• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * This file contains codegen and support common to all supported
19  * ARM variants.  It is included by:
20  *
21  *        Codegen-$(TARGET_ARCH_VARIANT).c
22  *
23  * which combines this common code with specific support found in the
24  * applicable directory below this one.
25  */
26 
27 /*
28  * Mark garbage collection card. Skip if the value we're storing is null.
29  */
markCard(CompilationUnit * cUnit,int valReg,int tgtAddrReg)30 static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
31 {
32     int regCardBase = dvmCompilerAllocTemp(cUnit);
33     int regCardNo = dvmCompilerAllocTemp(cUnit);
34     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0);
35     loadWordDisp(cUnit, r6SELF, offsetof(Thread, cardTable),
36                  regCardBase);
37     opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
38     storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
39                      kUnsignedByte);
40     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
41     target->defMask = ENCODE_ALL;
42     branchOver->generic.target = (LIR *)target;
43     dvmCompilerFreeTemp(cUnit, regCardBase);
44     dvmCompilerFreeTemp(cUnit, regCardNo);
45 }
46 
genConversionCall(CompilationUnit * cUnit,MIR * mir,void * funct,int srcSize,int tgtSize)47 static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
48                                      int srcSize, int tgtSize)
49 {
50     /*
51      * Don't optimize the register usage since it calls out to template
52      * functions
53      */
54     RegLocation rlSrc;
55     RegLocation rlDest;
56     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
57     if (srcSize == 1) {
58         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
59         loadValueDirectFixed(cUnit, rlSrc, r0);
60     } else {
61         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
62         loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
63     }
64     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
65     opReg(cUnit, kOpBlx, r2);
66     dvmCompilerClobberCallRegs(cUnit);
67     if (tgtSize == 1) {
68         RegLocation rlResult;
69         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
70         rlResult = dvmCompilerGetReturn(cUnit);
71         storeValue(cUnit, rlDest, rlResult);
72     } else {
73         RegLocation rlResult;
74         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
75         rlResult = dvmCompilerGetReturnWide(cUnit);
76         storeValueWide(cUnit, rlDest, rlResult);
77     }
78     return false;
79 }
80 
genArithOpFloatPortable(CompilationUnit * cUnit,MIR * mir,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)81 static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
82                                     RegLocation rlDest, RegLocation rlSrc1,
83                                     RegLocation rlSrc2)
84 {
85     RegLocation rlResult;
86     void* funct;
87 
88     switch (mir->dalvikInsn.opcode) {
89         case OP_ADD_FLOAT_2ADDR:
90         case OP_ADD_FLOAT:
91             funct = (void*) __aeabi_fadd;
92             break;
93         case OP_SUB_FLOAT_2ADDR:
94         case OP_SUB_FLOAT:
95             funct = (void*) __aeabi_fsub;
96             break;
97         case OP_DIV_FLOAT_2ADDR:
98         case OP_DIV_FLOAT:
99             funct = (void*) __aeabi_fdiv;
100             break;
101         case OP_MUL_FLOAT_2ADDR:
102         case OP_MUL_FLOAT:
103             funct = (void*) __aeabi_fmul;
104             break;
105         case OP_REM_FLOAT_2ADDR:
106         case OP_REM_FLOAT:
107             funct = (void*) fmodf;
108             break;
109         case OP_NEG_FLOAT: {
110             genNegFloat(cUnit, rlDest, rlSrc1);
111             return false;
112         }
113         default:
114             return true;
115     }
116     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
117     loadValueDirectFixed(cUnit, rlSrc1, r0);
118     loadValueDirectFixed(cUnit, rlSrc2, r1);
119     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
120     opReg(cUnit, kOpBlx, r2);
121     dvmCompilerClobberCallRegs(cUnit);
122     rlResult = dvmCompilerGetReturn(cUnit);
123     storeValue(cUnit, rlDest, rlResult);
124     return false;
125 }
126 
genArithOpDoublePortable(CompilationUnit * cUnit,MIR * mir,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)127 static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
128                                      RegLocation rlDest, RegLocation rlSrc1,
129                                      RegLocation rlSrc2)
130 {
131     RegLocation rlResult;
132     void* funct;
133 
134     switch (mir->dalvikInsn.opcode) {
135         case OP_ADD_DOUBLE_2ADDR:
136         case OP_ADD_DOUBLE:
137             funct = (void*) __aeabi_dadd;
138             break;
139         case OP_SUB_DOUBLE_2ADDR:
140         case OP_SUB_DOUBLE:
141             funct = (void*) __aeabi_dsub;
142             break;
143         case OP_DIV_DOUBLE_2ADDR:
144         case OP_DIV_DOUBLE:
145             funct = (void*) __aeabi_ddiv;
146             break;
147         case OP_MUL_DOUBLE_2ADDR:
148         case OP_MUL_DOUBLE:
149             funct = (void*) __aeabi_dmul;
150             break;
151         case OP_REM_DOUBLE_2ADDR:
152         case OP_REM_DOUBLE:
153             funct = (void*) (double (*)(double, double)) fmod;
154             break;
155         case OP_NEG_DOUBLE: {
156             genNegDouble(cUnit, rlDest, rlSrc1);
157             return false;
158         }
159         default:
160             return true;
161     }
162     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
163     LOAD_FUNC_ADDR(cUnit, r14lr, (int)funct);
164     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
165     loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
166     opReg(cUnit, kOpBlx, r14lr);
167     dvmCompilerClobberCallRegs(cUnit);
168     rlResult = dvmCompilerGetReturnWide(cUnit);
169     storeValueWide(cUnit, rlDest, rlResult);
170 #if defined(WITH_SELF_VERIFICATION)
171     cUnit->usesLinkRegister = true;
172 #endif
173     return false;
174 }
175 
genConversionPortable(CompilationUnit * cUnit,MIR * mir)176 static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
177 {
178     Opcode opcode = mir->dalvikInsn.opcode;
179 
180     switch (opcode) {
181         case OP_INT_TO_FLOAT:
182             return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
183         case OP_FLOAT_TO_INT:
184             return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
185         case OP_DOUBLE_TO_FLOAT:
186             return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
187         case OP_FLOAT_TO_DOUBLE:
188             return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
189         case OP_INT_TO_DOUBLE:
190             return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
191         case OP_DOUBLE_TO_INT:
192             return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
193         case OP_FLOAT_TO_LONG:
194             return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
195         case OP_LONG_TO_FLOAT:
196             return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
197         case OP_DOUBLE_TO_LONG:
198             return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
199         case OP_LONG_TO_DOUBLE:
200             return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
201         default:
202             return true;
203     }
204     return false;
205 }
206 
207 #if defined(WITH_SELF_VERIFICATION)
selfVerificationBranchInsert(LIR * currentLIR,ArmOpcode opcode,int dest,int src1)208 static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode,
209                           int dest, int src1)
210 {
211      ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
212      insn->opcode = opcode;
213      insn->operands[0] = dest;
214      insn->operands[1] = src1;
215      setupResourceMasks(insn);
216      dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
217 }
218 
219 /*
220  * Example where r14 (LR) is preserved around a heap access under
221  * self-verification mode in Thumb2:
222  *
223  * D/dalvikvm( 1538): 0x59414c5e (0026): ldr     r14, [r15pc, #220] <-hoisted
224  * D/dalvikvm( 1538): 0x59414c62 (002a): mla     r4, r0, r8, r4
225  * D/dalvikvm( 1538): 0x59414c66 (002e): adds    r3, r4, r3
226  * D/dalvikvm( 1538): 0x59414c6a (0032): push    <r5, r14>    ---+
227  * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1   0x5940f494      |
228  * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2   see above       <-MEM_OP_DECODE
229  * D/dalvikvm( 1538): 0x59414c70 (0038): ldr     r10, [r9, #0]   |
230  * D/dalvikvm( 1538): 0x59414c74 (003c): pop     <r5, r14>    ---+
231  * D/dalvikvm( 1538): 0x59414c78 (0040): mov     r11, r10
232  * D/dalvikvm( 1538): 0x59414c7a (0042): asr     r12, r11, #31
233  * D/dalvikvm( 1538): 0x59414c7e (0046): movs    r0, r2
234  * D/dalvikvm( 1538): 0x59414c80 (0048): movs    r1, r3
235  * D/dalvikvm( 1538): 0x59414c82 (004a): str     r2, [r5, #16]
236  * D/dalvikvm( 1538): 0x59414c84 (004c): mov     r2, r11
237  * D/dalvikvm( 1538): 0x59414c86 (004e): str     r3, [r5, #20]
238  * D/dalvikvm( 1538): 0x59414c88 (0050): mov     r3, r12
239  * D/dalvikvm( 1538): 0x59414c8a (0052): str     r11, [r5, #24]
240  * D/dalvikvm( 1538): 0x59414c8e (0056): str     r12, [r5, #28]
241  * D/dalvikvm( 1538): 0x59414c92 (005a): blx     r14             <-use of LR
242  *
243  */
selfVerificationBranchInsertPass(CompilationUnit * cUnit)244 static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
245 {
246     ArmLIR *thisLIR;
247     TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE;
248 
249     for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
250          thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
251          thisLIR = NEXT_LIR(thisLIR)) {
252         if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
253             /*
254              * Push r5(FP) and r14(LR) onto stack. We need to make sure that
255              * SP is 8-byte aligned, and we use r5 as a temp to restore LR
256              * for Thumb-only target since LR cannot be directly accessed in
257              * Thumb mode. Another reason to choose r5 here is it is the Dalvik
258              * frame pointer and cannot be the target of the emulated heap
259              * load.
260              */
261             if (cUnit->usesLinkRegister) {
262                 genSelfVerificationPreBranch(cUnit, thisLIR);
263             }
264 
265             /* Branch to mem op decode template */
266             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
267                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
268                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
269             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
270                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
271                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
272 
273             /* Restore LR */
274             if (cUnit->usesLinkRegister) {
275                 genSelfVerificationPostBranch(cUnit, thisLIR);
276             }
277         }
278     }
279 }
280 #endif
281 
282 /* Generate conditional branch instructions */
genConditionalBranch(CompilationUnit * cUnit,ArmConditionCode cond,ArmLIR * target)283 static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
284                                     ArmConditionCode cond,
285                                     ArmLIR *target)
286 {
287     ArmLIR *branch = opCondBranch(cUnit, cond);
288     branch->generic.target = (LIR *) target;
289     return branch;
290 }
291 
292 /* Generate a unconditional branch to go to the interpreter */
genTrap(CompilationUnit * cUnit,int dOffset,ArmLIR * pcrLabel)293 static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
294                                   ArmLIR *pcrLabel)
295 {
296     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
297     return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
298 }
299 
300 /* Load a wide field from an object instance */
genIGetWide(CompilationUnit * cUnit,MIR * mir,int fieldOffset)301 static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
302 {
303     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
304     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
305     RegLocation rlResult;
306     rlObj = loadValue(cUnit, rlObj, kCoreReg);
307     int regPtr = dvmCompilerAllocTemp(cUnit);
308 
309     assert(rlDest.wide);
310 
311     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
312                  NULL);/* null object? */
313     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
314     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
315 
316     HEAP_ACCESS_SHADOW(true);
317     loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
318     HEAP_ACCESS_SHADOW(false);
319 
320     dvmCompilerFreeTemp(cUnit, regPtr);
321     storeValueWide(cUnit, rlDest, rlResult);
322 }
323 
324 /* Store a wide field to an object instance */
genIPutWide(CompilationUnit * cUnit,MIR * mir,int fieldOffset)325 static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
326 {
327     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
328     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
329     rlObj = loadValue(cUnit, rlObj, kCoreReg);
330     int regPtr;
331     rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
332     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
333                  NULL);/* null object? */
334     regPtr = dvmCompilerAllocTemp(cUnit);
335     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
336 
337     HEAP_ACCESS_SHADOW(true);
338     storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
339     HEAP_ACCESS_SHADOW(false);
340 
341     dvmCompilerFreeTemp(cUnit, regPtr);
342 }
343 
344 /*
345  * Load a field from an object instance
346  *
347  */
genIGet(CompilationUnit * cUnit,MIR * mir,OpSize size,int fieldOffset,bool isVolatile)348 static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
349                     int fieldOffset, bool isVolatile)
350 {
351     RegLocation rlResult;
352     RegisterClass regClass = dvmCompilerRegClassBySize(size);
353     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
354     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
355     rlObj = loadValue(cUnit, rlObj, kCoreReg);
356     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
357     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
358                  NULL);/* null object? */
359 
360     HEAP_ACCESS_SHADOW(true);
361     loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
362                  size, rlObj.sRegLow);
363     HEAP_ACCESS_SHADOW(false);
364     if (isVolatile) {
365         dvmCompilerGenMemBarrier(cUnit, kSY);
366     }
367 
368     storeValue(cUnit, rlDest, rlResult);
369 }
370 
371 /*
372  * Store a field to an object instance
373  *
374  */
genIPut(CompilationUnit * cUnit,MIR * mir,OpSize size,int fieldOffset,bool isObject,bool isVolatile)375 static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
376                     int fieldOffset, bool isObject, bool isVolatile)
377 {
378     RegisterClass regClass = dvmCompilerRegClassBySize(size);
379     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
380     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
381     rlObj = loadValue(cUnit, rlObj, kCoreReg);
382     rlSrc = loadValue(cUnit, rlSrc, regClass);
383     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
384                  NULL);/* null object? */
385 
386     if (isVolatile) {
387         dvmCompilerGenMemBarrier(cUnit, kST);
388     }
389     HEAP_ACCESS_SHADOW(true);
390     storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
391     HEAP_ACCESS_SHADOW(false);
392     if (isVolatile) {
393         dvmCompilerGenMemBarrier(cUnit, kSY);
394     }
395     if (isObject) {
396         /* NOTE: marking card based on object head */
397         markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
398     }
399 }
400 
401 
402 /*
403  * Generate array load
404  */
genArrayGet(CompilationUnit * cUnit,MIR * mir,OpSize size,RegLocation rlArray,RegLocation rlIndex,RegLocation rlDest,int scale)405 static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
406                         RegLocation rlArray, RegLocation rlIndex,
407                         RegLocation rlDest, int scale)
408 {
409     RegisterClass regClass = dvmCompilerRegClassBySize(size);
410     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
411     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
412     RegLocation rlResult;
413     rlArray = loadValue(cUnit, rlArray, kCoreReg);
414     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
415     int regPtr;
416 
417     /* null object? */
418     ArmLIR * pcrLabel = NULL;
419 
420     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
421         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
422                                 rlArray.lowReg, mir->offset, NULL);
423     }
424 
425     regPtr = dvmCompilerAllocTemp(cUnit);
426 
427     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
428         int regLen = dvmCompilerAllocTemp(cUnit);
429         /* Get len */
430         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
431         /* regPtr -> array data */
432         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
433         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
434                        pcrLabel);
435         dvmCompilerFreeTemp(cUnit, regLen);
436     } else {
437         /* regPtr -> array data */
438         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
439     }
440     if ((size == kLong) || (size == kDouble)) {
441         if (scale) {
442             int rNewIndex = dvmCompilerAllocTemp(cUnit);
443             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
444             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
445             dvmCompilerFreeTemp(cUnit, rNewIndex);
446         } else {
447             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
448         }
449         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
450 
451         HEAP_ACCESS_SHADOW(true);
452         loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
453         HEAP_ACCESS_SHADOW(false);
454 
455         dvmCompilerFreeTemp(cUnit, regPtr);
456         storeValueWide(cUnit, rlDest, rlResult);
457     } else {
458         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
459 
460         HEAP_ACCESS_SHADOW(true);
461         loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
462                         scale, size);
463         HEAP_ACCESS_SHADOW(false);
464 
465         dvmCompilerFreeTemp(cUnit, regPtr);
466         storeValue(cUnit, rlDest, rlResult);
467     }
468 }
469 
470 /*
471  * Generate array store
472  *
473  */
genArrayPut(CompilationUnit * cUnit,MIR * mir,OpSize size,RegLocation rlArray,RegLocation rlIndex,RegLocation rlSrc,int scale)474 static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
475                         RegLocation rlArray, RegLocation rlIndex,
476                         RegLocation rlSrc, int scale)
477 {
478     RegisterClass regClass = dvmCompilerRegClassBySize(size);
479     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
480     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
481 
482     int regPtr;
483     rlArray = loadValue(cUnit, rlArray, kCoreReg);
484     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
485 
486     if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
487         dvmCompilerClobber(cUnit, rlArray.lowReg);
488         regPtr = rlArray.lowReg;
489     } else {
490         regPtr = dvmCompilerAllocTemp(cUnit);
491         genRegCopy(cUnit, regPtr, rlArray.lowReg);
492     }
493 
494     /* null object? */
495     ArmLIR * pcrLabel = NULL;
496 
497     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
498         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
499                                 mir->offset, NULL);
500     }
501 
502     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
503         int regLen = dvmCompilerAllocTemp(cUnit);
504         //NOTE: max live temps(4) here.
505         /* Get len */
506         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
507         /* regPtr -> array data */
508         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
509         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
510                        pcrLabel);
511         dvmCompilerFreeTemp(cUnit, regLen);
512     } else {
513         /* regPtr -> array data */
514         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
515     }
516     /* at this point, regPtr points to array, 2 live temps */
517     if ((size == kLong) || (size == kDouble)) {
518         //TODO: need specific wide routine that can handle fp regs
519         if (scale) {
520             int rNewIndex = dvmCompilerAllocTemp(cUnit);
521             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
522             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
523             dvmCompilerFreeTemp(cUnit, rNewIndex);
524         } else {
525             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
526         }
527         rlSrc = loadValueWide(cUnit, rlSrc, regClass);
528 
529         HEAP_ACCESS_SHADOW(true);
530         storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
531         HEAP_ACCESS_SHADOW(false);
532 
533         dvmCompilerFreeTemp(cUnit, regPtr);
534     } else {
535         rlSrc = loadValue(cUnit, rlSrc, regClass);
536 
537         HEAP_ACCESS_SHADOW(true);
538         storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
539                          scale, size);
540         HEAP_ACCESS_SHADOW(false);
541     }
542 }
543 
544 /*
545  * Generate array object store
546  * Must use explicit register allocation here because of
547  * call-out to dvmCanPutArrayElement
548  */
genArrayObjectPut(CompilationUnit * cUnit,MIR * mir,RegLocation rlArray,RegLocation rlIndex,RegLocation rlSrc,int scale)549 static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
550                               RegLocation rlArray, RegLocation rlIndex,
551                               RegLocation rlSrc, int scale)
552 {
553     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
554     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
555 
556     dvmCompilerFlushAllRegs(cUnit);
557 
558     int regLen = r0;
559     int regPtr = r4PC;  /* Preserved across call */
560     int regArray = r1;
561     int regIndex = r7;  /* Preserved across call */
562 
563     loadValueDirectFixed(cUnit, rlArray, regArray);
564     loadValueDirectFixed(cUnit, rlIndex, regIndex);
565 
566     /* null object? */
567     ArmLIR * pcrLabel = NULL;
568 
569     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
570         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
571                                 mir->offset, NULL);
572     }
573 
574     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
575         /* Get len */
576         loadWordDisp(cUnit, regArray, lenOffset, regLen);
577         /* regPtr -> array data */
578         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
579         genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
580                        pcrLabel);
581     } else {
582         /* regPtr -> array data */
583         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
584     }
585 
586     /* Get object to store */
587     loadValueDirectFixed(cUnit, rlSrc, r0);
588     LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
589 
590     /* Are we storing null?  If so, avoid check */
591     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
592 
593     /* Make sure the types are compatible */
594     loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
595     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
596     opReg(cUnit, kOpBlx, r2);
597     dvmCompilerClobberCallRegs(cUnit);
598 
599     /*
600      * Using fixed registers here, and counting on r4 and r7 being
601      * preserved across the above call.  Tell the register allocation
602      * utilities about the regs we are using directly
603      */
604     dvmCompilerLockTemp(cUnit, regPtr);   // r4PC
605     dvmCompilerLockTemp(cUnit, regIndex); // r7
606     dvmCompilerLockTemp(cUnit, r0);
607     dvmCompilerLockTemp(cUnit, r1);
608 
609     /* Bad? - roll back and re-execute if so */
610     genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
611 
612     /* Resume here - must reload element & array, regPtr & index preserved */
613     loadValueDirectFixed(cUnit, rlSrc, r0);
614     loadValueDirectFixed(cUnit, rlArray, r1);
615 
616     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
617     target->defMask = ENCODE_ALL;
618     branchOver->generic.target = (LIR *) target;
619 
620     HEAP_ACCESS_SHADOW(true);
621     storeBaseIndexed(cUnit, regPtr, regIndex, r0,
622                      scale, kWord);
623     HEAP_ACCESS_SHADOW(false);
624 
625     dvmCompilerFreeTemp(cUnit, regPtr);
626     dvmCompilerFreeTemp(cUnit, regIndex);
627 
628     /* NOTE: marking card here based on object head */
629     markCard(cUnit, r0, r1);
630 }
631 
genShiftOpLong(CompilationUnit * cUnit,MIR * mir,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlShift)632 static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
633                            RegLocation rlDest, RegLocation rlSrc1,
634                            RegLocation rlShift)
635 {
636     /*
637      * Don't mess with the regsiters here as there is a particular calling
638      * convention to the out-of-line handler.
