• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* @(#)s_tanh.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 __FBSDID("$FreeBSD$");
15 
16 /* Tanh(x)
17  * Return the Hyperbolic Tangent of x
18  *
19  * Method :
20  *				       x    -x
21  *				      e  - e
22  *	0. tanh(x) is defined to be -----------
23  *				       x    -x
24  *				      e  + e
25  *	1. reduce x to non-negative by tanh(-x) = -tanh(x).
26  *	2.  0      <= x <  2**-28 : tanh(x) := x with inexact if x != 0
27  *					        -t
28  *	    2**-28 <= x <  1      : tanh(x) := -----; t = expm1(-2x)
29  *					       t + 2
30  *						     2
31  *	    1      <= x <  22     : tanh(x) := 1 - -----; t = expm1(2x)
32  *						   t + 2
33  *	    22     <= x <= INF    : tanh(x) := 1.
34  *
35  * Special cases:
36  *	tanh(NaN) is NaN;
37  *	only tanh(0)=0 is exact for finite argument.
38  */
39 
40 #include "math.h"
41 #include "math_private.h"
42 
43 static const double one = 1.0, two = 2.0, tiny = 1.0e-300, huge = 1.0e300;
44 
45 double
tanh(double x)46 tanh(double x)
47 {
48 	double t,z;
49 	int32_t jx,ix;
50 
51 	GET_HIGH_WORD(jx,x);
52 	ix = jx&0x7fffffff;
53 
54     /* x is INF or NaN */
55 	if(ix>=0x7ff00000) {
56 	    if (jx>=0) return one/x+one;    /* tanh(+-inf)=+-1 */
57 	    else       return one/x-one;    /* tanh(NaN) = NaN */
58 	}
59 
60     /* |x| < 22 */
61 	if (ix < 0x40360000) {		/* |x|<22 */
62 	    if (ix<0x3e300000) {	/* |x|<2**-28 */
63 		if(huge+x>one) return x; /* tanh(tiny) = tiny with inexact */
64 	    }
65 	    if (ix>=0x3ff00000) {	/* |x|>=1  */
66 		t = expm1(two*fabs(x));
67 		z = one - two/(t+two);
68 	    } else {
69 	        t = expm1(-two*fabs(x));
70 	        z= -t/(t+two);
71 	    }
72     /* |x| >= 22, return +-1 */
73 	} else {
74 	    z = one - tiny;		/* raise inexact flag */
75 	}
76 	return (jx>=0)? z: -z;
77 }
78