are left mounted,
1241 * umounting /data below will fail and handle the error.
1242 */
1243 SLOGE("Error unmounting internal asecs");
1244 }
1245
1246 property_get("ro.crypto.fuse_sdcard", fuse_sdcard, "");
1247 if (!strcmp(fuse_sdcard, "true")) {
1248 /* This is a device using the fuse layer to emulate the sdcard semantics
1249 * on top of the userdata partition. vold does not manage it, it is managed
1250 * by the sdcard service. The sdcard service was killed by the property trigger
1251 * above, so just unmount it now. We must do this _AFTER_ killing the framework,
1252 * unlike the case for vold managed devices above.
1253 */
1254 if (wait_and_unmount(sd_mnt_point)) {
1255 goto error_shutting_down;
1256 }
1257 }
1258
1259 /* Now unmount the /data partition. */
1260 if (wait_and_unmount(DATA_MNT_POINT)) {
1261 goto error_shutting_down;
1262 }
1263
1264 /* Do extra work for a better UX when doing the long inplace encryption */
1265 if (how == CRYPTO_ENABLE_INPLACE) {
1266 /* Now that /data is unmounted, we need to mount a tmpfs
1267 * /data, set a property saying we're doing inplace encryption,
1268 * and restart the framework.
1269 */
1270 if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
1271 goto error_shutting_down;
1272 }
1273 /* Tells the framework that inplace encryption is starting */
1274 property_set("vold.encrypt_progress", "0");
1275
1276 /* restart the framework. */
1277 /* Create necessary paths on /data */
1278 if (prep_data_fs()) {
1279 goto error_shutting_down;
1280 }
1281
1282 /* Ugh, shutting down the framework is not synchronous, so until it
1283 * can be fixed, this horrible hack will wait a moment for it all to
1284 * shut down before proceeding. Without it, some devices cannot
1285 * restart the graphics services.
1286 */
1287 sleep(2);
1288
1289 /* startup service classes main and late_start */
1290 property_set("vold.decrypt", "trigger_restart_min_framework");
1291 SLOGD("Just triggered restart_min_framework\n");
1292
1293 /* OK, the framework is restarted and will soon be showing a
1294 * progress bar. Time to setup an encrypted mapping, and
1295 * either write a new filesystem, or encrypt in place updating
1296 * the progress bar as we work.
1297 */
1298 }
1299
1300 /* Start the actual work of making an encrypted filesystem */
1301 /* Initialize a crypt_mnt_ftr for the partition */
1302 cryptfs_init_crypt_mnt_ftr(&crypt_ftr);
1303 if (!strcmp(key_loc, KEY_IN_FOOTER)) {
1304 crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
1305 } else {
1306 crypt_ftr.fs_size = nr_sec;
1307 }
1308 crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
1309 strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
1310
1311 /* Make an encrypted master key */
1312 if (create_encrypted_random_key(passwd, master_key, salt)) {
1313 SLOGE("Cannot create encrypted master key\n");
1314 goto error_unencrypted;
1315 }
1316
1317 /* Write the key to the end of the partition */
1318 put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, master_key, salt);
1319
1320 decrypt_master_key(passwd, salt, master_key, decrypted_master_key);
1321 create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
1322 "userdata");
1323
1324 /* The size of the userdata partition, and add in the vold volumes below */
1325 tot_encryption_size = crypt_ftr.fs_size;
1326
1327 /* setup crypto mapping for all encryptable volumes handled by vold */
1328 for (i=0; i<num_vols; i++) {
1329 if (should_encrypt(&vol_list[i])) {
1330 vol_list[i].crypt_ftr = crypt_ftr; /* gotta love struct assign */
1331 vol_list[i].crypt_ftr.fs_size = vol_list[i].size;
1332 create_crypto_blk_dev(&vol_list[i].crypt_ftr, decrypted_master_key,
1333 vol_list[i].blk_dev, vol_list[i].crypto_blkdev,
1334 vol_list[i].label);
1335 tot_encryption_size += vol_list[i].size;
1336 }
1337 }
1338
1339 if (how == CRYPTO_ENABLE_WIPE) {
1340 rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr.fs_size, EXT4_FS);
1341 /* Encrypt all encryptable volumes handled by vold */
1342 if (!rc) {
1343 for (i=0; i<num_vols; i++) {
1344 if (should_encrypt(&vol_list[i])) {
1345 rc = cryptfs_enable_wipe(vol_list[i].crypto_blkdev,
1346 vol_list[i].crypt_ftr.fs_size, FAT_FS);
1347 }
1348 }
1349 }
1350 } else if (how == CRYPTO_ENABLE_INPLACE) {