639      */
640     RegLocation rlResult;
641 
642     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
643     loadValueDirect(cUnit, rlShift, r2);
644     switch( mir->dalvikInsn.opcode) {
645         case OP_SHL_LONG:
646         case OP_SHL_LONG_2ADDR:
647             genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
648             break;
649         case OP_SHR_LONG:
650         case OP_SHR_LONG_2ADDR:
651             genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
652             break;
653         case OP_USHR_LONG:
654         case OP_USHR_LONG_2ADDR:
655             genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
656             break;
657         default:
658             return true;
659     }
660     rlResult = dvmCompilerGetReturnWide(cUnit);
661     storeValueWide(cUnit, rlDest, rlResult);
662     return false;
663 }
664 
genArithOpLong(CompilationUnit * cUnit,MIR * mir,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)665 static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
666                            RegLocation rlDest, RegLocation rlSrc1,
667                            RegLocation rlSrc2)
668 {
669     RegLocation rlResult;
670     OpKind firstOp = kOpBkpt;
671     OpKind secondOp = kOpBkpt;
672     bool callOut = false;
673     bool checkZero = false;
674     void *callTgt;
675     int retReg = r0;
676 
677     switch (mir->dalvikInsn.opcode) {
678         case OP_NOT_LONG:
679             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
680             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
681             opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
682             opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
683             storeValueWide(cUnit, rlDest, rlResult);
684             return false;
685             break;
686         case OP_ADD_LONG:
687         case OP_ADD_LONG_2ADDR:
688             firstOp = kOpAdd;
689             secondOp = kOpAdc;
690             break;
691         case OP_SUB_LONG:
692         case OP_SUB_LONG_2ADDR:
693             firstOp = kOpSub;
694             secondOp = kOpSbc;
695             break;
696         case OP_MUL_LONG:
697         case OP_MUL_LONG_2ADDR:
698             genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
699             return false;
700         case OP_DIV_LONG:
701         case OP_DIV_LONG_2ADDR:
702             callOut = true;
703             retReg = r0;
704             checkZero = true;
705             callTgt = (void*)__aeabi_ldivmod;
706             break;
707         /* NOTE - result is in r2/r3 instead of r0/r1 */
708         case OP_REM_LONG:
709         case OP_REM_LONG_2ADDR:
710             callOut = true;
711             callTgt = (void*)__aeabi_ldivmod;
712             retReg = r2;
713             checkZero = true;
714             break;
715         case OP_AND_LONG_2ADDR:
716         case OP_AND_LONG:
717             firstOp = kOpAnd;
718             secondOp = kOpAnd;
719             break;
720         case OP_OR_LONG:
721         case OP_OR_LONG_2ADDR:
722             firstOp = kOpOr;
723             secondOp = kOpOr;
724             break;
725         case OP_XOR_LONG:
726         case OP_XOR_LONG_2ADDR:
727             firstOp = kOpXor;
728             secondOp = kOpXor;
729             break;
730         case OP_NEG_LONG: {
731             //TUNING: can improve this using Thumb2 code
732             int tReg = dvmCompilerAllocTemp(cUnit);
733             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
734             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
735             loadConstantNoClobber(cUnit, tReg, 0);
736             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
737                         tReg, rlSrc2.lowReg);
738             opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
739             genRegCopy(cUnit, rlResult.highReg, tReg);
740             storeValueWide(cUnit, rlDest, rlResult);
741             return false;
742         }
743         default:
744             ALOGE("Invalid long arith op");
745             dvmCompilerAbort(cUnit);
746     }
747     if (!callOut) {
748         genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
749     } else {
750         // Adjust return regs in to handle case of rem returning r2/r3
751         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
752         loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
753         loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
754         LOAD_FUNC_ADDR(cUnit, r14lr, (int) callTgt);
755         if (checkZero) {
756             int tReg = r12; // Using fixed registers during call sequence
757             opRegRegReg(cUnit, kOpOr, tReg, r2, r3);
758             genRegImmCheck(cUnit, kArmCondEq, tReg, 0, mir->offset, NULL);
759         }
760         opReg(cUnit, kOpBlx, r14lr);
761         dvmCompilerClobberCallRegs(cUnit);
762         if (retReg == r0)
763             rlResult = dvmCompilerGetReturnWide(cUnit);
764         else
765             rlResult = dvmCompilerGetReturnWideAlt(cUnit);
766         storeValueWide(cUnit, rlDest, rlResult);
767 #if defined(WITH_SELF_VERIFICATION)
768         cUnit->usesLinkRegister = true;
769 #endif
770     }
771     return false;
772 }
773 
genArithOpInt(CompilationUnit * cUnit,MIR * mir,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)774 static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
775                           RegLocation rlDest, RegLocation rlSrc1,
776                           RegLocation rlSrc2)
777 {
778     OpKind op = kOpBkpt;
779     bool callOut = false;
780     bool checkZero = false;
781     bool unary = false;
782     int retReg = r0;
783     int (*callTgt)(int, int);
784     RegLocation rlResult;
785     bool shiftOp = false;
786 
787     switch (mir->dalvikInsn.opcode) {
788         case OP_NEG_INT:
789             op = kOpNeg;
790             unary = true;
791             break;
792         case OP_NOT_INT:
793             op = kOpMvn;
794             unary = true;
795             break;
796         case OP_ADD_INT:
797         case OP_ADD_INT_2ADDR:
798             op = kOpAdd;
799             break;
800         case OP_SUB_INT:
801         case OP_SUB_INT_2ADDR:
802             op = kOpSub;
803             break;
804         case OP_MUL_INT:
805         case OP_MUL_INT_2ADDR:
806             op = kOpMul;
807             break;
808         case OP_DIV_INT:
809         case OP_DIV_INT_2ADDR:
810             callOut = true;
811             checkZero = true;
812             callTgt = __aeabi_idiv;
813             retReg = r0;
814             break;
815         /* NOTE: returns in r1 */
816         case OP_REM_INT:
817         case OP_REM_INT_2ADDR:
818             callOut = true;
819             checkZero = true;
820             callTgt = __aeabi_idivmod;
821             retReg = r1;
822             break;
823         case OP_AND_INT:
824         case OP_AND_INT_2ADDR:
825             op = kOpAnd;
826             break;
827         case OP_OR_INT:
828         case OP_OR_INT_2ADDR:
829             op = kOpOr;
830             break;
831         case OP_XOR_INT:
832         case OP_XOR_INT_2ADDR:
833             op = kOpXor;
834             break;
835         case OP_SHL_INT:
836         case OP_SHL_INT_2ADDR:
837             shiftOp = true;
838             op = kOpLsl;
839             break;
840         case OP_SHR_INT:
841         case OP_SHR_INT_2ADDR:
842             shiftOp = true;
843             op = kOpAsr;
844             break;
845         case OP_USHR_INT:
846         case OP_USHR_INT_2ADDR:
847             shiftOp = true;
848             op = kOpLsr;
849             break;
850         default:
851             ALOGE("Invalid word arith op: %#x(%d)",
852                  mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
853             dvmCompilerAbort(cUnit);
854     }
855     if (!callOut) {
856         rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
857         if (unary) {
858             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
859             opRegReg(cUnit, op, rlResult.lowReg,
860                      rlSrc1.lowReg);
861         } else {
862             rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
863             if (shiftOp) {
864                 int tReg = dvmCompilerAllocTemp(cUnit);
865                 opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
866                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
867                 opRegRegReg(cUnit, op, rlResult.lowReg,
868                             rlSrc1.lowReg, tReg);
869                 dvmCompilerFreeTemp(cUnit, tReg);
870             } else {
871                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
872                 opRegRegReg(cUnit, op, rlResult.lowReg,
873                             rlSrc1.lowReg, rlSrc2.lowReg);
874             }
875         }
876         storeValue(cUnit, rlDest, rlResult);
877     } else {
878         RegLocation rlResult;
879         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
880         loadValueDirectFixed(cUnit, rlSrc2, r1);
881         LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
882         loadValueDirectFixed(cUnit, rlSrc1, r0);
883         if (checkZero) {
884             genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
885         }
886         opReg(cUnit, kOpBlx, r2);
887         dvmCompilerClobberCallRegs(cUnit);
888         if (retReg == r0)
889             rlResult = dvmCompilerGetReturn(cUnit);
890         else
891             rlResult = dvmCompilerGetReturnAlt(cUnit);
892         storeValue(cUnit, rlDest, rlResult);
893     }
894     return false;
895 }
896 
genArithOp(CompilationUnit * cUnit,MIR * mir)897 static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
898 {
899     Opcode opcode = mir->dalvikInsn.opcode;
900     RegLocation rlDest;
901     RegLocation rlSrc1;
902     RegLocation rlSrc2;
903     /* Deduce sizes of operands */
904     if (mir->ssaRep->numUses == 2) {
905         rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
906         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
907     } else if (mir->ssaRep->numUses == 3) {
908         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
909         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
910     } else {
911         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
912         rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
913         assert(mir->ssaRep->numUses == 4);
914     }
915     if (mir->ssaRep->numDefs == 1) {
916         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
917     } else {
918         assert(mir->ssaRep->numDefs == 2);
919         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
920     }
921 
922     if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
923         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
924     }
925     if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
926         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
927     }
928     if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
929         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
930     }
931     if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
932         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
933     }
934     if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
935         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
936     }
937     if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
938         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
939     }
940     if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
941         return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
942     }
943     if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
944         return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
945     }
946     if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
947         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
948     }
949     if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
950         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
951     }
952     return true;
953 }
954 
955 /* Generate unconditional branch instructions */
genUnconditionalBranch(CompilationUnit * cUnit,ArmLIR * target)956 static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
957 {
958     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
959     branch->generic.target = (LIR *) target;
960     return branch;
961 }
962 
963 /* Perform the actual operation for OP_RETURN_* */
genReturnCommon(CompilationUnit * cUnit,MIR * mir)964 static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
965 {
966     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
967                          TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
968 #if defined(WITH_JIT_TUNING)
969     gDvmJit.returnOp++;
970 #endif
971     int dPC = (int) (cUnit->method->insns + mir->offset);
972     /* Insert branch, but defer setting of target */
973     ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
974     /* Set up the place holder to reconstruct this Dalvik PC */
975     ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
976     pcrLabel->opcode = kArmPseudoPCReconstructionCell;
977     pcrLabel->operands[0] = dPC;
978     pcrLabel->operands[1] = mir->offset;
979     /* Insert the place holder to the growable list */
980     dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
981     /* Branch to the PC reconstruction code */
982     branch->generic.target = (LIR *) pcrLabel;
983 }
984 
genProcessArgsNoRange(CompilationUnit * cUnit,MIR * mir,DecodedInstruction * dInsn,ArmLIR ** pcrLabel)985 static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
986                                   DecodedInstruction *dInsn,
987                                   ArmLIR **pcrLabel)
988 {
989     unsigned int i;
990     unsigned int regMask = 0;
991     RegLocation rlArg;
992     int numDone = 0;
993 
994     /*
995      * Load arguments to r0..r4.  Note that these registers may contain
996      * live values, so we clobber them immediately after loading to prevent
997      * them from being used as sources for subsequent loads.
998      */
999     dvmCompilerLockAllTemps(cUnit);
1000     for (i = 0; i < dInsn->vA; i++) {
1001         regMask |= 1 << i;
1002         rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
1003         loadValueDirectFixed(cUnit, rlArg, i);
1004     }
1005     if (regMask) {
1006         /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
1007         opRegRegImm(cUnit, kOpSub, r7, r5FP,
1008                     sizeof(StackSaveArea) + (dInsn->vA << 2));
1009         /* generate null check */
1010         if (pcrLabel) {
1011             *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
1012                                      mir->offset, NULL);
1013         }
1014         storeMultiple(cUnit, r7, regMask);
1015     }
1016 }
1017 
genProcessArgsRange(CompilationUnit * cUnit,MIR * mir,DecodedInstruction * dInsn,ArmLIR ** pcrLabel)1018 static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
1019                                 DecodedInstruction *dInsn,
1020                                 ArmLIR **pcrLabel)
1021 {
1022     int srcOffset = dInsn->vC << 2;
1023     int numArgs = dInsn->vA;
1024     int regMask;
1025 
1026     /*
1027      * Note: here, all promoted registers will have been flushed
1028      * back to the Dalvik base locations, so register usage restrictins
1029      * are lifted.  All parms loaded from original Dalvik register
1030      * region - even though some might conceivably have valid copies
1031      * cached in a preserved register.
1032      */
1033     dvmCompilerLockAllTemps(cUnit);
1034 
1035     /*
1036      * r4PC     : &r5FP[vC]
1037      * r7: &newFP[0]
1038      */
1039     opRegRegImm(cUnit, kOpAdd, r4PC, r5FP, srcOffset);
1040     /* load [r0 .. min(numArgs,4)] */
1041     regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
1042     /*
1043      * Protect the loadMultiple instruction from being reordered with other
1044      * Dalvik stack accesses.
1045      */
1046     if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
1047 
1048     opRegRegImm(cUnit, kOpSub, r7, r5FP,
1049                 sizeof(StackSaveArea) + (numArgs << 2));
1050     /* generate null check */
1051     if (pcrLabel) {
1052         *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
1053                                  mir->offset, NULL);
1054     }
1055 
1056     /*
1057      * Handle remaining 4n arguments:
1058      * store previously loaded 4 values and load the next 4 values
1059      */
1060     if (numArgs >= 8) {
1061         ArmLIR *loopLabel = NULL;
1062         /*
1063          * r0 contains "this" and it will be used later, so push it to the stack
1064          * first. Pushing r5FP is just for stack alignment purposes.
1065          */
1066         opImm(cUnit, kOpPush, (1 << r0 | 1 << r5FP));
1067         /* No need to generate the loop structure if numArgs <= 11 */
1068         if (numArgs > 11) {
1069             loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
1070             loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
1071             loopLabel->defMask = ENCODE_ALL;
1072         }
1073         storeMultiple(cUnit, r7, regMask);
1074         /*
1075          * Protect the loadMultiple instruction from being reordered with other
1076          * Dalvik stack accesses.
1077          */
1078         loadMultiple(cUnit, r4PC, regMask);
1079         /* No need to generate the loop structure if numArgs <= 11 */
1080         if (numArgs > 11) {
1081             opRegImm(cUnit, kOpSub, r5FP, 4);
1082             genConditionalBranch(cUnit, kArmCondNe, loopLabel);
1083         }
1084     }
1085 
1086     /* Save the last batch of loaded values */
1087     if (numArgs != 0) storeMultiple(cUnit, r7, regMask);
1088 
1089     /* Generate the loop epilogue - don't use r0 */
1090     if ((numArgs > 4) && (numArgs % 4)) {
1091         regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
1092         /*
1093          * Protect the loadMultiple instruction from being reordered with other
1094          * Dalvik stack accesses.
1095          */
1096         loadMultiple(cUnit, r4PC, regMask);
1097     }
1098     if (numArgs >= 8)
1099         opImm(cUnit, kOpPop, (1 << r0 | 1 << r5FP));
1100 
1101     /* Save the modulo 4 arguments */
1102     if ((numArgs > 4) && (numArgs % 4)) {
1103         storeMultiple(cUnit, r7, regMask);
1104     }
1105 }
1106 
1107 /*
1108  * Generate code to setup the call stack then jump to the chaining cell if it
1109  * is not a native method.
1110  */
genInvokeSingletonCommon(CompilationUnit * cUnit,MIR * mir,BasicBlock * bb,ArmLIR * labelList,ArmLIR * pcrLabel,const Method * calleeMethod)1111 static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
1112                                      BasicBlock *bb, ArmLIR *labelList,
1113                                      ArmLIR *pcrLabel,
1114                                      const Method *calleeMethod)
1115 {
1116     /*
1117      * Note: all Dalvik register state should be flushed to
1118      * memory by the point, so register usage restrictions no
1119      * longer apply.  All temp & preserved registers may be used.
1120      */
1121     dvmCompilerLockAllTemps(cUnit);
1122     ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
1123 
1124     /* r1 = &retChainingCell */
1125     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1126 
1127     /* r4PC = dalvikCallsite */
1128     loadConstant(cUnit, r4PC,
1129                  (int) (cUnit->method->insns + mir->offset));
1130     addrRetChain->generic.target = (LIR *) retChainingCell;
1131 
1132     /* r7 = calleeMethod->registersSize */
1133     loadConstant(cUnit, r7, calleeMethod->registersSize);
1134     /*
1135      * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
1136      * r1 = &ChainingCell
1137      * r2 = calleeMethod->outsSize (to be loaded later for Java callees)
1138      * r4PC = callsiteDPC
1139      * r7 = calleeMethod->registersSize
1140      */
1141     if (dvmIsNativeMethod(calleeMethod)) {
1142         genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1143             TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
1144             TEMPLATE_INVOKE_METHOD_NATIVE);
1145 #if defined(WITH_JIT_TUNING)
1146         gDvmJit.invokeNative++;
1147 #endif
1148     } else {
1149         /* For Java callees, set up r2 to be calleeMethod->outsSize */
1150         loadConstant(cUnit, r2, calleeMethod->outsSize);
1151         genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1152             TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
1153             TEMPLATE_INVOKE_METHOD_CHAIN);
1154 #if defined(WITH_JIT_TUNING)
1155         gDvmJit.invokeMonomorphic++;
1156 #endif
1157         /* Branch to the chaining cell */
1158         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1159     }
1160     /* Handle exceptions using the interpreter */
1161     genTrap(cUnit, mir->offset, pcrLabel);
1162 }
1163 
1164 /*
1165  * Generate code to check the validity of a predicted chain and take actions
1166  * based on the result.
1167  *
1168  * 0x426a99aa : ldr     r4, [pc, #72] --> r4 <- dalvikPC of this invoke
1169  * 0x426a99ac : add     r1, pc, #32   --> r1 <- &retChainingCell
1170  * 0x426a99ae : add     r2, pc, #40   --> r2 <- &predictedChainingCell
1171  * 0x426a99b0 : blx_1   0x426a918c    --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
1172  * 0x426a99b2 : blx_2   see above     --+
1173  * 0x426a99b4 : b       0x426a99d8    --> off to the predicted chain
1174  * 0x426a99b6 : b       0x426a99c8    --> punt to the interpreter
1175  * 0x426a99b8 : ldr     r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
1176  * 0x426a99ba : cmp     r1, #0        --> compare r1 (rechain count) against 0
1177  * 0x426a99bc : bgt     0x426a99c2    --> >=0? don't rechain
1178  * 0x426a99be : ldr     r7, [pc, #off]--+ dvmJitToPatchPredictedChain
1179  * 0x426a99c0 : blx     r7            --+
1180  * 0x426a99c2 : add     r1, pc, #12   --> r1 <- &retChainingCell
1181  * 0x426a99c4 : blx_1   0x426a9098    --+ TEMPLATE_INVOKE_METHOD_NO_OPT
1182  * 0x426a99c6 : blx_2   see above     --+
1183  */
genInvokeVirtualCommon(CompilationUnit * cUnit,MIR * mir,int methodIndex,ArmLIR * retChainingCell,ArmLIR * predChainingCell,ArmLIR * pcrLabel)1184 static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
1185                                    int methodIndex,
1186                                    ArmLIR *retChainingCell,
1187                                    ArmLIR *predChainingCell,
1188                                    ArmLIR *pcrLabel)
1189 {
1190     /*
1191      * Note: all Dalvik register state should be flushed to
1192      * memory by the point, so register usage restrictions no
1193      * longer apply.  Lock temps to prevent them from being
1194      * allocated by utility routines.
1195      */
1196     dvmCompilerLockAllTemps(cUnit);
1197 
1198     /*
1199      * For verbose printing, store the method pointer in operands[1] first as
1200      * operands[0] will be clobbered in dvmCompilerMIR2LIR.
1201      */
1202     predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
1203 
1204     /* "this" is already left in r0 by genProcessArgs* */
1205 
1206     /* r4PC = dalvikCallsite */
1207     loadConstant(cUnit, r4PC,
1208                  (int) (cUnit->method->insns + mir->offset));
1209 
1210     /* r1 = &retChainingCell */
1211     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1212     addrRetChain->generic.target = (LIR *) retChainingCell;
1213 
1214     /* r2 = &predictedChainingCell */
1215     ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
1216     predictedChainingCell->generic.target = (LIR *) predChainingCell;
1217 
1218     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1219         TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
1220         TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
1221 
1222     /* return through lr - jump to the chaining cell */
1223     genUnconditionalBranch(cUnit, predChainingCell);
1224 
1225     /*
1226      * null-check on "this" may have been eliminated, but we still need a PC-
1227      * reconstruction label for stack overflow bailout.
1228      */
1229     if (pcrLabel == NULL) {
1230         int dPC = (int) (cUnit->method->insns + mir->offset);
1231         pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
1232         pcrLabel->opcode = kArmPseudoPCReconstructionCell;
1233         pcrLabel->operands[0] = dPC;
1234         pcrLabel->operands[1] = mir->offset;
1235         /* Insert the place holder to the growable list */
1236         dvmInsertGrowableList(&cUnit->pcReconstructionList,
1237                               (intptr_t) pcrLabel);
1238     }
1239 
1240     /* return through lr+2 - punt to the interpreter */
1241     genUnconditionalBranch(cUnit, pcrLabel);
1242 
1243     /*
1244      * return through lr+4 - fully resolve the callee method.
1245      * r1 <- count
1246      * r2 <- &predictedChainCell
1247      * r3 <- this->class
1248      * r4 <- dPC
1249      * r7 <- this->class->vtable
1250      */
1251 
1252     /* r0 <- calleeMethod */
1253     loadWordDisp(cUnit, r7, methodIndex * 4, r0);
1254 
1255     /* Check if rechain limit is reached */
1256     ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0);
1257 
1258     LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
1259 
1260     genRegCopy(cUnit, r1, r6SELF);
1261 
1262     /*
1263      * r0 = calleeMethod
1264      * r2 = &predictedChainingCell
1265      * r3 = class
1266      *
1267      * &returnChainingCell has been loaded into r1 but is not needed
1268      * when patching the chaining cell and will be clobbered upon
1269      * returning so it will be reconstructed again.
1270      */
1271     opReg(cUnit, kOpBlx, r7);
1272 
1273     /* r1 = &retChainingCell */
1274     addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1275     addrRetChain->generic.target = (LIR *) retChainingCell;
1276 
1277     bypassRechaining->generic.target = (LIR *) addrRetChain;
1278     /*
1279      * r0 = calleeMethod,
1280      * r1 = &ChainingCell,
1281      * r4PC = callsiteDPC,
1282      */
1283     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1284         TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
1285         TEMPLATE_INVOKE_METHOD_NO_OPT);
1286 #if defined(WITH_JIT_TUNING)
1287     gDvmJit.invokePolymorphic++;
1288 #endif
1289     /* Handle exceptions using the interpreter */
1290     genTrap(cUnit, mir->offset, pcrLabel);
1291 }
1292 
1293 /* "this" pointer is already in r0 */
genInvokeVirtualWholeMethod(CompilationUnit * cUnit,MIR * mir,void * calleeAddr,ArmLIR * retChainingCell)1294 static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
1295                                         MIR *mir,
1296                                         void *calleeAddr,
1297                                         ArmLIR *retChainingCell)
1298 {
1299     CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
1300     dvmCompilerLockAllTemps(cUnit);
1301 
1302     loadClassPointer(cUnit, r1, (int) callsiteInfo);
1303 
1304     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r2);
1305     /* Branch to the slow path if classes are not equal */
1306     opRegReg(cUnit, kOpCmp, r1, r2);
1307     /*
1308      * Set the misPredBranchOver target so that it will be generated when the
1309      * code for the non-optimized invoke is generated.
1310      */
1311     ArmLIR *classCheck = opCondBranch(cUnit, kArmCondNe);
1312 
1313     /* r0 = the Dalvik PC of the callsite */
1314     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1315 
1316     newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
1317     newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
1318     genUnconditionalBranch(cUnit, retChainingCell);
1319 
1320     /* Target of slow path */
1321     ArmLIR *slowPathLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
1322 
1323     slowPathLabel->defMask = ENCODE_ALL;
1324     classCheck->generic.target = (LIR *) slowPathLabel;
1325 
1326     // FIXME
1327     cUnit->printMe = true;
1328 }
1329 
genInvokeSingletonWholeMethod(CompilationUnit * cUnit,MIR * mir,void * calleeAddr,ArmLIR * retChainingCell)1330 static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
1331                                           MIR *mir,
1332                                           void *calleeAddr,
1333                                           ArmLIR *retChainingCell)
1334 {
1335     /* r0 = the Dalvik PC of the callsite */
1336     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1337 
1338     newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
1339     newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
1340     genUnconditionalBranch(cUnit, retChainingCell);
1341 
1342     // FIXME
1343     cUnit->printMe = true;
1344 }
1345 
1346 /* Geneate a branch to go back to the interpreter */
genPuntToInterp(CompilationUnit * cUnit,unsigned int offset)1347 static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
1348 {
1349     /* r0 = dalvik pc */
1350     dvmCompilerFlushAllRegs(cUnit);
1351     loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
1352     loadWordDisp(cUnit, r6SELF, offsetof(Thread,
1353                  jitToInterpEntries.dvmJitToInterpPunt), r1);
1354     opReg(cUnit, kOpBlx, r1);
1355 }
1356 
1357 /*
1358  * Attempt to single step one instruction using the interpreter and return
1359  * to the compiled code for the next Dalvik instruction
1360  */
genInterpSingleStep(CompilationUnit * cUnit,MIR * mir)1361 static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
1362 {
1363     int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
1364     int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn;
1365 
1366     // Single stepping is considered loop mode breaker
1367     if (cUnit->jitMode == kJitLoop) {
1368         cUnit->quitLoopMode = true;
1369         return;
1370     }
1371 
1372     //If already optimized out, just ignore
1373     if (mir->dalvikInsn.opcode == OP_NOP)
1374         return;
1375 
1376     //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
1377     dvmCompilerFlushAllRegs(cUnit);
1378 
1379     if ((mir->next == NULL) || (flags & flagsToCheck)) {
1380        genPuntToInterp(cUnit, mir->offset);
1381        return;
1382     }
1383     int entryAddr = offsetof(Thread,
1384                              jitToInterpEntries.dvmJitToInterpSingleStep);
1385     loadWordDisp(cUnit, r6SELF, entryAddr, r2);
1386     /* r0 = dalvik pc */
1387     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1388     /* r1 = dalvik pc of following instruction */
1389     loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
1390     opReg(cUnit, kOpBlx, r2);
1391 }
1392 
1393 #if defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
1394 /*
1395  * To prevent a thread in a monitor wait from blocking the Jit from
1396  * resetting the code cache, heavyweight monitor lock will not
1397  * be allowed to return to an existing translation.  Instead, we will
1398  * handle them by branching to a handler, which will in turn call the
1399  * runtime lock routine and then branch directly back to the
1400  * interpreter main loop.  Given the high cost of the heavyweight
1401  * lock operation, this additional cost should be slight (especially when
1402  * considering that we expect the vast majority of lock operations to
1403  * use the fast-path thin lock bypass).
1404  */
genMonitorPortable(CompilationUnit * cUnit,MIR * mir)1405 static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
1406 {
1407     bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
1408     genExportPC(cUnit, mir);
1409     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
1410     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1411     loadValueDirectFixed(cUnit, rlSrc, r1);
1412     genRegCopy(cUnit, r0, r6SELF);
1413     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
1414     if (isEnter) {
1415         /* Get dPC of next insn */
1416         loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
1417                  dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
1418         genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
1419     } else {
1420         LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
1421         /* Do the call */
1422         opReg(cUnit, kOpBlx, r2);
1423         /* Did we throw? */
1424         ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
1425         loadConstant(cUnit, r0,
1426                      (int) (cUnit->method->insns + mir->offset +
1427                      dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
1428         genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1429         ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1430         target->defMask = ENCODE_ALL;
1431         branchOver->generic.target = (LIR *) target;
1432         dvmCompilerClobberCallRegs(cUnit);
1433     }
1434 }
1435 #endif
1436 
1437 /*
1438  * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
1439  * punt to the interpreter.
1440  */
genSuspendPoll(CompilationUnit * cUnit,MIR * mir)1441 static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
1442 {
1443     int rTemp = dvmCompilerAllocTemp(cUnit);
1444     ArmLIR *ld;
1445     ld = loadBaseDisp(cUnit, NULL, r6SELF,
1446                       offsetof(Thread, interpBreak.ctl.breakFlags),
1447                       rTemp, kUnsignedByte, INVALID_SREG);
1448     setMemRefType(ld, true /* isLoad */, kMustNotAlias);
1449     genRegImmCheck(cUnit, kArmCondNe, rTemp, 0, mir->offset, NULL);
1450 }
1451 
1452 /*
1453  * The following are the first-level codegen routines that analyze the format
1454  * of each bytecode then either dispatch special purpose codegen routines
1455  * or produce corresponding Thumb instructions directly.
1456  */
1457 
handleFmt10t_Fmt20t_Fmt30t(CompilationUnit * cUnit,MIR * mir,BasicBlock * bb,ArmLIR * labelList)1458 static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
1459                                        BasicBlock *bb, ArmLIR *labelList)
1460 {
1461     /* backward branch? */
1462     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
1463 
1464     if (backwardBranch &&
1465         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
1466         genSuspendPoll(cUnit, mir);
1467     }
1468 
1469     int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
1470     /*
1471      * Things could be hoisted out of the taken block into the predecessor, so
1472      * make sure it is dominated by the predecessor.
1473      */
1474     if (numPredecessors == 1 && bb->taken->visited == false &&
1475         bb->taken->blockType == kDalvikByteCode) {
1476         cUnit->nextCodegenBlock = bb->taken;
1477     } else {
1478         /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
1479         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1480     }
1481     return false;
1482 }
1483 
handleFmt10x(CompilationUnit * cUnit,MIR * mir)1484 static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
1485 {
1486     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1487     if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
1488         ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1489         return true;
1490     }
1491     switch (dalvikOpcode) {
1492         case OP_RETURN_VOID_BARRIER:
1493             dvmCompilerGenMemBarrier(cUnit, kST);
1494             // Intentional fallthrough
1495         case OP_RETURN_VOID:
1496             genReturnCommon(cUnit,mir);
1497             break;
1498         case OP_UNUSED_73:
1499         case OP_UNUSED_79:
1500         case OP_UNUSED_7A:
1501         case OP_UNUSED_FF:
1502             ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1503             return true;
1504         case OP_NOP:
1505             break;
1506         default:
1507             return true;
1508     }
1509     return false;
1510 }
1511 
handleFmt11n_Fmt31i(CompilationUnit * cUnit,MIR * mir)1512 static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
1513 {
1514     RegLocation rlDest;
1515     RegLocation rlResult;
1516     if (mir->ssaRep->numDefs == 2) {
1517         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1518     } else {
1519         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1520     }
1521 
1522     switch (mir->dalvikInsn.opcode) {
1523         case OP_CONST:
1524         case OP_CONST_4: {
1525             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1526             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1527             storeValue(cUnit, rlDest, rlResult);
1528             break;
1529         }
1530         case OP_CONST_WIDE_32: {
1531             //TUNING: single routine to load constant pair for support doubles
1532             //TUNING: load 0/-1 separately to avoid load dependency
1533             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1534             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1535             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
1536                         rlResult.lowReg, 31);
1537             storeValueWide(cUnit, rlDest, rlResult);
1538             break;
1539         }
1540         default:
1541             return true;
1542     }
1543     return false;
1544 }
1545 
handleFmt21h(CompilationUnit * cUnit,MIR * mir)1546 static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
1547 {
1548     RegLocation rlDest;
1549     RegLocation rlResult;
1550     if (mir->ssaRep->numDefs == 2) {
1551         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1552     } else {
1553         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1554     }
1555     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1556 
1557     switch (mir->dalvikInsn.opcode) {
1558         case OP_CONST_HIGH16: {
1559             loadConstantNoClobber(cUnit, rlResult.lowReg,
1560                                   mir->dalvikInsn.vB << 16);
1561             storeValue(cUnit, rlDest, rlResult);
1562             break;
1563         }
1564         case OP_CONST_WIDE_HIGH16: {
1565             loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
1566                                   0, mir->dalvikInsn.vB << 16);
1567             storeValueWide(cUnit, rlDest, rlResult);
1568             break;
1569         }
1570         default:
1571             return true;
1572     }
1573     return false;
1574 }
1575 
handleFmt20bc(CompilationUnit * cUnit,MIR * mir)1576 static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
1577 {
1578     /* For OP_THROW_VERIFICATION_ERROR */
1579     genInterpSingleStep(cUnit, mir);
1580     return false;
1581 }
1582 
handleFmt21c_Fmt31c(CompilationUnit * cUnit,MIR * mir)1583 static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
1584 {
1585     RegLocation rlResult;
1586     RegLocation rlDest;
1587     RegLocation rlSrc;
1588 
1589     switch (mir->dalvikInsn.opcode) {
1590         case OP_CONST_STRING_JUMBO:
1591         case OP_CONST_STRING: {
1592             void *strPtr = (void*)
1593               (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
1594 
1595             if (strPtr == NULL) {
1596                 BAIL_LOOP_COMPILATION();
1597                 ALOGE("Unexpected null string");
1598                 dvmAbort();
1599             }
1600 
1601             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1602             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1603             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
1604             storeValue(cUnit, rlDest, rlResult);
1605             break;
1606         }
1607         case OP_CONST_CLASS: {
1608             void *classPtr = (void*)
1609               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1610 
1611             if (classPtr == NULL) {
1612                 BAIL_LOOP_COMPILATION();
1613                 ALOGE("Unexpected null class");
1614                 dvmAbort();
1615             }
1616 
1617             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1618             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1619             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
1620             storeValue(cUnit, rlDest, rlResult);
1621             break;
1622         }
1623         case OP_SGET:
1624         case OP_SGET_VOLATILE:
1625         case OP_SGET_OBJECT:
1626         case OP_SGET_OBJECT_VOLATILE:
1627         case OP_SGET_BOOLEAN:
1628         case OP_SGET_CHAR:
1629         case OP_SGET_BYTE:
1630         case OP_SGET_SHORT: {
1631             int valOffset = OFFSETOF_MEMBER(StaticField, value);
1632             int tReg = dvmCompilerAllocTemp(cUnit);
1633             bool isVolatile;
1634             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1635                 mir->meta.calleeMethod : cUnit->method;
1636             void *fieldPtr = (void*)
1637               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1638 
1639             if (fieldPtr == NULL) {
1640                 BAIL_LOOP_COMPILATION();
1641                 ALOGE("Unexpected null static field");
1642                 dvmAbort();
1643             }
1644 
1645             /*
1646              * On SMP systems, Dalvik opcodes found to be referencing
1647              * volatile fields are rewritten to their _VOLATILE variant.
1648              * However, this does not happen on non-SMP systems. The JIT
1649              * still needs to know about volatility to avoid unsafe
1650              * optimizations so we determine volatility based on either
1651              * the opcode or the field access flags.
1652              */
1653 #if ANDROID_SMP != 0
1654             Opcode opcode = mir->dalvikInsn.opcode;
1655             isVolatile = (opcode == OP_SGET_VOLATILE) ||
1656                          (opcode == OP_SGET_OBJECT_VOLATILE);
1657             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1658 #else
1659             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1660 #endif
1661 
1662             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1663             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1664             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1665 
1666             if (isVolatile) {
1667                 dvmCompilerGenMemBarrier(cUnit, kSY);
1668             }
1669             HEAP_ACCESS_SHADOW(true);
1670             loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
1671             HEAP_ACCESS_SHADOW(false);
1672 
1673             storeValue(cUnit, rlDest, rlResult);
1674             break;
1675         }
1676         case OP_SGET_WIDE: {
1677             int valOffset = OFFSETOF_MEMBER(StaticField, value);
1678             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1679                 mir->meta.calleeMethod : cUnit->method;
1680             void *fieldPtr = (void*)
1681               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1682 
1683             if (fieldPtr == NULL) {
1684                 BAIL_LOOP_COMPILATION();
1685                 ALOGE("Unexpected null static field");
1686                 dvmAbort();
1687             }
1688 
1689             int tReg = dvmCompilerAllocTemp(cUnit);
1690             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1691             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1692             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1693 
1694             HEAP_ACCESS_SHADOW(true);
1695             loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
1696             HEAP_ACCESS_SHADOW(false);
1697 
1698             storeValueWide(cUnit, rlDest, rlResult);
1699             break;
1700         }
1701         case OP_SPUT:
1702         case OP_SPUT_VOLATILE:
1703         case OP_SPUT_OBJECT:
1704         case OP_SPUT_OBJECT_VOLATILE:
1705         case OP_SPUT_BOOLEAN:
1706         case OP_SPUT_CHAR:
1707         case OP_SPUT_BYTE:
1708         case OP_SPUT_SHORT: {
1709             int valOffset = OFFSETOF_MEMBER(StaticField, value);
1710             int tReg = dvmCompilerAllocTemp(cUnit);
1711             int objHead;
1712             bool isVolatile;
1713             bool isSputObject;
1714             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1715                 mir->meta.calleeMethod : cUnit->method;
1716             void *fieldPtr = (void*)
1717               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1718             Opcode opcode = mir->dalvikInsn.opcode;
1719 
1720             if (fieldPtr == NULL) {
1721                 BAIL_LOOP_COMPILATION();
1722                 ALOGE("Unexpected null static field");
1723                 dvmAbort();
1724             }
1725 
1726 #if ANDROID_SMP != 0
1727             isVolatile = (opcode == OP_SPUT_VOLATILE) ||
1728                          (opcode == OP_SPUT_OBJECT_VOLATILE);
1729             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1730 #else
1731             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1732 #endif
1733 
1734             isSputObject = (opcode == OP_SPUT_OBJECT) ||
1735                            (opcode == OP_SPUT_OBJECT_VOLATILE);
1736 
1737             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1738             rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
1739             loadConstant(cUnit, tReg,  (int) fieldPtr);
1740             if (isSputObject) {
1741                 objHead = dvmCompilerAllocTemp(cUnit);
1742                 loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
1743             }
1744             if (isVolatile) {
1745                 dvmCompilerGenMemBarrier(cUnit, kST);
1746             }
1747             HEAP_ACCESS_SHADOW(true);
1748             storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
1749             dvmCompilerFreeTemp(cUnit, tReg);
1750             HEAP_ACCESS_SHADOW(false);
1751             if (isVolatile) {
1752                 dvmCompilerGenMemBarrier(cUnit, kSY);
1753             }
1754             if (isSputObject) {
1755                 /* NOTE: marking card based sfield->clazz */
1756                 markCard(cUnit, rlSrc.lowReg, objHead);
1757                 dvmCompilerFreeTemp(cUnit, objHead);
1758             }
1759 
1760             break;
1761         }
1762         case OP_SPUT_WIDE: {
1763             int tReg = dvmCompilerAllocTemp(cUnit);
1764             int valOffset = OFFSETOF_MEMBER(StaticField, value);
1765             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1766                 mir->meta.calleeMethod : cUnit->method;
1767             void *fieldPtr = (void*)
1768               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1769 
1770             if (fieldPtr == NULL) {
1771                 BAIL_LOOP_COMPILATION();
1772                 ALOGE("Unexpected null static field");
1773                 dvmAbort();
1774             }
1775 
1776             rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1777             rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
1778             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1779 
1780             HEAP_ACCESS_SHADOW(true);
1781             storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
1782             HEAP_ACCESS_SHADOW(false);
1783             break;
1784         }
1785         case OP_NEW_INSTANCE: {
1786             /*
1787              * Obey the calling convention and don't mess with the register
1788              * usage.
1789              */
1790             ClassObject *classPtr = (ClassObject *)
1791               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1792 
1793             if (classPtr == NULL) {
1794                 BAIL_LOOP_COMPILATION();
1795                 ALOGE("Unexpected null class");
1796                 dvmAbort();
1797             }
1798 
1799             /*
1800              * If it is going to throw, it should not make to the trace to begin
1801              * with.  However, Alloc might throw, so we need to genExportPC()
1802              */
1803             assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
1804             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
1805             genExportPC(cUnit, mir);
1806             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
1807             loadConstant(cUnit, r0, (int) classPtr);
1808             loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
1809             opReg(cUnit, kOpBlx, r2);
1810             dvmCompilerClobberCallRegs(cUnit);
1811             /* generate a branch over if allocation is successful */
1812             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
1813             /*
1814              * OOM exception needs to be thrown here and cannot re-execute
1815              */
1816             loadConstant(cUnit, r0,
1817                          (int) (cUnit->method->insns + mir->offset));
1818             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1819             /* noreturn */
1820 
1821             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1822             target->defMask = ENCODE_ALL;
1823             branchOver->generic.target = (LIR *) target;
1824             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1825             rlResult = dvmCompilerGetReturn(cUnit);
1826             storeValue(cUnit, rlDest, rlResult);
1827             break;
1828         }
1829         case OP_CHECK_CAST: {
1830             /*
1831              * Obey the calling convention and don't mess with the register
1832              * usage.
1833              */
1834             ClassObject *classPtr =
1835               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1836             /*
1837              * Note: It is possible that classPtr is NULL at this point,
1838              * even though this instruction has been successfully interpreted.
1839              * If the previous interpretation had a null source, the
1840              * interpreter would not have bothered to resolve the clazz.
1841              * Bail out to the interpreter in this case, and log it
1842              * so that we can tell if it happens frequently.