1351 rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr.fs_size,
1352 &cur_encryption_done, tot_encryption_size);
1353 /* Encrypt all encryptable volumes handled by vold */
1354 if (!rc) {
1355 for (i=0; i<num_vols; i++) {
1356 if (should_encrypt(&vol_list[i])) {
1357 rc = cryptfs_enable_inplace(vol_list[i].crypto_blkdev,
1358 vol_list[i].blk_dev,
1359 vol_list[i].crypt_ftr.fs_size,
1360 &cur_encryption_done, tot_encryption_size);
1361 }
1362 }
1363 }
1364 if (!rc) {
1365 /* The inplace routine never actually sets the progress to 100%
1366 * due to the round down nature of integer division, so set it here */
1367 property_set("vold.encrypt_progress", "100");
1368 }
1369 } else {
1370 /* Shouldn't happen */
1371 SLOGE("cryptfs_enable: internal error, unknown option\n");
1372 goto error_unencrypted;
1373 }
1374
1375 /* Undo the dm-crypt mapping whether we succeed or not */
1376 delete_crypto_blk_dev("userdata");
1377 for (i=0; i<num_vols; i++) {
1378 if (should_encrypt(&vol_list[i])) {
1379 delete_crypto_blk_dev(vol_list[i].label);
1380 }
1381 }
1382
1383 free(vol_list);
1384
1385 if (! rc) {
1386 /* Success */
1387
1388 /* Clear the encryption in progres flag in the footer */
1389 crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
1390 put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
1391
1392 sleep(2); /* Give the UI a chance to show 100% progress */
1393 android_reboot(ANDROID_RB_RESTART, 0, 0);
1394 } else {
1395 char value[PROPERTY_VALUE_MAX];
1396
1397 property_get("ro.vold.wipe_on_crypt_fail", value, "0");
1398 if (!strcmp(value, "1")) {
1399 /* wipe data if encryption failed */
1400 SLOGE("encryption failed - rebooting into recovery to wipe data\n");
1401 mkdir("/cache/recovery", 0700);
1402 int fd = open("/cache/recovery/command", O_RDWR|O_CREAT|O_TRUNC, 0600);
1403 if (fd >= 0) {
1404 write(fd, "--wipe_data", strlen("--wipe_data") + 1);
1405 close(fd);
1406 } else {
1407 SLOGE("could not open /cache/recovery/command\n");
1408 }
1409 android_reboot(ANDROID_RB_RESTART2, 0, "recovery");
1410 } else {
1411 /* set property to trigger dialog */
1412 property_set("vold.encrypt_progress", "error_partially_encrypted");
1413 release_wake_lock(lockid);
1414 }
1415 return -1;
1416 }
1417
1418 /* hrm, the encrypt step claims success, but the reboot failed.
1419 * This should not happen.
1420 * Set the property and return. Hope the framework can deal with it.
1421 */
1422 property_set("vold.encrypt_progress", "error_reboot_failed");
1423 release_wake_lock(lockid);
1424 return rc;
1425
1426 error_unencrypted:
1427 free(vol_list);
1428 property_set("vold.encrypt_progress", "error_not_encrypted");
1429 if (lockid[0]) {
1430 release_wake_lock(lockid);
1431 }
1432 return -1;
1433
1434 error_shutting_down:
1435 /* we failed, and have not encrypted anthing, so the users's data is still intact,
1436 * but the framework is stopped and not restarted to show the error, so it's up to
1437 * vold to restart the system.
1438 */
1439 SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system");
1440 android_reboot(ANDROID_RB_RESTART, 0, 0);
1441
1442 /* shouldn't get here */
1443 property_set("vold.encrypt_progress", "error_shutting_down");
1444 free(vol_list);
1445 if (lockid[0]) {
1446 release_wake_lock(lockid);
1447 }
1448 return -1;
1449 }
1450
cryptfs_changepw(char * newpw)1451 int cryptfs_changepw(char *newpw)
1452 {
1453 struct crypt_mnt_ftr crypt_ftr;
1454 unsigned char encrypted_master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES];
1455 unsigned char salt[SALT_LEN];
1456 char real_blkdev[MAXPATHLEN];
1457
1458 /* This is only allowed after we've successfully decrypted the master key */
1459 if (! master_key_saved) {
1460 SLOGE("Key not saved, aborting");
1461 return -1;
1462 }
1463
1464 fs_mgr_get_crypt_info(get_fstab_filename(), 0, real_blkdev, sizeof(real_blkdev));
1465 if (strlen(real_blkdev) == 0) {
1466 SLOGE("Can't find real blkdev");
1467 return -1;
1468 }
1469
1470 /* get key */
1471 if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
1472 SLOGE("Error getting crypt footer and key");
1473 return -1;
1474 }
1475
1476 encrypt_master_key(newpw, salt, saved_master_key, encrypted_master_key);
1477
1478 /* save the key */
1479 put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt);
1480
1481 return 0;
1482 }
1483