1843              */
1844             if (classPtr == NULL) {
1845                 BAIL_LOOP_COMPILATION();
1846                 LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
1847                 genInterpSingleStep(cUnit, mir);
1848                 return false;
1849             }
1850             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
1851             loadConstant(cUnit, r1, (int) classPtr );
1852             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1853             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
1854             /* Null? */
1855             ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq,
1856                                               rlSrc.lowReg, 0);
1857             /*
1858              *  rlSrc.lowReg now contains object->clazz.  Note that
1859              *  it could have been allocated r0, but we're okay so long
1860              *  as we don't do anything desctructive until r0 is loaded
1861              *  with clazz.
1862              */
1863             /* r0 now contains object->clazz */
1864             loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
1865             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
1866             opRegReg(cUnit, kOpCmp, r0, r1);
1867             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
1868             opReg(cUnit, kOpBlx, r2);
1869             dvmCompilerClobberCallRegs(cUnit);
1870             /*
1871              * If null, check cast failed - punt to the interpreter.  Because
1872              * interpreter will be the one throwing, we don't need to
1873              * genExportPC() here.
1874              */
1875             genZeroCheck(cUnit, r0, mir->offset, NULL);
1876             /* check cast passed - branch target here */
1877             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1878             target->defMask = ENCODE_ALL;
1879             branch1->generic.target = (LIR *)target;
1880             branch2->generic.target = (LIR *)target;
1881             break;
1882         }
1883         case OP_SGET_WIDE_VOLATILE:
1884         case OP_SPUT_WIDE_VOLATILE:
1885             genInterpSingleStep(cUnit, mir);
1886             break;
1887         default:
1888             return true;
1889     }
1890     return false;
1891 }
1892 
1893 /*
1894  * A typical example of inlined getter/setter from a monomorphic callsite:
1895  *
1896  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ invoke-static (I)
1897  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
1898  * D/dalvikvm(  289): 0x4427fc22 (0002): ldr     r0, [pc, #56]
1899  * D/dalvikvm(  289): 0x4427fc24 (0004): ldr     r1, [r0, #0]
1900  * D/dalvikvm(  289): 0x4427fc26 (0006): str     r1, [r5, #0]
1901  * D/dalvikvm(  289): 0x4427fc28 (0008): .align4
1902  * D/dalvikvm(  289): L0x0003:
1903  * D/dalvikvm(  289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
1904  *
1905  * Note the invoke-static and move-result-object with the (I) notation are
1906  * turned into no-op.
1907  */
handleFmt11x(CompilationUnit * cUnit,MIR * mir)1908 static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
1909 {
1910     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1911     RegLocation rlResult;
1912     switch (dalvikOpcode) {
1913         case OP_MOVE_EXCEPTION: {
1914             int exOffset = offsetof(Thread, exception);
1915             int resetReg = dvmCompilerAllocTemp(cUnit);
1916             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1917             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1918             loadWordDisp(cUnit, r6SELF, exOffset, rlResult.lowReg);
1919             loadConstant(cUnit, resetReg, 0);
1920             storeWordDisp(cUnit, r6SELF, exOffset, resetReg);
1921             storeValue(cUnit, rlDest, rlResult);
1922            break;
1923         }
1924         case OP_MOVE_RESULT:
1925         case OP_MOVE_RESULT_OBJECT: {
1926             /* An inlined move result is effectively no-op */
1927             if (mir->OptimizationFlags & MIR_INLINED)
1928                 break;
1929             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1930             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
1931             rlSrc.fp = rlDest.fp;
1932             storeValue(cUnit, rlDest, rlSrc);
1933             break;
1934         }
1935         case OP_MOVE_RESULT_WIDE: {
1936             /* An inlined move result is effectively no-op */
1937             if (mir->OptimizationFlags & MIR_INLINED)
1938                 break;
1939             RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1940             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
1941             rlSrc.fp = rlDest.fp;
1942             storeValueWide(cUnit, rlDest, rlSrc);
1943             break;
1944         }
1945         case OP_RETURN_WIDE: {
1946             RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1947             RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
1948             rlDest.fp = rlSrc.fp;
1949             storeValueWide(cUnit, rlDest, rlSrc);
1950             genReturnCommon(cUnit,mir);
1951             break;
1952         }
1953         case OP_RETURN:
1954         case OP_RETURN_OBJECT: {
1955             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1956             RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
1957             rlDest.fp = rlSrc.fp;
1958             storeValue(cUnit, rlDest, rlSrc);
1959             genReturnCommon(cUnit, mir);
1960             break;
1961         }
1962         case OP_MONITOR_EXIT:
1963         case OP_MONITOR_ENTER:
1964             genMonitor(cUnit, mir);
1965             break;
1966         case OP_THROW:
1967             genInterpSingleStep(cUnit, mir);
1968             break;
1969         default:
1970             return true;
1971     }
1972     return false;
1973 }
1974 
handleFmt12x(CompilationUnit * cUnit,MIR * mir)1975 static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
1976 {
1977     Opcode opcode = mir->dalvikInsn.opcode;
1978     RegLocation rlDest;
1979     RegLocation rlSrc;
1980     RegLocation rlResult;
1981 
1982     if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
1983         return genArithOp( cUnit, mir );
1984     }
1985 
1986     if (mir->ssaRep->numUses == 2)
1987         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1988     else
1989         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1990     if (mir->ssaRep->numDefs == 2)
1991         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1992     else
1993         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1994 
1995     switch (opcode) {
1996         case OP_DOUBLE_TO_INT:
1997         case OP_INT_TO_FLOAT:
1998         case OP_FLOAT_TO_INT:
1999         case OP_DOUBLE_TO_FLOAT:
2000         case OP_FLOAT_TO_DOUBLE:
2001         case OP_INT_TO_DOUBLE:
2002         case OP_FLOAT_TO_LONG:
2003         case OP_LONG_TO_FLOAT:
2004         case OP_DOUBLE_TO_LONG:
2005         case OP_LONG_TO_DOUBLE:
2006             return genConversion(cUnit, mir);
2007         case OP_NEG_INT:
2008         case OP_NOT_INT:
2009             return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
2010         case OP_NEG_LONG:
2011         case OP_NOT_LONG:
2012             return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
2013         case OP_NEG_FLOAT:
2014             return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
2015         case OP_NEG_DOUBLE:
2016             return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
2017         case OP_MOVE_WIDE:
2018             storeValueWide(cUnit, rlDest, rlSrc);
2019             break;
2020         case OP_INT_TO_LONG:
2021             rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
2022             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2023             //TUNING: shouldn't loadValueDirect already check for phys reg?
2024             if (rlSrc.location == kLocPhysReg) {
2025                 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2026             } else {
2027                 loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
2028             }
2029             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
2030                         rlResult.lowReg, 31);
2031             storeValueWide(cUnit, rlDest, rlResult);
2032             break;
2033         case OP_LONG_TO_INT:
2034             rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
2035             rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
2036             // Intentional fallthrough
2037         case OP_MOVE:
2038         case OP_MOVE_OBJECT:
2039             storeValue(cUnit, rlDest, rlSrc);
2040             break;
2041         case OP_INT_TO_BYTE:
2042             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2043             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2044             opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
2045             storeValue(cUnit, rlDest, rlResult);
2046             break;
2047         case OP_INT_TO_SHORT:
2048             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2049             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2050             opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
2051             storeValue(cUnit, rlDest, rlResult);
2052             break;
2053         case OP_INT_TO_CHAR:
2054             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2055             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2056             opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
2057             storeValue(cUnit, rlDest, rlResult);
2058             break;
2059         case OP_ARRAY_LENGTH: {
2060             int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
2061             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2062             genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
2063                          mir->offset, NULL);
2064             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2065             loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
2066                          rlResult.lowReg);
2067             storeValue(cUnit, rlDest, rlResult);
2068             break;
2069         }
2070         default:
2071             return true;
2072     }
2073     return false;
2074 }
2075 
handleFmt21s(CompilationUnit * cUnit,MIR * mir)2076 static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
2077 {
2078     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2079     RegLocation rlDest;
2080     RegLocation rlResult;
2081     int BBBB = mir->dalvikInsn.vB;
2082     if (dalvikOpcode == OP_CONST_WIDE_16) {
2083         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2084         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2085         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2086         //TUNING: do high separately to avoid load dependency
2087         opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
2088         storeValueWide(cUnit, rlDest, rlResult);
2089     } else if (dalvikOpcode == OP_CONST_16) {
2090         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2091         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
2092         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2093         storeValue(cUnit, rlDest, rlResult);
2094     } else
2095         return true;
2096     return false;
2097 }
2098 
2099 /* Compare agaist zero */
handleFmt21t(CompilationUnit * cUnit,MIR * mir,BasicBlock * bb,ArmLIR * labelList)2100 static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2101                          ArmLIR *labelList)
2102 {
2103     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2104     ArmConditionCode cond;
2105     /* backward branch? */
2106     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2107 
2108     if (backwardBranch &&
2109         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2110         genSuspendPoll(cUnit, mir);
2111     }
2112 
2113     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2114     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2115 
2116     opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
2117 
2118 //TUNING: break this out to allow use of Thumb2 CB[N]Z
2119     switch (dalvikOpcode) {
2120         case OP_IF_EQZ:
2121             cond = kArmCondEq;
2122             break;
2123         case OP_IF_NEZ:
2124             cond = kArmCondNe;
2125             break;
2126         case OP_IF_LTZ:
2127             cond = kArmCondLt;
2128             break;
2129         case OP_IF_GEZ:
2130             cond = kArmCondGe;
2131             break;
2132         case OP_IF_GTZ:
2133             cond = kArmCondGt;
2134             break;
2135         case OP_IF_LEZ:
2136             cond = kArmCondLe;
2137             break;
2138         default:
2139             cond = (ArmConditionCode)0;
2140             ALOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode);
2141             dvmCompilerAbort(cUnit);
2142     }
2143     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
2144     /* This mostly likely will be optimized away in a later phase */
2145     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2146     return false;
2147 }
2148 
isPowerOfTwo(int x)2149 static bool isPowerOfTwo(int x)
2150 {
2151     return (x & (x - 1)) == 0;
2152 }
2153 
2154 // Returns true if no more than two bits are set in 'x'.
isPopCountLE2(unsigned int x)2155 static bool isPopCountLE2(unsigned int x)
2156 {
2157     x &= x - 1;
2158     return (x & (x - 1)) == 0;
2159 }
2160 
2161 // Returns the index of the lowest set bit in 'x'.
lowestSetBit(unsigned int x)2162 static int lowestSetBit(unsigned int x) {
2163     int bit_posn = 0;
2164     while ((x & 0xf) == 0) {
2165         bit_posn += 4;
2166         x >>= 4;
2167     }
2168     while ((x & 1) == 0) {
2169         bit_posn++;
2170         x >>= 1;
2171     }
2172     return bit_posn;
2173 }
2174 
2175 // Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
2176 // and store the result in 'rlDest'.
handleEasyDivide(CompilationUnit * cUnit,Opcode dalvikOpcode,RegLocation rlSrc,RegLocation rlDest,int lit)2177 static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
2178                              RegLocation rlSrc, RegLocation rlDest, int lit)
2179 {
2180     if (lit < 2 || !isPowerOfTwo(lit)) {
2181         return false;
2182     }
2183     int k = lowestSetBit(lit);
2184     if (k >= 30) {
2185         // Avoid special cases.
2186         return false;
2187     }
2188     bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
2189     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2190     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2191     if (div) {
2192         int tReg = dvmCompilerAllocTemp(cUnit);
2193         if (lit == 2) {
2194             // Division by 2 is by far the most common division by constant.
2195             opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
2196             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2197             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2198         } else {
2199             opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
2200             opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
2201             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2202             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2203         }
2204     } else {
2205         int cReg = dvmCompilerAllocTemp(cUnit);
2206         loadConstant(cUnit, cReg, lit - 1);
2207         int tReg1 = dvmCompilerAllocTemp(cUnit);
2208         int tReg2 = dvmCompilerAllocTemp(cUnit);
2209         if (lit == 2) {
2210             opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
2211             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2212             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2213             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2214         } else {
2215             opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
2216             opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
2217             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2218             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2219             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2220         }
2221     }
2222     storeValue(cUnit, rlDest, rlResult);
2223     return true;
2224 }
2225 
2226 // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
2227 // and store the result in 'rlDest'.
handleEasyMultiply(CompilationUnit * cUnit,RegLocation rlSrc,RegLocation rlDest,int lit)2228 static bool handleEasyMultiply(CompilationUnit *cUnit,
2229                                RegLocation rlSrc, RegLocation rlDest, int lit)
2230 {
2231     // Can we simplify this multiplication?
2232     bool powerOfTwo = false;
2233     bool popCountLE2 = false;
2234     bool powerOfTwoMinusOne = false;
2235     if (lit < 2) {
2236         // Avoid special cases.
2237         return false;
2238     } else if (isPowerOfTwo(lit)) {
2239         powerOfTwo = true;
2240     } else if (isPopCountLE2(lit)) {
2241         popCountLE2 = true;
2242     } else if (isPowerOfTwo(lit + 1)) {
2243         powerOfTwoMinusOne = true;
2244     } else {
2245         return false;
2246     }
2247     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2248     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2249     if (powerOfTwo) {
2250         // Shift.
2251         opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
2252                     lowestSetBit(lit));
2253     } else if (popCountLE2) {
2254         // Shift and add and shift.
2255         int firstBit = lowestSetBit(lit);
2256         int secondBit = lowestSetBit(lit ^ (1 << firstBit));
2257         genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
2258                                       firstBit, secondBit);
2259     } else {
2260         // Reverse subtract: (src << (shift + 1)) - src.
2261         assert(powerOfTwoMinusOne);
2262         // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
2263         int tReg = dvmCompilerAllocTemp(cUnit);
2264         opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
2265         opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
2266     }
2267     storeValue(cUnit, rlDest, rlResult);
2268     return true;
2269 }
2270 
handleFmt22b_Fmt22s(CompilationUnit * cUnit,MIR * mir)2271 static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
2272 {
2273     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2274     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2275     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2276     RegLocation rlResult;
2277     int lit = mir->dalvikInsn.vC;
2278     OpKind op = (OpKind)0;      /* Make gcc happy */
2279     int shiftOp = false;
2280     bool isDiv = false;
2281 
2282     switch (dalvikOpcode) {
2283         case OP_RSUB_INT_LIT8:
2284         case OP_RSUB_INT: {
2285             int tReg;
2286             //TUNING: add support for use of Arm rsub op
2287             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2288             tReg = dvmCompilerAllocTemp(cUnit);
2289             loadConstant(cUnit, tReg, lit);
2290             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2291             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
2292                         tReg, rlSrc.lowReg);
2293             storeValue(cUnit, rlDest, rlResult);
2294             return false;
2295             break;
2296         }
2297 
2298         case OP_ADD_INT_LIT8:
2299         case OP_ADD_INT_LIT16:
2300             op = kOpAdd;
2301             break;
2302         case OP_MUL_INT_LIT8:
2303         case OP_MUL_INT_LIT16: {
2304             if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
2305                 return false;
2306             }
2307             op = kOpMul;
2308             break;
2309         }
2310         case OP_AND_INT_LIT8:
2311         case OP_AND_INT_LIT16:
2312             op = kOpAnd;
2313             break;
2314         case OP_OR_INT_LIT8:
2315         case OP_OR_INT_LIT16:
2316             op = kOpOr;
2317             break;
2318         case OP_XOR_INT_LIT8:
2319         case OP_XOR_INT_LIT16:
2320             op = kOpXor;
2321             break;
2322         case OP_SHL_INT_LIT8:
2323             lit &= 31;
2324             shiftOp = true;
2325             op = kOpLsl;
2326             break;
2327         case OP_SHR_INT_LIT8:
2328             lit &= 31;
2329             shiftOp = true;
2330             op = kOpAsr;
2331             break;
2332         case OP_USHR_INT_LIT8:
2333             lit &= 31;
2334             shiftOp = true;
2335             op = kOpLsr;
2336             break;
2337 
2338         case OP_DIV_INT_LIT8:
2339         case OP_DIV_INT_LIT16:
2340         case OP_REM_INT_LIT8:
2341         case OP_REM_INT_LIT16:
2342             if (lit == 0) {
2343                 /* Let the interpreter deal with div by 0 */
2344                 genInterpSingleStep(cUnit, mir);
2345                 return false;
2346             }
2347             if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
2348                 return false;
2349             }
2350             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2351             loadValueDirectFixed(cUnit, rlSrc, r0);
2352             dvmCompilerClobber(cUnit, r0);
2353             if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
2354                 (dalvikOpcode == OP_DIV_INT_LIT16)) {
2355                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
2356                 isDiv = true;
2357             } else {
2358                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
2359                 isDiv = false;
2360             }
2361             loadConstant(cUnit, r1, lit);
2362             opReg(cUnit, kOpBlx, r2);
2363             dvmCompilerClobberCallRegs(cUnit);
2364             if (isDiv)
2365                 rlResult = dvmCompilerGetReturn(cUnit);
2366             else
2367                 rlResult = dvmCompilerGetReturnAlt(cUnit);
2368             storeValue(cUnit, rlDest, rlResult);
2369             return false;
2370             break;
2371         default:
2372             return true;
2373     }
2374     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2375     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2376     // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
2377     if (shiftOp && (lit == 0)) {
2378         genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2379     } else {
2380         opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
2381     }
2382     storeValue(cUnit, rlDest, rlResult);
2383     return false;
2384 }
2385 
handleFmt22c(CompilationUnit * cUnit,MIR * mir)2386 static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
2387 {
2388     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2389     int fieldOffset = -1;
2390     bool isVolatile = false;
2391     switch (dalvikOpcode) {
2392         /*
2393          * Wide volatiles currently handled via single step.
2394          * Add them here if generating in-line code.
2395          *     case OP_IGET_WIDE_VOLATILE:
2396          *     case OP_IPUT_WIDE_VOLATILE:
2397          */
2398         case OP_IGET_VOLATILE:
2399         case OP_IGET_OBJECT_VOLATILE:
2400         case OP_IPUT_VOLATILE:
2401         case OP_IPUT_OBJECT_VOLATILE:
2402 #if ANDROID_SMP != 0
2403             isVolatile = true;
2404         // NOTE: intentional fallthrough
2405 #endif
2406         case OP_IGET:
2407         case OP_IGET_WIDE:
2408         case OP_IGET_OBJECT:
2409         case OP_IGET_BOOLEAN:
2410         case OP_IGET_BYTE:
2411         case OP_IGET_CHAR:
2412         case OP_IGET_SHORT:
2413         case OP_IPUT:
2414         case OP_IPUT_WIDE:
2415         case OP_IPUT_OBJECT:
2416         case OP_IPUT_BOOLEAN:
2417         case OP_IPUT_BYTE:
2418         case OP_IPUT_CHAR:
2419         case OP_IPUT_SHORT: {
2420             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
2421                 mir->meta.calleeMethod : cUnit->method;
2422             Field *fieldPtr =
2423                 method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
2424 
2425             if (fieldPtr == NULL) {
2426                 BAIL_LOOP_COMPILATION();
2427                 ALOGE("Unexpected null instance field");
2428                 dvmAbort();
2429             }
2430 
2431 #if ANDROID_SMP != 0
2432             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
2433 #else
2434             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
2435 #endif
2436             fieldOffset = ((InstField *)fieldPtr)->byteOffset;
2437             break;
2438         }
2439         default:
2440             break;
2441     }
2442 
2443     switch (dalvikOpcode) {
2444         case OP_NEW_ARRAY: {
2445             // Generates a call - use explicit registers
2446             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2447             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2448             RegLocation rlResult;
2449             void *classPtr = (void*)
2450               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2451 
2452             if (classPtr == NULL) {
2453                 BAIL_LOOP_COMPILATION();
2454                 ALOGE("Unexpected null class");
2455                 dvmAbort();
2456             }
2457 
2458             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2459             genExportPC(cUnit, mir);
2460             loadValueDirectFixed(cUnit, rlSrc, r1);   /* Len */
2461             loadConstant(cUnit, r0, (int) classPtr );
2462             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
2463             /*
2464              * "len < 0": bail to the interpreter to re-execute the
2465              * instruction
2466              */
2467             genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
2468             loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
2469             opReg(cUnit, kOpBlx, r3);
2470             dvmCompilerClobberCallRegs(cUnit);
2471             /* generate a branch over if allocation is successful */
2472             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
2473             /*
2474              * OOM exception needs to be thrown here and cannot re-execute
2475              */
2476             loadConstant(cUnit, r0,
2477                          (int) (cUnit->method->insns + mir->offset));
2478             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2479             /* noreturn */
2480 
2481             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2482             target->defMask = ENCODE_ALL;
2483             branchOver->generic.target = (LIR *) target;
2484             rlResult = dvmCompilerGetReturn(cUnit);
2485             storeValue(cUnit, rlDest, rlResult);
2486             break;
2487         }
2488         case OP_INSTANCE_OF: {
2489             // May generate a call - use explicit registers
2490             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2491             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2492             RegLocation rlResult;
2493             ClassObject *classPtr =
2494               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2495             /*
2496              * Note: It is possible that classPtr is NULL at this point,
2497              * even though this instruction has been successfully interpreted.
2498              * If the previous interpretation had a null source, the
2499              * interpreter would not have bothered to resolve the clazz.
2500              * Bail out to the interpreter in this case, and log it
2501              * so that we can tell if it happens frequently.
2502              */
2503             if (classPtr == NULL) {
2504                 BAIL_LOOP_COMPILATION();
2505                 ALOGD("null clazz in OP_INSTANCE_OF, single-stepping");
2506                 genInterpSingleStep(cUnit, mir);
2507                 break;
2508             }
2509             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2510             loadValueDirectFixed(cUnit, rlSrc, r0);  /* Ref */
2511             loadConstant(cUnit, r2, (int) classPtr );
2512             /* When taken r0 has NULL which can be used for store directly */
2513             ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
2514             /* r1 now contains object->clazz */
2515             loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
2516             /* r1 now contains object->clazz */
2517             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
2518             loadConstant(cUnit, r0, 1);                /* Assume true */
2519             opRegReg(cUnit, kOpCmp, r1, r2);
2520             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
2521             genRegCopy(cUnit, r0, r1);
2522             genRegCopy(cUnit, r1, r2);
2523             opReg(cUnit, kOpBlx, r3);
2524             dvmCompilerClobberCallRegs(cUnit);
2525             /* branch target here */
2526             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2527             target->defMask = ENCODE_ALL;
2528             rlResult = dvmCompilerGetReturn(cUnit);
2529             storeValue(cUnit, rlDest, rlResult);
2530             branch1->generic.target = (LIR *)target;
2531             branch2->generic.target = (LIR *)target;
2532             break;
2533         }
2534         case OP_IGET_WIDE:
2535             genIGetWide(cUnit, mir, fieldOffset);
2536             break;
2537         case OP_IGET_VOLATILE:
2538         case OP_IGET_OBJECT_VOLATILE:
2539         case OP_IGET:
2540         case OP_IGET_OBJECT:
2541         case OP_IGET_BOOLEAN:
2542         case OP_IGET_BYTE:
2543         case OP_IGET_CHAR:
2544         case OP_IGET_SHORT:
2545             genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
2546             break;
2547         case OP_IPUT_WIDE:
2548             genIPutWide(cUnit, mir, fieldOffset);
2549             break;
2550         case OP_IPUT_VOLATILE:
2551         case OP_IPUT:
2552         case OP_IPUT_BOOLEAN:
2553         case OP_IPUT_BYTE:
2554         case OP_IPUT_CHAR:
2555         case OP_IPUT_SHORT:
2556             genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
2557             break;
2558         case OP_IPUT_OBJECT_VOLATILE:
2559         case OP_IPUT_OBJECT:
2560             genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
2561             break;
2562         case OP_IGET_WIDE_VOLATILE:
2563         case OP_IPUT_WIDE_VOLATILE:
2564             genInterpSingleStep(cUnit, mir);
2565             break;
2566         default:
2567             return true;
2568     }
2569     return false;
2570 }
2571 
handleFmt22cs(CompilationUnit * cUnit,MIR * mir)2572 static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
2573 {
2574     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2575     int fieldOffset =  mir->dalvikInsn.vC;
2576     switch (dalvikOpcode) {
2577         case OP_IGET_QUICK:
2578         case OP_IGET_OBJECT_QUICK:
2579             genIGet(cUnit, mir, kWord, fieldOffset, false);
2580             break;
2581         case OP_IPUT_QUICK:
2582             genIPut(cUnit, mir, kWord, fieldOffset, false, false);
2583             break;
2584         case OP_IPUT_OBJECT_QUICK:
2585             genIPut(cUnit, mir, kWord, fieldOffset, true, false);
2586             break;
2587         case OP_IGET_WIDE_QUICK:
2588             genIGetWide(cUnit, mir, fieldOffset);
2589             break;
2590         case OP_IPUT_WIDE_QUICK:
2591             genIPutWide(cUnit, mir, fieldOffset);
2592             break;
2593         default:
2594             return true;
2595     }
2596     return false;
2597 
2598 }
2599 
2600 /* Compare agaist zero */
handleFmt22t(CompilationUnit * cUnit,MIR * mir,BasicBlock * bb,ArmLIR * labelList)2601 static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2602                          ArmLIR *labelList)
2603 {
2604     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2605     ArmConditionCode cond;
2606     /* backward branch? */
2607     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2608 
2609     if (backwardBranch &&
2610         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2611         genSuspendPoll(cUnit, mir);
2612     }
2613 
2614     RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2615     RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2616 
2617     rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
2618     rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
2619 
2620     opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
2621 
2622     switch (dalvikOpcode) {
2623         case OP_IF_EQ:
2624             cond = kArmCondEq;
2625             break;
2626         case OP_IF_NE:
2627             cond = kArmCondNe;
2628             break;
2629         case OP_IF_LT:
2630             cond = kArmCondLt;
2631             break;
2632         case OP_IF_GE:
2633             cond = kArmCondGe;
2634             break;
2635         case OP_IF_GT:
2636             cond = kArmCondGt;
2637             break;
2638         case OP_IF_LE:
2639             cond = kArmCondLe;
2640             break;
2641         default:
2642             cond = (ArmConditionCode)0;
2643             ALOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode);
2644             dvmCompilerAbort(cUnit);
2645     }
2646     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
2647     /* This mostly likely will be optimized away in a later phase */
2648     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2649     return false;
2650 }
2651 
handleFmt22x_Fmt32x(CompilationUnit * cUnit,MIR * mir)2652 static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
2653 {
2654     Opcode opcode = mir->dalvikInsn.opcode;
2655 
2656     switch (opcode) {
2657         case OP_MOVE_16:
2658         case OP_MOVE_OBJECT_16:
2659         case OP_MOVE_FROM16:
2660         case OP_MOVE_OBJECT_FROM16: {
2661             storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
2662                        dvmCompilerGetSrc(cUnit, mir, 0));
2663             break;
2664         }
2665         case OP_MOVE_WIDE_16:
2666         case OP_MOVE_WIDE_FROM16: {
2667             storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
2668                            dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
2669             break;
2670         }
2671         default:
2672             return true;
2673     }
2674     return false;
2675 }
2676 
handleFmt23x(CompilationUnit * cUnit,MIR * mir)2677 static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
2678 {
2679     Opcode opcode = mir->dalvikInsn.opcode;
2680     RegLocation rlSrc1;
2681     RegLocation rlSrc2;
2682     RegLocation rlDest;
2683 
2684     if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
2685         return genArithOp( cUnit, mir );
2686     }
2687 
2688     /* APUTs have 3 sources and no targets */
2689     if (mir->ssaRep->numDefs == 0) {
2690         if (mir->ssaRep->numUses == 3) {
2691             rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
2692             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
2693             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
2694         } else {
2695             assert(mir->ssaRep->numUses == 4);
2696             rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2697             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
2698             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
2699         }
2700     } else {
2701         /* Two sources and 1 dest.  Deduce the operand sizes */
2702         if (mir->ssaRep->numUses == 4) {
2703             rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2704             rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
2705         } else {
2706             assert(mir->ssaRep->numUses == 2);
2707             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2708             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2709         }
2710         if (mir->ssaRep->numDefs == 2) {
2711             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2712         } else {
2713             assert(mir->ssaRep->numDefs == 1);
2714             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2715         }
2716     }
2717 
2718 
2719     switch (opcode) {
2720         case OP_CMPL_FLOAT:
2721         case OP_CMPG_FLOAT:
2722         case OP_CMPL_DOUBLE:
2723         case OP_CMPG_DOUBLE:
2724             return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2725         case OP_CMP_LONG:
2726             genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2727             break;
2728         case OP_AGET_WIDE:
2729             genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2730             break;
2731         case OP_AGET:
2732         case OP_AGET_OBJECT:
2733             genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2734             break;
2735         case OP_AGET_BOOLEAN:
2736             genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2737             break;
2738         case OP_AGET_BYTE:
2739             genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
2740             break;
2741         case OP_AGET_CHAR:
2742             genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2743             break;
2744         case OP_AGET_SHORT:
2745             genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2746             break;
2747         case OP_APUT_WIDE:
2748             genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2749             break;
2750         case OP_APUT:
2751             genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2752             break;
2753         case OP_APUT_OBJECT:
2754             genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
2755             break;
2756         case OP_APUT_SHORT:
2757         case OP_APUT_CHAR:
2758             genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2759             break;
2760         case OP_APUT_BYTE:
2761         case OP_APUT_BOOLEAN:
2762             genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2763             break;
2764         default:
2765             return true;
2766     }
2767     return false;
2768 }
2769 
2770 /*
2771  * Find the matching case.
2772  *
2773  * return values:
2774  * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
2775  *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
2776  * r1 (high 32-bit): the branch offset of the matching case (only for indexes
2777  *    above MAX_CHAINED_SWITCH_CASES).
2778  *
2779  * Instructions around the call are:
2780  *
2781  * mov r2, pc
2782  * blx &findPackedSwitchIndex
2783  * mov pc, r0
2784  * .align4
2785  * chaining cell for case 0 [12 bytes]
2786  * chaining cell for case 1 [12 bytes]
2787  *               :
2788  * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
2789  * chaining cell for case default [8 bytes]
2790  * noChain exit
2791  */
findPackedSwitchIndex(const u2 * switchData,int testVal,uintptr_t pc)2792 static u8 findPackedSwitchIndex(const u2* switchData, int testVal, uintptr_t pc)
2793 {
2794     int size;
2795     int firstKey;
2796     const int *entries;
2797     int index;
2798     int jumpIndex;
2799     uintptr_t caseDPCOffset = 0;
2800     /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
2801     uintptr_t chainingPC = (pc + 4) & ~3;
2802 
2803     /*
2804      * Packed switch data format:
2805      *  ushort ident = 0x0100   magic value
2806      *  ushort size             number of entries in the table
2807      *  int first_key           first (and lowest) switch case value
2808      *  int targets[size]       branch targets, relative to switch opcode
2809      *
2810      * Total size is (4+size*2) 16-bit code units.
2811      */
2812     size = switchData[1];
2813     assert(size > 0);
2814 
2815     firstKey = switchData[2];
2816     firstKey |= switchData[3] << 16;
2817 
2818 
2819     /* The entries are guaranteed to be aligned on a 32-bit boundary;
2820      * we can treat them as a native int array.
2821      */
2822     entries = (const int*) &switchData[4];
2823     assert(((u4)entries & 0x3) == 0);
2824 
2825     index = testVal - firstKey;
2826 
2827     /* Jump to the default cell */
2828     if (index < 0 || index >= size) {
2829         jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
2830     /* Jump to the non-chaining exit point */
2831     } else if (index >= MAX_CHAINED_SWITCH_CASES) {
2832         jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
2833         caseDPCOffset = entries[index];
2834     /* Jump to the inline chaining cell */
2835     } else {
2836         jumpIndex = index;
2837     }
2838 
2839     chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
2840     return (((u8) caseDPCOffset) << 32) | (u8) chainingPC;
2841 }
2842 
2843 /* See comments for findPackedSwitchIndex */
findSparseSwitchIndex(const u2 * switchData,int testVal,uintptr_t pc)2844 static u8 findSparseSwitchIndex(const u2* switchData, int testVal, uintptr_t pc)
2845 {
2846     int size;
2847     const int *keys;
2848     const int *entries;
2849     uintptr_t chainingPC = (pc + 4) & ~3;
2850     int i;
2851 
2852     /*
2853      * Sparse switch data format:
2854      *  ushort ident = 0x0200   magic value
2855      *  ushort size             number of entries in the table; > 0
2856      *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
2857      *  int targets[size]       branch targets, relative to switch opcode
2858      *
2859      * Total size is (2+size*4) 16-bit code units.
2860      */
2861 
2862     size = switchData[1];
2863     assert(size > 0);
2864 
2865     /* The keys are guaranteed to be aligned on a 32-bit boundary;
2866      * we can treat them as a native int array.
2867      */
2868     keys = (const int*) &switchData[2];
2869     assert(((u4)keys & 0x3) == 0);
2870 
2871     /* The entries are guaranteed to be aligned on a 32-bit boundary;
2872      * we can treat them as a native int array.
2873      */
2874     entries = keys + size;
2875     assert(((u4)entries & 0x3) == 0);
2876 
2877     /*
2878      * Run through the list of keys, which are guaranteed to
2879      * be sorted low-to-high.
2880      *
2881      * Most tables have 3-4 entries.  Few have more than 10.  A binary
2882      * search here is probably not useful.
2883      */
2884     for (i = 0; i < size; i++) {
2885         int k = keys[i];
2886         if (k == testVal) {
2887             /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
2888             int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
2889                            i : MAX_CHAINED_SWITCH_CASES + 1;
2890             chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
2891             return (((u8) entries[i]) << 32) | (u8) chainingPC;
2892         } else if (k > testVal) {
2893             break;
2894         }
2895     }
2896     return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
2897            CHAIN_CELL_NORMAL_SIZE;
2898 }
2899 
handleFmt31t(CompilationUnit * cUnit,MIR * mir)2900 static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
2901 {
2902     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2903     switch (dalvikOpcode) {
2904         case OP_FILL_ARRAY_DATA: {
2905             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2906             // Making a call - use explicit registers
2907             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2908             genExportPC(cUnit, mir);
2909             loadValueDirectFixed(cUnit, rlSrc, r0);
2910             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
2911             loadConstant(cUnit, r1,
2912                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
2913             opReg(cUnit, kOpBlx, r2);
2914             dvmCompilerClobberCallRegs(cUnit);
2915             /* generate a branch over if successful */
2916             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
2917             loadConstant(cUnit, r0,
2918                          (int) (cUnit->method->insns + mir->offset));
2919             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2920             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2921             target->defMask = ENCODE_ALL;
2922             branchOver->generic.target = (LIR *) target;
2923             break;
2924         }
2925         /*
2926          * Compute the goto target of up to
2927          * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
2928          * See the comment before findPackedSwitchIndex for the code layout.
2929          */
2930         case OP_PACKED_SWITCH:
2931         case OP_SPARSE_SWITCH: {
2932             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2933             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2934             loadValueDirectFixed(cUnit, rlSrc, r1);
2935             dvmCompilerLockAllTemps(cUnit);
2936             if (dalvikOpcode == OP_PACKED_SWITCH) {
2937                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
2938             } else {
2939                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
2940             }
2941             /* r0 <- Addr of the switch data */
2942             loadConstant(cUnit, r0,
2943                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
2944             /* r2 <- pc of the instruction following the blx */
2945             opRegReg(cUnit, kOpMov, r2, r15pc);
2946             opReg(cUnit, kOpBlx, r4PC);
2947             dvmCompilerClobberCallRegs(cUnit);
2948             /* pc <- computed goto target */
2949             opRegReg(cUnit, kOpMov, r15pc, r0);
2950             break;
2951         }
2952         default:
2953             return true;
2954     }
2955     return false;
2956 }
2957 
2958 /*
2959  * See the example of predicted inlining listed before the
2960  * genValidationForPredictedInline function. The function here takes care the
2961  * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
2962  */
genLandingPadForMispredictedCallee(CompilationUnit * cUnit,MIR * mir,BasicBlock * bb,ArmLIR * labelList)2963 static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
2964                                                BasicBlock *bb,
2965                                                ArmLIR *labelList)
2966 {
2967     BasicBlock *fallThrough = bb->fallThrough;
2968 
2969     /* Bypass the move-result block if there is one */
2970     if (fallThrough->firstMIRInsn) {
2971         assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
2972         fallThrough = fallThrough->fallThrough;
2973     }
2974     /* Generate a branch over if the predicted inlining is correct */
2975     genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
2976 
2977     /* Reset the register state */
2978     dvmCompilerResetRegPool(cUnit);
2979     dvmCompilerClobberAllRegs(cUnit);
2980     dvmCompilerResetNullCheck(cUnit);
2981 
2982     /* Target for the slow invoke path */
2983     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2984     target->defMask = ENCODE_ALL;
2985     /* Hook up the target to the verification branch */
2986     mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
2987 }
2988 
handleFmt35c_3rc(CompilationUnit * cUnit,MIR * mir,BasicBlock * bb,ArmLIR * labelList)2989 static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir,
2990                              BasicBlock *bb, ArmLIR *labelList)
2991 {
2992     ArmLIR *retChainingCell = NULL;
2993     ArmLIR *pcrLabel = NULL;
2994 
2995     /* An invoke with the MIR_INLINED is effectively a no-op */
2996     if (mir->OptimizationFlags & MIR_INLINED)
2997         return false;
2998 
2999     if (bb->fallThrough != NULL)
3000         retChainingCell = &labelList[bb->fallThrough->id];
3001 
3002     DecodedInstruction *dInsn = &mir->dalvikInsn;
3003     switch (mir->dalvikInsn.opcode) {
3004         /*
3005          * calleeMethod = this->clazz->vtable[
3006          *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
3007          * ]
3008          */
3009         case OP_INVOKE_VIRTUAL:
3010         case OP_INVOKE_VIRTUAL_RANGE: {
3011             ArmLIR *predChainingCell = &labelList[bb->taken->id];
3012             int methodIndex =
3013                 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
3014                 methodIndex;
3015 
3016             /*
3017              * If the invoke has non-null misPredBranchOver, we need to generate
3018              * the non-inlined version of the invoke here to handle the
3019              * mispredicted case.
3020              */
3021             if (mir->meta.callsiteInfo->misPredBranchOver) {
3022                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3023             }
3024 
3025             if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
3026                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3027             else
3028                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3029 
3030             genInvokeVirtualCommon(cUnit, mir, methodIndex,
3031                                    retChainingCell,
3032                                    predChainingCell,
3033                                    pcrLabel);
3034             break;
3035         }
3036         /*
3037          * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
3038          *                ->pResMethods[BBBB]->methodIndex]
3039          */
3040         case OP_INVOKE_SUPER:
3041         case OP_INVOKE_SUPER_RANGE: {
3042             /* Grab the method ptr directly from what the interpreter sees */
3043             const Method *calleeMethod = mir->meta.callsiteInfo->method;
3044             assert(calleeMethod == cUnit->method->clazz->super->vtable[
3045                                      cUnit->method->clazz->pDvmDex->
3046                                        pResMethods[dInsn->vB]->methodIndex]);
3047 
3048             if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
3049                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3050             else
3051                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3052 
3053             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3054                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3055                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3056                 assert(calleeAddr);
3057                 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3058                                               retChainingCell);
3059             } else {
3060                 /* r0 = calleeMethod */
3061                 loadConstant(cUnit, r0, (int) calleeMethod);
3062 
3063                 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3064                                          calleeMethod);
3065             }
3066             break;
3067         }
3068         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3069         case OP_INVOKE_DIRECT:
3070         case OP_INVOKE_DIRECT_RANGE: {
3071             /* Grab the method ptr directly from what the interpreter sees */
3072             const Method *calleeMethod = mir->meta.callsiteInfo->method;
3073             assert(calleeMethod ==
3074                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3075 
3076             if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
3077                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3078             else
3079                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3080 
3081             /* r0 = calleeMethod */
3082             loadConstant(cUnit, r0, (int) calleeMethod);
3083 
3084             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3085                                      calleeMethod);
3086             break;
3087         }
3088         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3089         case OP_INVOKE_STATIC:
3090         case OP_INVOKE_STATIC_RANGE: {
3091             /* Grab the method ptr directly from what the interpreter sees */
3092             const Method *calleeMethod = mir->meta.callsiteInfo->method;
3093             assert(calleeMethod ==
3094                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3095 
3096             if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
3097                 genProcessArgsNoRange(cUnit, mir, dInsn,
3098                                       NULL /* no null check */);
3099             else
3100                 genProcessArgsRange(cUnit, mir, dInsn,
3101                                     NULL /* no null check */);
3102 
3103             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3104                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3105                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3106                 assert(calleeAddr);
3107                 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3108                                               retChainingCell);
3109             } else {
3110                 /* r0 = calleeMethod */
3111                 loadConstant(cUnit, r0, (int) calleeMethod);
3112 
3113                 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3114                                          calleeMethod);
3115             }
3116             break;
3117         }
3118         /*
3119          * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
3120          *                    BBBB, method, method->clazz->pDvmDex)
3121          *
3122          * The following is an example of generated code for
3123          *      "invoke-interface v0"
3124          *
3125          * -------- dalvik offset: 0x0008 @ invoke-interface v0
3126          * 0x47357e36 : ldr     r0, [r5, #0]   --+
3127          * 0x47357e38 : sub     r7,r5,#24        |
3128          * 0x47357e3c : cmp     r0, #0           | genProcessArgsNoRange
3129          * 0x47357e3e : beq     0x47357e82       |
3130          * 0x47357e40 : stmia   r7, <r0>       --+
3131          * 0x47357e42 : ldr     r4, [pc, #120] --> r4 <- dalvikPC of this invoke
3132          * 0x47357e44 : add     r1, pc, #64    --> r1 <- &retChainingCell
3133          * 0x47357e46 : add     r2, pc, #72    --> r2 <- &predictedChainingCell
3134          * 0x47357e48 : blx_1   0x47348190     --+ TEMPLATE_INVOKE_METHOD_
3135          * 0x47357e4a : blx_2   see above      --+     PREDICTED_CHAIN
3136          * 0x47357e4c : b       0x47357e90     --> off to the predicted chain
3137          * 0x47357e4e : b       0x47357e82     --> punt to the interpreter
3138          * 0x47357e50 : mov     r8, r1         --+
3139          * 0x47357e52 : mov     r9, r2           |
3140          * 0x47357e54 : ldr     r2, [pc, #96]    |
3141          * 0x47357e56 : mov     r10, r3          |
3142          * 0x47357e58 : movs    r0, r3           | dvmFindInterfaceMethodInCache
3143          * 0x47357e5a : ldr     r3, [pc, #88]    |
3144          * 0x47357e5c : ldr     r7, [pc, #80]    |
3145          * 0x47357e5e : mov     r1, #1452        |
3146          * 0x47357e62 : blx     r7             --+
3147          * 0x47357e64 : cmp     r0, #0         --> calleeMethod == NULL?
3148          * 0x47357e66 : bne     0x47357e6e     --> branch over the throw if !r0
3149          * 0x47357e68 : ldr     r0, [pc, #80]  --> load Dalvik PC of the invoke
3150          * 0x47357e6a : blx_1   0x47348494     --+ TEMPLATE_THROW_EXCEPTION_
3151          * 0x47357e6c : blx_2   see above      --+     COMMON
3152          * 0x47357e6e : mov     r1, r8         --> r1 <- &retChainingCell
3153          * 0x47357e70 : cmp     r1, #0         --> compare against 0
3154          * 0x47357e72 : bgt     0x47357e7c     --> >=0? don't rechain
3155          * 0x47357e74 : ldr     r7, [pc, #off] --+
3156          * 0x47357e76 : mov     r2, r9           | dvmJitToPatchPredictedChain
3157          * 0x47357e78 : mov     r3, r10          |
3158          * 0x47357e7a : blx     r7             --+
3159          * 0x47357e7c : add     r1, pc, #8     --> r1 <- &retChainingCell
3160          * 0x47357e7e : blx_1   0x4734809c     --+ TEMPLATE_INVOKE_METHOD_NO_OPT
3161          * 0x47357e80 : blx_2   see above      --+
3162          * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
3163          * 0x47357e82 : ldr     r0, [pc, #56]
3164          * Exception_Handling:
3165          * 0x47357e84 : ldr     r1, [r6, #92]
3166          * 0x47357e86 : blx     r1
3167          * 0x47357e88 : .align4
3168          * -------- chaining cell (hot): 0x000b
3169          * 0x47357e88 : ldr     r0, [r6, #104]
3170          * 0x47357e8a : blx     r0
3171          * 0x47357e8c : data    0x19e2(6626)
3172          * 0x47357e8e : data    0x4257(16983)
3173          * 0x47357e90 : .align4
3174          * -------- chaining cell (predicted)
3175          * 0x47357e90 : data    0xe7fe(59390)  --> will be patched into bx
3176          * 0x47357e92 : data    0x0000(0)
3177          * 0x47357e94 : data    0x0000(0)      --> class
3178          * 0x47357e96 : data    0x0000(0)
3179          * 0x47357e98 : data    0x0000(0)      --> method
3180          * 0x47357e9a : data    0x0000(0)
3181          * 0x47357e9c : data    0x0000(0)      --> rechain count
3182          * 0x47357e9e : data    0x0000(0)
3183          * -------- end of chaining cells (0x006c)
3184          * 0x47357eb0 : .word (0xad03e369)
3185          * 0x47357eb4 : .word (0x28a90)
3186          * 0x47357eb8 : .word (0x41a63394)
3187          * 0x47357ebc : .word (0x425719dc)
3188          */
3189         case OP_INVOKE_INTERFACE:
3190         case OP_INVOKE_INTERFACE_RANGE: {
3191             ArmLIR *predChainingCell = &labelList[bb->taken->id];
3192 
3193             /*
3194              * If the invoke has non-null misPredBranchOver, we need to generate
3195              * the non-inlined version of the invoke here to handle the
3196              * mispredicted case.
3197              */
3198             if (mir->meta.callsiteInfo->misPredBranchOver) {
3199                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3200             }
3201 
3202             if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
3203                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3204             else
3205                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3206 
3207             /* "this" is already left in r0 by genProcessArgs* */
3208 
3209             /* r4PC = dalvikCallsite */
3210             loadConstant(cUnit, r4PC,
3211                          (int) (cUnit->method->insns + mir->offset));
3212 
3213             /* r1 = &retChainingCell */
3214             ArmLIR *addrRetChain =
3215                 opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
3216             addrRetChain->generic.target = (LIR *) retChainingCell;
3217 
3218             /* r2 = &predictedChainingCell */
3219             ArmLIR *predictedChainingCell =
3220                 opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
3221             predictedChainingCell->generic.target = (LIR *) predChainingCell;
3222 
3223             genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3224                 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
3225                 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
3226 
3227             /* return through lr - jump to the chaining cell */
3228             genUnconditionalBranch(cUnit, predChainingCell);
3229 
3230             /*
3231              * null-check on "this" may have been eliminated, but we still need
3232              * a PC-reconstruction label for stack overflow bailout.
3233              */
3234             if (pcrLabel == NULL) {
3235                 int dPC = (int) (cUnit->method->insns + mir->offset);
3236                 pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
3237                 pcrLabel->opcode = kArmPseudoPCReconstructionCell;
3238                 pcrLabel->operands[0] = dPC;
3239                 pcrLabel->operands[1] = mir->offset;
3240                 /* Insert the place holder to the growable list */
3241                 dvmInsertGrowableList(&cUnit->pcReconstructionList,
3242                                       (intptr_t) pcrLabel);
3243             }
3244 
3245             /* return through lr+2 - punt to the interpreter */
3246             genUnconditionalBranch(cUnit, pcrLabel);
3247 
3248             /*
3249              * return through lr+4 - fully resolve the callee method.
3250              * r1 <- count
3251              * r2 <- &predictedChainCell
3252              * r3 <- this->class
3253              * r4 <- dPC
3254              * r7 <- this->class->vtable
3255              */
3256 
3257             /* Save count, &predictedChainCell, and class to high regs first */
3258             genRegCopy(cUnit, r8, r1);
3259             genRegCopy(cUnit, r9, r2);
3260             genRegCopy(cUnit, r10, r3);
3261 
3262             /* r0 now contains this->clazz */
3263             genRegCopy(cUnit, r0, r3);
3264 
3265             /* r1 = BBBB */
3266             loadConstant(cUnit, r1, dInsn->vB);
3267 
3268             /* r2 = method (caller) */
3269             loadConstant(cUnit, r2, (int) cUnit->method);
3270 
3271             /* r3 = pDvmDex */
3272             loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
3273 
3274             LOAD_FUNC_ADDR(cUnit, r7,
3275                            (intptr_t) dvmFindInterfaceMethodInCache);
3276             opReg(cUnit, kOpBlx, r7);
3277             /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
3278 
3279             dvmCompilerClobberCallRegs(cUnit);
3280             /* generate a branch over if the interface method is resolved */
3281             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
3282             /*
3283              * calleeMethod == NULL -> throw
3284              */
3285             loadConstant(cUnit, r0,
3286                          (int) (cUnit->method->insns + mir->offset));
3287             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3288             /* noreturn */
3289 
3290             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3291             target->defMask = ENCODE_ALL;
3292             branchOver->generic.target = (LIR *) target;
3293 
3294             genRegCopy(cUnit, r1, r8);
3295 
3296             /* Check if rechain limit is reached */
3297             ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt,
3298                                                        r1, 0);
3299 
3300             LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
3301 
3302             genRegCopy(cUnit, r1, r6SELF);
3303             genRegCopy(cUnit, r2, r9);
3304             genRegCopy(cUnit, r3, r10);
3305 
3306             /*
3307              * r0 = calleeMethod
3308              * r2 = &predictedChainingCell
3309              * r3 = class
3310              *
3311              * &returnChainingCell has been loaded into r1 but is not needed
3312              * when patching the chaining cell and will be clobbered upon
3313              * returning so it will be reconstructed again.
3314              */
3315             opReg(cUnit, kOpBlx, r7);
3316 
3317             /* r1 = &retChainingCell */
3318             addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
3319             addrRetChain->generic.target = (LIR *) retChainingCell;
3320 
3321             bypassRechaining->generic.target = (LIR *) addrRetChain;
3322 
3323             /*
3324              * r0 = this, r1 = calleeMethod,
3325              * r1 = &ChainingCell,
3326              * r4PC = callsiteDPC,
3327              */
3328             genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3329                 TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
3330                 TEMPLATE_INVOKE_METHOD_NO_OPT);
3331 #if defined(WITH_JIT_TUNING)
3332             gDvmJit.invokePolymorphic++;
3333 #endif
3334             /* Handle exceptions using the interpreter */
3335             genTrap(cUnit, mir->offset, pcrLabel);
3336             break;
3337         }
3338         case OP_INVOKE_OBJECT_INIT_RANGE:
3339         case OP_FILLED_NEW_ARRAY:
3340         case OP_FILLED_NEW_ARRAY_RANGE: {
3341             /* Just let the interpreter deal with these */
3342             genInterpSingleStep(cUnit, mir);
3343             break;
3344         }
3345         default:
3346             return true;
3347     }
3348     return false;
3349 }
3350 
handleFmt35ms_3rms(CompilationUnit * cUnit,MIR * mir,BasicBlock * bb,ArmLIR * labelList)3351 static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
3352                                BasicBlock *bb, ArmLIR *labelList)
3353 {
3354     ArmLIR *pcrLabel = NULL;
3355 
3356     /* An invoke with the MIR_INLINED is effectively a no-op */
3357     if (mir->OptimizationFlags & MIR_INLINED)
3358         return false;
3359 
3360     DecodedInstruction *dInsn = &mir->dalvikInsn;
3361     switch (mir->dalvikInsn.opcode) {
3362         /* calleeMethod = this->clazz->vtable[BBBB] */
3363         case OP_INVOKE_VIRTUAL_QUICK_RANGE:
3364         case OP_INVOKE_VIRTUAL_QUICK: {
3365             int methodIndex = dInsn->vB;
3366             ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
3367             ArmLIR *predChainingCell = &labelList[bb->taken->id];
3368 
3369             /*
3370              * If the invoke has non-null misPredBranchOver, we need to generate
3371              * the non-inlined version of the invoke here to handle the
3372              * mispredicted case.
3373              */
3374             if (mir->meta.callsiteInfo->misPredBranchOver) {
3375                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3376             }
3377 
3378             if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
3379                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3380             else
3381                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3382 
3383 
3384             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3385                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3386                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3387                 assert(calleeAddr);
3388                 genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
3389                                             retChainingCell);
3390             }
3391 
3392             genInvokeVirtualCommon(cUnit, mir, methodIndex,
3393                                    retChainingCell,
3394                                    predChainingCell,
3395                                    pcrLabel);
3396             break;
3397         }
3398         /* calleeMethod = method->clazz->super->vtable[BBBB] */
3399         case OP_INVOKE_SUPER_QUICK:
3400         case OP_INVOKE_SUPER_QUICK_RANGE: {
3401             /* Grab the method ptr directly from what the interpreter sees */
3402             const Method *calleeMethod = mir->meta.callsiteInfo->method;
3403             assert(calleeMethod ==
3404                    cUnit->method->clazz->super->vtable[dInsn->vB]);
3405 
3406             if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
3407                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3408             else
3409                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3410 
3411             /* r0 = calleeMethod */
3412             loadConstant(cUnit, r0, (int) calleeMethod);
3413 
3414             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3415                                      calleeMethod);
3416             break;
3417         }
3418         default:
3419             return true;
3420     }
3421     return false;
3422 }
3423 
3424 /*
3425  * This operation is complex enough that we'll do it partly inline
3426  * and partly with a handler.  NOTE: the handler uses hardcoded
3427  * values for string object offsets and must be revisitied if the
3428  * layout changes.
3429  */
genInlinedCompareTo(CompilationUnit * cUnit,MIR * mir)3430 static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
3431 {
3432 #if defined(USE_GLOBAL_STRING_DEFS)
3433     return handleExecuteInlineC(cUnit, mir);
3434 #else
3435     ArmLIR *rollback;
3436     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3437     RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
3438 
3439     loadValueDirectFixed(cUnit, rlThis, r0);
3440     loadValueDirectFixed(cUnit, rlComp, r1);
3441     /* Test objects for NULL */
3442     rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
3443     genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
3444     /*
3445      * TUNING: we could check for object pointer equality before invoking
3446      * handler. Unclear whether the gain would be worth the added code size
3447      * expansion.
3448      */
3449     genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
3450     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3451                dvmCompilerGetReturn(cUnit));
3452     return false;
3453 #endif
3454 }
3455 
genInlinedFastIndexOf(CompilationUnit * cUnit,MIR * mir)3456 static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
3457 {
3458 #if defined(USE_GLOBAL_STRING_DEFS)
3459     return handleExecuteInlineC(cUnit, mir);
3460 #else
3461     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3462     RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
3463 
3464     loadValueDirectFixed(cUnit, rlThis, r0);
3465     loadValueDirectFixed(cUnit, rlChar, r1);
3466     RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
3467     loadValueDirectFixed(cUnit, rlStart, r2);
3468     /* Test objects for NULL */
3469     genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
3470     genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
3471     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3472                dvmCompilerGetReturn(cUnit));
3473     return false;
3474 #endif
3475 }
3476 
3477 // Generates an inlined String.isEmpty or String.length.
genInlinedStringIsEmptyOrLength(CompilationUnit * cUnit,MIR * mir,bool isEmpty)3478 static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
3479                                             bool isEmpty)
3480 {
3481     // dst = src.length();
3482     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3483     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3484     rlObj = loadValue(cUnit, rlObj, kCoreReg);
3485     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3486     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
3487     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
3488                  rlResult.lowReg);
3489     if (isEmpty) {
3490         // dst = (dst == 0);
3491         int tReg = dvmCompilerAllocTemp(cUnit);
3492         opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
3493         opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
3494     }
3495     storeValue(cUnit, rlDest, rlResult);
3496     return false;
3497 }
3498 
genInlinedStringLength(CompilationUnit * cUnit,MIR * mir)3499 static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
3500 {
3501     return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
3502 }
3503 
genInlinedStringIsEmpty(CompilationUnit * cUnit,MIR * mir)3504 static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
3505 {
3506     return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
3507 }
3508 
genInlinedStringCharAt(CompilationUnit * cUnit,MIR * mir)3509 static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
3510 {
3511     int contents = OFFSETOF_MEMBER(ArrayObject, contents);
3512     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3513     RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
3514     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3515     RegLocation rlResult;
3516     rlObj = loadValue(cUnit, rlObj, kCoreReg);
3517     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
3518     int regMax = dvmCompilerAllocTemp(cUnit);
3519     int regOff = dvmCompilerAllocTemp(cUnit);
3520     int regPtr = dvmCompilerAllocTemp(cUnit);
3521     ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
3522                                     mir->offset, NULL);
3523     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
3524     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
3525     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
3526     genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
3527     dvmCompilerFreeTemp(cUnit, regMax);
3528     opRegImm(cUnit, kOpAdd, regPtr, contents);
3529     opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
3530     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3531     loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
3532     storeValue(cUnit, rlDest, rlResult);
3533     return false;
3534 }
3535 
genInlinedAbsInt(CompilationUnit * cUnit,MIR * mir)3536 static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
3537 {
3538     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3539     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
3540     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3541     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3542     int signReg = dvmCompilerAllocTemp(cUnit);
3543     /*
3544      * abs(x) = y<=x>>31, (x+y)^y.
3545      * Thumb2's IT block also yields 3 instructions, but imposes
3546      * scheduling constraints.
3547      */
3548     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
3549     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3550     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3551     storeValue(cUnit, rlDest, rlResult);
3552     return false;
3553 }
3554 
genInlinedAbsLong(CompilationUnit * cUnit,MIR * mir)3555 static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
3556 {
3557     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3558     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3559     rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
3560     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3561     int signReg = dvmCompilerAllocTemp(cUnit);
3562     /*
3563      * abs(x) = y<=x>>31, (x+y)^y.
3564      * Thumb2 IT block allows slightly shorter sequence,
3565      * but introduces a scheduling barrier.  Stick with this
3566      * mechanism for now.
3567      */
3568     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
3569     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3570     opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
3571     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3572     opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
3573     storeValueWide(cUnit, rlDest, rlResult);
3574     return false;
3575 }
3576 
genInlinedIntFloatConversion(CompilationUnit * cUnit,MIR * mir)3577 static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
3578 {
3579     // Just move from source to destination...
3580     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3581     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3582     storeValue(cUnit, rlDest, rlSrc);
3583     return false;
3584 }
3585 
genInlinedLongDoubleConversion(CompilationUnit * cUnit,MIR * mir)3586 static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
3587 {
3588     // Just move from source to destination...
3589     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3590     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3591     storeValueWide(cUnit, rlDest, rlSrc);
3592     return false;
3593 }
3594 
3595 /*
3596  * JITs a call to a C function.
3597  * TODO: use this for faster native method invocation for simple native
3598  * methods (http://b/3069458).
3599  */
handleExecuteInlineC(CompilationUnit * cUnit,MIR * mir)3600 static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
3601 {
3602     DecodedInstruction *dInsn = &mir->dalvikInsn;
3603     int operation = dInsn->vB;
3604     unsigned int i;
3605     const InlineOperation* inLineTable = dvmGetInlineOpsTable();
3606     uintptr_t fn = (int) inLineTable[operation].func;
3607     if (fn == 0) {
3608         dvmCompilerAbort(cUnit);
3609     }
3610     dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
3611     dvmCompilerClobberCallRegs(cUnit);
3612     dvmCompilerClobber(cUnit, r4PC);
3613     dvmCompilerClobber(cUnit, r7);
3614     int offset = offsetof(Thread, interpSave.retval);
3615     opRegRegImm(cUnit, kOpAdd, r4PC, r6SELF, offset);
3616     opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
3617     LOAD_FUNC_ADDR(cUnit, r4PC, fn);
3618     genExportPC(cUnit, mir);
3619     for (i=0; i < dInsn->vA; i++) {
3620         loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
3621     }
3622     opReg(cUnit, kOpBlx, r4PC);
3623     opRegImm(cUnit, kOpAdd, r13sp, 8);
3624     /* NULL? */
3625     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
3626     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
3627     genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3628     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3629     target->defMask = ENCODE_ALL;
3630     branchOver->generic.target = (LIR *) target;
3631     return false;
3632 }
3633 
3634 /*
3635  * NOTE: Handles both range and non-range versions (arguments
3636  * have already been normalized by this point).
3637  */
handleExecuteInline(CompilationUnit * cUnit,MIR * mir)3638 static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
3639 {
3640     DecodedInstruction *dInsn = &mir->dalvikInsn;
3641     assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
3642            dInsn->opcode == OP_EXECUTE_INLINE);
3643     switch (dInsn->vB) {
3644         case INLINE_EMPTYINLINEMETHOD:
3645             return false;  /* Nop */
3646 
3647         /* These ones we potentially JIT inline. */
3648 
3649         case INLINE_STRING_CHARAT:
3650             return genInlinedStringCharAt(cUnit, mir);
3651         case INLINE_STRING_LENGTH:
3652             return genInlinedStringLength(cUnit, mir);
3653         case INLINE_STRING_IS_EMPTY:
3654             return genInlinedStringIsEmpty(cUnit, mir);
3655         case INLINE_STRING_COMPARETO:
3656             return genInlinedCompareTo(cUnit, mir);
3657         case INLINE_STRING_FASTINDEXOF_II:
3658             return genInlinedFastIndexOf(cUnit, mir);
3659 
3660         case INLINE_MATH_ABS_INT:
3661         case INLINE_STRICT_MATH_ABS_INT:
3662             return genInlinedAbsInt(cUnit, mir);
3663         case INLINE_MATH_ABS_LONG:
3664         case INLINE_STRICT_MATH_ABS_LONG:
3665             return genInlinedAbsLong(cUnit, mir);
3666         case INLINE_MATH_MIN_INT:
3667         case INLINE_STRICT_MATH_MIN_INT:
3668             return genInlinedMinMaxInt(cUnit, mir, true);
3669         case INLINE_MATH_MAX_INT:
3670         case INLINE_STRICT_MATH_MAX_INT:
3671             return genInlinedMinMaxInt(cUnit, mir, false);
3672         case INLINE_MATH_SQRT:
3673         case INLINE_STRICT_MATH_SQRT:
3674             return genInlineSqrt(cUnit, mir);
3675         case INLINE_MATH_ABS_FLOAT:
3676         case INLINE_STRICT_MATH_ABS_FLOAT:
3677             return genInlinedAbsFloat(cUnit, mir);
3678         case INLINE_MATH_ABS_DOUBLE:
3679         case INLINE_STRICT_MATH_ABS_DOUBLE:
3680             return genInlinedAbsDouble(cUnit, mir);
3681 
3682         case INLINE_FLOAT_TO_RAW_INT_BITS:
3683         case INLINE_INT_BITS_TO_FLOAT:
3684             return genInlinedIntFloatConversion(cUnit, mir);
3685         case INLINE_DOUBLE_TO_RAW_LONG_BITS:
3686         case INLINE_LONG_BITS_TO_DOUBLE:
3687             return genInlinedLongDoubleConversion(cUnit, mir);
3688 
3689         /*
3690          * These ones we just JIT a call to a C function for.
3691          * TODO: special-case these in the other "invoke" call paths.
3692          */
3693         case INLINE_STRING_EQUALS:
3694         case INLINE_MATH_COS:
3695         case INLINE_MATH_SIN:
3696         case INLINE_FLOAT_TO_INT_BITS:
3697         case INLINE_DOUBLE_TO_LONG_BITS:
3698             return handleExecuteInlineC(cUnit, mir);
3699     }
3700     dvmCompilerAbort(cUnit);
3701     return false; // Not reachable; keeps compiler happy.
3702 }
3703 
handleFmt51l(CompilationUnit * cUnit,MIR * mir)3704 static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
3705 {
3706     //TUNING: We're using core regs here - not optimal when target is a double
3707     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
3708     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3709     loadConstantNoClobber(cUnit, rlResult.lowReg,
3710                           mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
3711     loadConstantNoClobber(cUnit, rlResult.highReg,
3712                           (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
3713     storeValueWide(cUnit, rlDest, rlResult);
3714     return false;
3715 }
3716 
3717 /*
3718  * The following are special processing routines that handle transfer of
3719  * controls between compiled code and the interpreter. Certain VM states like
3720  * Dalvik PC and special-purpose registers are reconstructed here.
3721  */
3722 
3723 /*
3724  * Insert a
3725  *    b   .+4
3726  *    nop
3727  * pair at the beginning of a chaining cell.  This serves as the
3728  * switch branch that selects between reverting to the interpreter or
3729  * not.  Once the cell is chained to a translation, the cell will
3730  * contain a 32-bit branch.  Subsequent chain/unchain operations will
3731  * then only alter that first 16-bits - the "b .+4" for unchaining,
3732  * and the restoration of the first half of the 32-bit branch for
3733  * rechaining.
3734  */
insertChainingSwitch(CompilationUnit * cUnit)3735 static void insertChainingSwitch(CompilationUnit *cUnit)
3736 {
3737     ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
3738     newLIR2(cUnit, kThumbOrr, r0, r0);
3739     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3740     target->defMask = ENCODE_ALL;
3741     branch->generic.target = (LIR *) target;
3742 }
3743 
3744 /* Chaining cell for code that may need warmup. */
handleNormalChainingCell(CompilationUnit * cUnit,unsigned int offset)3745 static void handleNormalChainingCell(CompilationUnit *cUnit,
3746                                      unsigned int offset)
3747 {
3748     /*
3749      * Use raw instruction constructors to guarantee that the generated
3750      * instructions fit the predefined cell size.
3751      */
3752     insertChainingSwitch(cUnit);
3753     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3754             offsetof(Thread,
3755                      jitToInterpEntries.dvmJitToInterpNormal) >> 2);
3756     newLIR1(cUnit, kThumbBlxR, r0);
3757     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3758 }
3759 
3760 /*
3761  * Chaining cell for instructions that immediately following already translated
3762  * code.
3763  */
handleHotChainingCell(CompilationUnit * cUnit,unsigned int offset)3764 static void handleHotChainingCell(CompilationUnit *cUnit,
3765                                   unsigned int offset)
3766 {
3767     /*
3768      * Use raw instruction constructors to guarantee that the generated
3769      * instructions fit the predefined cell size.
3770      */
3771     insertChainingSwitch(cUnit);
3772     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3773             offsetof(Thread,
3774                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
3775     newLIR1(cUnit, kThumbBlxR, r0);
3776     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3777 }
3778 
3779 /* Chaining cell for branches that branch back into the same basic block */
handleBackwardBranchChainingCell(CompilationUnit * cUnit,unsigned int offset)3780 static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
3781                                              unsigned int offset)
3782 {
3783     /*
3784      * Use raw instruction constructors to guarantee that the generated
3785      * instructions fit the predefined cell size.
3786      */
3787     insertChainingSwitch(cUnit);
3788 #if defined(WITH_SELF_VERIFICATION)
3789     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3790         offsetof(Thread,
3791                  jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
3792 #else
3793     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3794         offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
3795 #endif
3796     newLIR1(cUnit, kThumbBlxR, r0);
3797     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3798 }
3799 
3800 /* Chaining cell for monomorphic method invocations. */
handleInvokeSingletonChainingCell(CompilationUnit * cUnit,const Method * callee)3801 static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
3802                                               const Method *callee)
3803 {
3804     /*
3805      * Use raw instruction constructors to guarantee that the generated
3806      * instructions fit the predefined cell size.
3807      */
3808     insertChainingSwitch(cUnit);
3809     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3810             offsetof(Thread,
3811                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
3812     newLIR1(cUnit, kThumbBlxR, r0);
3813     addWordData(cUnit, NULL, (int) (callee->insns));
3814 }
3815 
3816 /* Chaining cell for monomorphic method invocations. */
handleInvokePredictedChainingCell(CompilationUnit * cUnit)3817 static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
3818 {
3819 
3820     /* Should not be executed in the initial state */
3821     addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
3822     /* To be filled: class */
3823     addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
3824     /* To be filled: method */
3825     addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
3826     /*
3827      * Rechain count. The initial value of 0 here will trigger chaining upon
3828      * the first invocation of this callsite.
3829      */
3830     addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
3831 }
3832 
3833 /* Load the Dalvik PC into r0 and jump to the specified target */
handlePCReconstruction(CompilationUnit * cUnit,ArmLIR * targetLabel)3834 static void handlePCReconstruction(CompilationUnit *cUnit,
3835                                    ArmLIR *targetLabel)
3836 {
3837     ArmLIR **pcrLabel =
3838         (ArmLIR **) cUnit->pcReconstructionList.elemList;
3839     int numElems = cUnit->pcReconstructionList.numUsed;
3840     int i;
3841 
3842     /*
3843      * We should never reach here through fall-through code, so insert
3844      * a bomb to signal troubles immediately.
3845      */
3846     if (numElems) {
3847         newLIR0(cUnit, kThumbUndefined);
3848     }
3849 
3850     for (i = 0; i < numElems; i++) {
3851         dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
3852         /* r0 = dalvik PC */
3853         loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
3854         genUnconditionalBranch(cUnit, targetLabel);
3855     }
3856 }
3857 
3858 static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
3859     "kMirOpPhi",
3860     "kMirOpNullNRangeUpCheck",
3861     "kMirOpNullNRangeDownCheck",
3862     "kMirOpLowerBound",
3863     "kMirOpPunt",
3864     "kMirOpCheckInlinePrediction",
3865 };
3866 
3867 /*
3868  * vA = arrayReg;
3869  * vB = idxReg;
3870  * vC = endConditionReg;
3871  * arg[0] = maxC
3872  * arg[1] = minC
3873  * arg[2] = loopBranchConditionCode
3874  */
genHoistedChecksForCountUpLoop(CompilationUnit * cUnit,MIR * mir)3875 static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
3876 {
3877     /*
3878      * NOTE: these synthesized blocks don't have ssa names assigned
3879      * for Dalvik registers.  However, because they dominate the following
3880      * blocks we can simply use the Dalvik name w/ subscript 0 as the
3881      * ssa name.
3882      */
3883     DecodedInstruction *dInsn = &mir->dalvikInsn;
3884     const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
3885     const int maxC = dInsn->arg[0];
3886     int regLength;
3887     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
3888     RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
3889 
3890     /* regArray <- arrayRef */
3891     rlArray = loadValue(cUnit, rlArray, kCoreReg);
3892     rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
3893     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
3894                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3895 
3896     /* regLength <- len(arrayRef) */
3897     regLength = dvmCompilerAllocTemp(cUnit);
3898     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
3899 
3900     int delta = maxC;
3901     /*
3902      * If the loop end condition is ">=" instead of ">", then the largest value
3903      * of the index is "endCondition - 1".
3904      */
3905     if (dInsn->arg[2] == OP_IF_GE) {
3906         delta--;
3907     }
3908 
3909     if (delta) {
3910         int tReg = dvmCompilerAllocTemp(cUnit);
3911         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
3912         rlIdxEnd.lowReg = tReg;
3913         dvmCompilerFreeTemp(cUnit, tReg);
3914     }
3915     /* Punt if "regIdxEnd < len(Array)" is false */
3916     genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
3917                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3918 }
3919 
3920 /*
3921  * vA = arrayReg;
3922  * vB = idxReg;
3923  * vC = endConditionReg;
3924  * arg[0] = maxC
3925  * arg[1] = minC
3926  * arg[2] = loopBranchConditionCode
3927  */
genHoistedChecksForCountDownLoop(CompilationUnit * cUnit,MIR * mir)3928 static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
3929 {
3930     DecodedInstruction *dInsn = &mir->dalvikInsn;
3931     const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
3932     const int regLength = dvmCompilerAllocTemp(cUnit);
3933     const int maxC = dInsn->arg[0];
3934     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
3935     RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
3936 
3937     /* regArray <- arrayRef */
3938     rlArray = loadValue(cUnit, rlArray, kCoreReg);
3939     rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
3940     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
3941                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3942 
3943     /* regLength <- len(arrayRef) */
3944     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
3945 
3946     if (maxC) {
3947         int tReg = dvmCompilerAllocTemp(cUnit);
3948         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
3949         rlIdxInit.lowReg = tReg;
3950         dvmCompilerFreeTemp(cUnit, tReg);
3951     }
3952 
3953     /* Punt if "regIdxInit < len(Array)" is false */
3954     genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
3955                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3956 }
3957 
3958 /*
3959  * vA = idxReg;
3960  * vB = minC;
3961  */
genHoistedLowerBoundCheck(CompilationUnit * cUnit,MIR * mir)3962 static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
3963 {
3964     DecodedInstruction *dInsn = &mir->dalvikInsn;
3965     const int minC = dInsn->vB;
3966     RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
3967 
3968     /* regIdx <- initial index value */
3969     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
3970 
3971     /* Punt if "regIdxInit + minC >= 0" is false */
3972     genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
3973                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3974 }
3975 
3976 /*
3977  * vC = this
3978  *
3979  * A predicted inlining target looks like the following, where instructions
3980  * between 0x4858de66 and 0x4858de72 are checking if the predicted class
3981  * matches "this", and the verificaion code is generated by this routine.
3982  *
3983  * (C) means the instruction is inlined from the callee, and (PI) means the
3984  * instruction is the predicted inlined invoke, whose corresponding
3985  * instructions are still generated to handle the mispredicted case.
3986  *
3987  * D/dalvikvm(   86): -------- kMirOpCheckInlinePrediction
3988  * D/dalvikvm(   86): 0x4858de66 (0002): ldr     r0, [r5, #68]
3989  * D/dalvikvm(   86): 0x4858de68 (0004): ldr     r1, [pc, #140]
3990  * D/dalvikvm(   86): 0x4858de6a (0006): cmp     r0, #0
3991  * D/dalvikvm(   86): 0x4858de6c (0008): beq     0x4858deb2
3992  * D/dalvikvm(   86): 0x4858de6e (000a): ldr     r2, [r0, #0]
3993  * D/dalvikvm(   86): 0x4858de70 (000c): cmp     r1, r2
3994  * D/dalvikvm(   86): 0x4858de72 (000e): bne     0x4858de7a
3995  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
3996  * v4, v17, (#8)
3997  * D/dalvikvm(   86): 0x4858de74 (0010): ldr     r3, [r0, #8]
3998  * D/dalvikvm(   86): 0x4858de76 (0012): str     r3, [r5, #16]
3999  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @
4000  * +invoke-virtual-quick/range (PI) v17..v17
4001  * D/dalvikvm(   86): 0x4858de78 (0014): b       0x4858debc
4002  * D/dalvikvm(   86): 0x4858de7a (0016): add     r4,r5,#68
4003  * D/dalvikvm(   86): -------- BARRIER
4004  * D/dalvikvm(   86): 0x4858de7e (001a): ldmia   r4, <r0>
4005  * D/dalvikvm(   86): -------- BARRIER
4006  * D/dalvikvm(   86): 0x4858de80 (001c): sub     r7,r5,#24
4007  * D/dalvikvm(   86): 0x4858de84 (0020): cmp     r0, #0
4008  * D/dalvikvm(   86): 0x4858de86 (0022): beq     0x4858deb6
4009  * D/dalvikvm(   86): -------- BARRIER
4010  * D/dalvikvm(   86): 0x4858de88 (0024): stmia   r7, <r0>
4011  * D/dalvikvm(   86): -------- BARRIER
4012  * D/dalvikvm(   86): 0x4858de8a (0026): ldr     r4, [pc, #104]
4013  * D/dalvikvm(   86): 0x4858de8c (0028): add     r1, pc, #28
4014  * D/dalvikvm(   86): 0x4858de8e (002a): add     r2, pc, #56
4015  * D/dalvikvm(   86): 0x4858de90 (002c): blx_1   0x48589198
4016  * D/dalvikvm(   86): 0x4858de92 (002e): blx_2   see above
4017  * D/dalvikvm(   86): 0x4858de94 (0030): b       0x4858dec8
4018  * D/dalvikvm(   86): 0x4858de96 (0032): b       0x4858deb6
4019  * D/dalvikvm(   86): 0x4858de98 (0034): ldr     r0, [r7, #72]
4020  * D/dalvikvm(   86): 0x4858de9a (0036): cmp     r1, #0
4021  * D/dalvikvm(   86): 0x4858de9c (0038): bgt     0x4858dea4
4022  * D/dalvikvm(   86): 0x4858de9e (003a): ldr     r7, [r6, #116]
4023  * D/dalvikvm(   86): 0x4858dea0 (003c): movs    r1, r6
4024  * D/dalvikvm(   86): 0x4858dea2 (003e): blx     r7
4025  * D/dalvikvm(   86): 0x4858dea4 (0040): add     r1, pc, #4
4026  * D/dalvikvm(   86): 0x4858dea6 (0042): blx_1   0x485890a0
4027  * D/dalvikvm(   86): 0x4858dea8 (0044): blx_2   see above
4028  * D/dalvikvm(   86): 0x4858deaa (0046): b       0x4858deb6
4029  * D/dalvikvm(   86): 0x4858deac (0048): .align4
4030  * D/dalvikvm(   86): L0x004f:
4031  * D/dalvikvm(   86): -------- dalvik offset: 0x004f @ move-result-object (PI)
4032  * v4, (#0), (#0)
4033  * D/dalvikvm(   86): 0x4858deac (0048): ldr     r4, [r6, #8]
4034  * D/dalvikvm(   86): 0x4858deae (004a): str     r4, [r5, #16]
4035  * D/dalvikvm(   86): 0x4858deb0 (004c): b       0x4858debc
4036  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
4037  * D/dalvikvm(   86): 0x4858deb2 (004e): ldr     r0, [pc, #64]
4038  * D/dalvikvm(   86): 0x4858deb4 (0050): b       0x4858deb8
4039  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
4040  * D/dalvikvm(   86): 0x4858deb6 (0052): ldr     r0, [pc, #60]
4041  * D/dalvikvm(   86): Exception_Handling:
4042  * D/dalvikvm(   86): 0x4858deb8 (0054): ldr     r1, [r6, #100]
4043  * D/dalvikvm(   86): 0x4858deba (0056): blx     r1
4044  * D/dalvikvm(   86): 0x4858debc (0058): .align4
4045  * D/dalvikvm(   86): -------- chaining cell (hot): 0x0050
4046  * D/dalvikvm(   86): 0x4858debc (0058): b       0x4858dec0
4047  * D/dalvikvm(   86): 0x4858debe (005a): orrs    r0, r0
4048  * D/dalvikvm(   86): 0x4858dec0 (005c): ldr     r0, [r6, #112]
4049  * D/dalvikvm(   86): 0x4858dec2 (005e): blx     r0
4050  * D/dalvikvm(   86): 0x4858dec4 (0060): data    0xefd4(61396)
4051  * D/dalvikvm(   86): 0x4858dec6 (0062): data    0x42be(17086)
4052  * D/dalvikvm(   86): 0x4858dec8 (0064): .align4
4053  * D/dalvikvm(   86): -------- chaining cell (predicted)
4054  * D/dalvikvm(   86): 0x4858dec8 (0064): data    0xe7fe(59390)
4055  * D/dalvikvm(   86): 0x4858deca (0066): data    0x0000(0)
4056  * D/dalvikvm(   86): 0x4858decc (0068): data    0x0000(0)
4057  * D/dalvikvm(   86): 0x4858dece (006a): data    0x0000(0)
4058  * :
4059  */
genValidationForPredictedInline(CompilationUnit * cUnit,MIR * mir)4060 static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
4061 {
4062     CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
4063     RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
4064 
4065     rlThis = loadValue(cUnit, rlThis, kCoreReg);
4066     int regPredictedClass = dvmCompilerAllocTemp(cUnit);
4067     loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
4068     genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
4069                  NULL);/* null object? */
4070     int regActualClass = dvmCompilerAllocTemp(cUnit);
4071     loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
4072     opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
4073     /*
4074      * Set the misPredBranchOver target so that it will be generated when the
4075      * code for the non-optimized invoke is generated.
4076      */
4077     callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
4078 }
4079 
4080 /* Extended MIR instructions like PHI */
handleExtendedMIR(CompilationUnit * cUnit,MIR * mir)4081 static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
4082 {
4083     int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
4084     char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
4085                                         false);
4086     strcpy(msg, extendedMIROpNames[opOffset]);
4087     newLIR1(cUnit, kArmPseudoExtended, (int) msg);
4088 
4089     switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
4090         case kMirOpPhi: {
4091             char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
4092             newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
4093             break;
4094         }
4095         case kMirOpNullNRangeUpCheck: {
4096             genHoistedChecksForCountUpLoop(cUnit, mir);
4097             break;
4098         }
4099         case kMirOpNullNRangeDownCheck: {
4100             genHoistedChecksForCountDownLoop(cUnit, mir);
4101             break;
4102         }
4103         case kMirOpLowerBound: {
4104             genHoistedLowerBoundCheck(cUnit, mir);
4105             break;
4106         }
4107         case kMirOpPunt: {
4108             genUnconditionalBranch(cUnit,
4109                                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
4110             break;
4111         }
4112         case kMirOpCheckInlinePrediction: {
4113             genValidationForPredictedInline(cUnit, mir);
4114             break;
4115         }
4116         default:
4117             break;
4118     }
4119 }
4120 
4121 /*
4122  * Create a PC-reconstruction cell for the starting offset of this trace.
4123  * Since the PCR cell is placed near the end of the compiled code which is
4124  * usually out of range for a conditional branch, we put two branches (one
4125  * branch over to the loop body and one layover branch to the actual PCR) at the
4126  * end of the entry block.
4127  */
setupLoopEntryBlock(CompilationUnit * cUnit,BasicBlock * entry,ArmLIR * bodyLabel)4128 static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
4129                                 ArmLIR *bodyLabel)
4130 {
4131     /* Set up the place holder to reconstruct this Dalvik PC */
4132     ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4133     pcrLabel->opcode = kArmPseudoPCReconstructionCell;
4134     pcrLabel->operands[0] =
4135         (int) (cUnit->method->insns + entry->startOffset);
4136     pcrLabel->operands[1] = entry->startOffset;
4137     /* Insert the place holder to the growable list */
4138     dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
4139 
4140     /*
4141      * Next, create two branches - one branch over to the loop body and the
4142      * other branch to the PCR cell to punt.
4143      */
4144     ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4145     branchToBody->opcode = kThumbBUncond;
4146     branchToBody->generic.target = (LIR *) bodyLabel;
4147     setupResourceMasks(branchToBody);
4148     cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
4149 
4150     ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4151     branchToPCR->opcode = kThumbBUncond;
4152     branchToPCR->generic.target = (LIR *) pcrLabel;
4153     setupResourceMasks(branchToPCR);
4154     cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
4155 }
4156 
4157 #if defined(WITH_SELF_VERIFICATION)
selfVerificationPuntOps(MIR * mir)4158 static bool selfVerificationPuntOps(MIR *mir)
4159 {
4160     DecodedInstruction *decInsn = &mir->dalvikInsn;
4161 
4162     /*
4163      * All opcodes that can throw exceptions and use the
4164      * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
4165      * under self-verification mode.
4166      */
4167     switch (decInsn->opcode) {
4168         case OP_MONITOR_ENTER:
4169         case OP_MONITOR_EXIT:
4170         case OP_NEW_INSTANCE:
4171         case OP_NEW_ARRAY:
4172         case OP_CHECK_CAST:
4173         case OP_MOVE_EXCEPTION:
4174         case OP_FILL_ARRAY_DATA:
4175         case OP_EXECUTE_INLINE:
4176         case OP_EXECUTE_INLINE_RANGE:
4177             return true;
4178         default:
4179             return false;
4180     }
4181 }
4182 #endif
4183 
dvmCompilerMIR2LIR(CompilationUnit * cUnit)4184 void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
4185 {
4186     /* Used to hold the labels of each block */
4187     ArmLIR *labelList =
4188         (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
4189     ArmLIR *headLIR = NULL;
4190     GrowableList chainingListByType[kChainingCellGap];
4191     int i;
4192 
4193     /*
4194      * Initialize various types chaining lists.
4195      */
4196     for (i = 0; i < kChainingCellGap; i++) {
4197         dvmInitGrowableList(&chainingListByType[i], 2);
4198     }
4199 
4200     /* Clear the visited flag for each block */
4201     dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
4202                                           kAllNodes, false /* isIterative */);
4203 
4204     GrowableListIterator iterator;
4205     dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
4206 
4207     /* Traces start with a profiling entry point.  Generate it here */
4208     cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
4209 
4210     /* Handle the content in each basic block */
4211     for (i = 0; ; i++) {
4212         MIR *mir;
4213         BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
4214         if (bb == NULL) break;
4215         if (bb->visited == true) continue;
4216 
4217         labelList[i].operands[0] = bb->startOffset;
4218 
4219         if (bb->blockType >= kChainingCellGap) {
4220             if (bb->isFallThroughFromInvoke == true) {
4221                 /* Align this block first since it is a return chaining cell */
4222                 newLIR0(cUnit, kArmPseudoPseudoAlign4);
4223             }
4224             /*
4225              * Append the label pseudo LIR first. Chaining cells will be handled
4226              * separately afterwards.
4227              */
4228             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
4229         }
4230 
4231         if (bb->blockType == kEntryBlock) {
4232             labelList[i].opcode = kArmPseudoEntryBlock;
4233             if (bb->firstMIRInsn == NULL) {
4234                 continue;
4235             } else {
4236               setupLoopEntryBlock(cUnit, bb,
4237                                   &labelList[bb->fallThrough->id]);
4238             }
4239         } else if (bb->blockType == kExitBlock) {
4240             labelList[i].opcode = kArmPseudoExitBlock;
4241             goto gen_fallthrough;
4242         } else if (bb->blockType == kDalvikByteCode) {
4243             if (bb->hidden == true) continue;
4244             labelList[i].opcode = kArmPseudoNormalBlockLabel;
4245             /* Reset the register state */
4246             dvmCompilerResetRegPool(cUnit);
4247             dvmCompilerClobberAllRegs(cUnit);
4248             dvmCompilerResetNullCheck(cUnit);
4249         } else {
4250             switch (bb->blockType) {
4251                 case kChainingCellNormal:
4252                     labelList[i].opcode = kArmPseudoChainingCellNormal;
4253                     /* handle the codegen later */
4254                     dvmInsertGrowableList(
4255                         &chainingListByType[kChainingCellNormal], i);
4256                     break;
4257                 case kChainingCellInvokeSingleton:
4258                     labelList[i].opcode =
4259                         kArmPseudoChainingCellInvokeSingleton;
4260                     labelList[i].operands[0] =
4261                         (int) bb->containingMethod;
4262                     /* handle the codegen later */
4263                     dvmInsertGrowableList(
4264                         &chainingListByType[kChainingCellInvokeSingleton], i);
4265                     break;
4266                 case kChainingCellInvokePredicted:
4267                     labelList[i].opcode =
4268                         kArmPseudoChainingCellInvokePredicted;
4269                     /*
4270                      * Move the cached method pointer from operand 1 to 0.
4271                      * Operand 0 was clobbered earlier in this routine to store
4272                      * the block starting offset, which is not applicable to
4273                      * predicted chaining cell.
4274                      */
4275                     labelList[i].operands[0] = labelList[i].operands[1];
4276                     /* handle the codegen later */
4277                     dvmInsertGrowableList(
4278                         &chainingListByType[kChainingCellInvokePredicted], i);
4279                     break;
4280                 case kChainingCellHot:
4281                     labelList[i].opcode =
4282                         kArmPseudoChainingCellHot;
4283                     /* handle the codegen later */
4284                     dvmInsertGrowableList(
4285                         &chainingListByType[kChainingCellHot], i);
4286                     break;
4287                 case kPCReconstruction:
4288                     /* Make sure exception handling block is next */
4289                     labelList[i].opcode =
4290                         kArmPseudoPCReconstructionBlockLabel;
4291                     handlePCReconstruction(cUnit,
4292                                            &labelList[cUnit->puntBlock->id]);
4293                     break;
4294                 case kExceptionHandling:
4295                     labelList[i].opcode = kArmPseudoEHBlockLabel;
4296                     if (cUnit->pcReconstructionList.numUsed) {
4297                         loadWordDisp(cUnit, r6SELF, offsetof(Thread,
4298                                      jitToInterpEntries.dvmJitToInterpPunt),
4299                                      r1);
4300                         opReg(cUnit, kOpBlx, r1);
4301                     }
4302                     break;
4303                 case kChainingCellBackwardBranch:
4304                     labelList[i].opcode =
4305                         kArmPseudoChainingCellBackwardBranch;
4306                     /* handle the codegen later */
4307                     dvmInsertGrowableList(
4308                         &chainingListByType[kChainingCellBackwardBranch],
4309                         i);
4310                     break;
4311                 default:
4312                     break;
4313             }
4314             continue;
4315         }
4316 
4317         /*
4318          * Try to build a longer optimization unit. Currently if the previous
4319          * block ends with a goto, we continue adding instructions and don't
4320          * reset the register allocation pool.
4321          */
4322         for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
4323             bb = nextBB;
4324             bb->visited = true;
4325             cUnit->nextCodegenBlock = NULL;
4326 
4327             for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
4328 
4329                 dvmCompilerResetRegPool(cUnit);
4330                 if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
4331                     dvmCompilerClobberAllRegs(cUnit);
4332                 }
4333 
4334                 if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
4335                     dvmCompilerResetDefTracking(cUnit);
4336                 }
4337 
4338                 if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
4339                     handleExtendedMIR(cUnit, mir);
4340                     continue;
4341                 }
4342 
4343                 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
4344                 InstructionFormat dalvikFormat =
4345                     dexGetFormatFromOpcode(dalvikOpcode);
4346                 const char *note;
4347                 if (mir->OptimizationFlags & MIR_INLINED) {
4348                     note = " (I)";
4349                 } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
4350                     note = " (PI)";
4351                 } else if (mir->OptimizationFlags & MIR_CALLEE) {
4352                     note = " (C)";
4353                 } else {
4354                     note = NULL;
4355                 }
4356 
4357                 ArmLIR *boundaryLIR;
4358 
4359                 /*
4360                  * Don't generate the boundary LIR unless we are debugging this
4361                  * trace or we need a scheduling barrier.
4362                  */
4363                 if (headLIR == NULL || cUnit->printMe == true) {
4364                     boundaryLIR =
4365                         newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
4366                                 mir->offset,
4367                                 (int) dvmCompilerGetDalvikDisassembly(
4368                                     &mir->dalvikInsn, note));
4369                     /* Remember the first LIR for this block */
4370                     if (headLIR == NULL) {
4371                         headLIR = boundaryLIR;
4372                         /* Set the first boundaryLIR as a scheduling barrier */
4373                         headLIR->defMask = ENCODE_ALL;
4374                     }
4375                 }
4376 
4377                 /*
4378                  * Don't generate the SSA annotation unless verbose mode is on
4379                  */
4380                 if (cUnit->printMe && mir->ssaRep) {
4381                     char *ssaString = dvmCompilerGetSSAString(cUnit,
4382                                                               mir->ssaRep);
4383                     newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
4384                 }
4385 
4386                 bool notHandled;
4387                 /*
4388                  * Debugging: screen the opcode first to see if it is in the
4389                  * do[-not]-compile list
4390                  */
4391                 bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
4392 #if defined(WITH_SELF_VERIFICATION)
4393               if (singleStepMe == false) {
4394                   singleStepMe = selfVerificationPuntOps(mir);
4395               }
4396 #endif
4397                 if (singleStepMe || cUnit->allSingleStep) {
4398                     notHandled = false;
4399                     genInterpSingleStep(cUnit, mir);
4400                 } else {
4401                     opcodeCoverage[dalvikOpcode]++;
4402                     switch (dalvikFormat) {
4403                         case kFmt10t:
4404                         case kFmt20t:
4405                         case kFmt30t:
4406                             notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
4407                                       mir, bb, labelList);
4408                             break;
4409                         case kFmt10x:
4410                             notHandled = handleFmt10x(cUnit, mir);
4411                             break;
4412                         case kFmt11n:
4413                         case kFmt31i:
4414                             notHandled = handleFmt11n_Fmt31i(cUnit, mir);
4415                             break;
4416                         case kFmt11x:
4417                             notHandled = handleFmt11x(cUnit, mir);
4418                             break;
4419                         case kFmt12x:
4420                             notHandled = handleFmt12x(cUnit, mir);
4421                             break;
4422                         case kFmt20bc:
4423                             notHandled = handleFmt20bc(cUnit, mir);
4424                             break;
4425                         case kFmt21c:
4426                         case kFmt31c:
4427                             notHandled = handleFmt21c_Fmt31c(cUnit, mir);
4428                             break;
4429                         case kFmt21h:
4430                             notHandled = handleFmt21h(cUnit, mir);
4431                             break;
4432                         case kFmt21s:
4433                             notHandled = handleFmt21s(cUnit, mir);
4434                             break;
4435                         case kFmt21t:
4436                             notHandled = handleFmt21t(cUnit, mir, bb,
4437                                                       labelList);
4438                             break;
4439                         case kFmt22b:
4440                         case kFmt22s:
4441                             notHandled = handleFmt22b_Fmt22s(cUnit, mir);
4442                             break;
4443                         case kFmt22c:
4444                             notHandled = handleFmt22c(cUnit, mir);
4445                             break;
4446                         case kFmt22cs:
4447                             notHandled = handleFmt22cs(cUnit, mir);
4448                             break;
4449                         case kFmt22t:
4450                             notHandled = handleFmt22t(cUnit, mir, bb,
4451                                                       labelList);
4452                             break;
4453                         case kFmt22x:
4454                         case kFmt32x:
4455                             notHandled = handleFmt22x_Fmt32x(cUnit, mir);
4456                             break;
4457                         case kFmt23x:
4458                             notHandled = handleFmt23x(cUnit, mir);
4459                             break;
4460                         case kFmt31t:
4461                             notHandled = handleFmt31t(cUnit, mir);
4462                             break;
4463                         case kFmt3rc:
4464                         case kFmt35c:
4465                             notHandled = handleFmt35c_3rc(cUnit, mir, bb,
4466                                                           labelList);
4467                             break;
4468                         case kFmt3rms:
4469                         case kFmt35ms:
4470                             notHandled = handleFmt35ms_3rms(cUnit, mir, bb,
4471                                                             labelList);
4472                             break;
4473                         case kFmt35mi:
4474                         case kFmt3rmi:
4475                             notHandled = handleExecuteInline(cUnit, mir);
4476                             break;
4477                         case kFmt51l:
4478                             notHandled = handleFmt51l(cUnit, mir);
4479                             break;
4480                         default:
4481                             notHandled = true;
4482                             break;
4483                     }
4484                 }
4485                 if (notHandled) {
4486                     ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
4487                          mir->offset,
4488                          dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
4489                          dalvikFormat);
4490                     dvmCompilerAbort(cUnit);
4491                     break;
4492                 }
4493             }
4494         }
4495 
4496         if (bb->blockType == kEntryBlock) {
4497             dvmCompilerAppendLIR(cUnit,
4498                                  (LIR *) cUnit->loopAnalysis->branchToBody);
4499             dvmCompilerAppendLIR(cUnit,
4500                                  (LIR *) cUnit->loopAnalysis->branchToPCR);
4501         }
4502 
4503         if (headLIR) {
4504             /*
4505              * Eliminate redundant loads/stores and delay stores into later
4506              * slots
4507              */
4508             dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
4509                                                cUnit->lastLIRInsn);
4510             /* Reset headLIR which is also the optimization boundary */
4511             headLIR = NULL;
4512         }
4513 
4514 gen_fallthrough:
4515         /*
4516          * Check if the block is terminated due to trace length constraint -
4517          * insert an unconditional branch to the chaining cell.
4518          */
4519         if (bb->needFallThroughBranch) {
4520             genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
4521         }
4522     }
4523 
4524     /* Handle the chaining cells in predefined order */
4525     for (i = 0; i < kChainingCellGap; i++) {
4526         size_t j;
4527         int *blockIdList = (int *) chainingListByType[i].elemList;
4528 
4529         cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
4530 
4531         /* No chaining cells of this type */
4532         if (cUnit->numChainingCells[i] == 0)
4533             continue;
4534 
4535         /* Record the first LIR for a new type of chaining cell */
4536         cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
4537 
4538         for (j = 0; j < chainingListByType[i].numUsed; j++) {
4539             int blockId = blockIdList[j];
4540             BasicBlock *chainingBlock =
4541                 (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
4542                                                          blockId);
4543 
4544             /* Align this chaining cell first */
4545             newLIR0(cUnit, kArmPseudoPseudoAlign4);
4546 
4547             /* Insert the pseudo chaining instruction */
4548             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
4549 
4550 
4551             switch (chainingBlock->blockType) {
4552                 case kChainingCellNormal:
4553                     handleNormalChainingCell(cUnit, chainingBlock->startOffset);
4554                     break;
4555                 case kChainingCellInvokeSingleton:
4556                     handleInvokeSingletonChainingCell(cUnit,
4557                         chainingBlock->containingMethod);
4558                     break;
4559                 case kChainingCellInvokePredicted:
4560                     handleInvokePredictedChainingCell(cUnit);
4561                     break;
4562                 case kChainingCellHot:
4563                     handleHotChainingCell(cUnit, chainingBlock->startOffset);
4564                     break;
4565                 case kChainingCellBackwardBranch:
4566                     handleBackwardBranchChainingCell(cUnit,
4567                         chainingBlock->startOffset);
4568                     break;
4569                 default:
4570                     ALOGE("Bad blocktype %d", chainingBlock->blockType);
4571                     dvmCompilerAbort(cUnit);
4572             }
4573         }
4574     }
4575 
4576     /* Mark the bottom of chaining cells */
4577     cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
4578 
4579     /*
4580      * Generate the branch to the dvmJitToInterpNoChain entry point at the end
4581      * of all chaining cells for the overflow cases.
4582      */
4583     if (cUnit->switchOverflowPad) {
4584         loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
4585         loadWordDisp(cUnit, r6SELF, offsetof(Thread,
4586                      jitToInterpEntries.dvmJitToInterpNoChain), r2);
4587         opRegReg(cUnit, kOpAdd, r1, r1);
4588         opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
4589 #if defined(WITH_JIT_TUNING)
4590         loadConstant(cUnit, r0, kSwitchOverflow);
4591 #endif
4592         opReg(cUnit, kOpBlx, r2);
4593     }
4594 
4595     dvmCompilerApplyGlobalOptimizations(cUnit);
4596 
4597 #if defined(WITH_SELF_VERIFICATION)
4598     selfVerificationBranchInsertPass(cUnit);
4599 #endif
4600 }
4601 
4602 /*
4603  * Accept the work and start compiling.  Returns true if compilation
4604  * is attempted.
4605  */
dvmCompilerDoWork(CompilerWorkOrder * work)4606 bool dvmCompilerDoWork(CompilerWorkOrder *work)
4607 {
4608     JitTraceDescription *desc;
4609     bool isCompile;
4610     bool success = true;
4611 
4612     if (gDvmJit.codeCacheFull) {
4613         return false;
4614     }
4615 
4616     switch (work->kind) {
4617         case kWorkOrderTrace:
4618             isCompile = true;
4619             /* Start compilation with maximally allowed trace length */
4620             desc = (JitTraceDescription *)work->info;
4621             success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4622                                         work->bailPtr, 0 /* no hints */);
4623             break;
4624         case kWorkOrderTraceDebug: {
4625             bool oldPrintMe = gDvmJit.printMe;
4626             gDvmJit.printMe = true;
4627             isCompile = true;
4628             /* Start compilation with maximally allowed trace length */
4629             desc = (JitTraceDescription *)work->info;
4630             success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4631                                         work->bailPtr, 0 /* no hints */);
4632             gDvmJit.printMe = oldPrintMe;
4633             break;
4634         }
4635         case kWorkOrderProfileMode:
4636             dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
4637             isCompile = false;
4638             break;
4639         default:
4640             isCompile = false;
4641             ALOGE("Jit: unknown work order type");
4642             assert(0);  // Bail if debug build, discard otherwise
4643     }
4644     if (!success)
4645         work->result.codeAddress = NULL;
4646     return isCompile;
4647 }
4648 
4649 /* Architectural-specific debugging helpers go here */
dvmCompilerArchDump(void)4650 void dvmCompilerArchDump(void)
4651 {
4652     /* Print compiled opcode in this VM instance */
4653     int i, start, streak;
4654     char buf[1024];
4655 
4656     streak = i = 0;
4657     buf[0] = 0;
4658     while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
4659         i++;
4660     }
4661     if (i == kNumPackedOpcodes) {
4662         return;
4663     }
4664     for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) {
4665         if (opcodeCoverage[i]) {
4666             streak++;
4667         } else {
4668             if (streak == 1) {
4669                 sprintf(buf+strlen(buf), "%x,", start);
4670             } else {
4671                 sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
4672             }
4673             streak = 0;
4674             while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
4675                 i++;
4676             }
4677             if (i < kNumPackedOpcodes) {
4678                 streak = 1;
4679                 start = i;
4680             }
4681         }
4682     }
4683     if (streak) {
4684         if (streak == 1) {
4685             sprintf(buf+strlen(buf), "%x", start);
4686         } else {
4687             sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
4688         }
4689     }
4690     if (strlen(buf)) {
4691         ALOGD("dalvik.vm.jit.op = %s", buf);
4692     }
4693 }
4694 
4695 /* Common initialization routine for an architecture family */
dvmCompilerArchInit()4696 bool dvmCompilerArchInit()
4697 {
4698     int i;
4699 
4700     for (i = 0; i < kArmLast; i++) {
4701         if (EncodingMap[i].opcode != i) {
4702             ALOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
4703                  EncodingMap[i].name, i, EncodingMap[i].opcode);
4704             dvmAbort();  // OK to dvmAbort - build error
4705         }
4706     }
4707 
4708     return dvmCompilerArchVariantInit();
4709 }
4710 
dvmCompilerGetInterpretTemplate()4711 void *dvmCompilerGetInterpretTemplate()
4712 {
4713       return (void*) ((int)gDvmJit.codeCache +
4714                       templateEntryOffsets[TEMPLATE_INTERPRET]);
4715 }
4716 
dvmCompilerGetInterpretTemplateSet()4717 JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
4718 {
4719     return DALVIK_JIT_ARM;
4720 }
4721 
4722 /* Needed by the Assembler */
dvmCompilerSetupResourceMasks(ArmLIR * lir)4723 void dvmCompilerSetupResourceMasks(ArmLIR *lir)
4724 {
4725     setupResourceMasks(lir);
4726 }
4727 
4728 /* Needed by the ld/st optmizatons */
dvmCompilerRegCopyNoInsert(CompilationUnit * cUnit,int rDest,int rSrc)4729 ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
4730 {
4731     return genRegCopyNoInsert(cUnit, rDest, rSrc);
4732 }
4733 
4734 /* Needed by the register allocator */
dvmCompilerRegCopy(CompilationUnit * cUnit,int rDest,int rSrc)4735 ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
4736 {
4737     return genRegCopy(cUnit, rDest, rSrc);
4738 }
4739 
4740 /* Needed by the register allocator */
dvmCompilerRegCopyWide(CompilationUnit * cUnit,int destLo,int destHi,int srcLo,int srcHi)4741 void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
4742                             int srcLo, int srcHi)
4743 {
4744     genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
4745 }
4746 
dvmCompilerFlushRegImpl(CompilationUnit * cUnit,int rBase,int displacement,int rSrc,OpSize size)4747 void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
4748                              int displacement, int rSrc, OpSize size)
4749 {
4750     storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
4751 }
4752 
dvmCompilerFlushRegWideImpl(CompilationUnit * cUnit,int rBase,int displacement,int rSrcLo,int rSrcHi)4753 void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
4754                                  int displacement, int rSrcLo, int rSrcHi)
4755 {
4756     storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
4757 }
4758