1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // An example of solving a dynamically sized problem with various
32 // solvers and loss functions.
33 //
34 // For a simpler bare bones example of doing bundle adjustment with
35 // Ceres, please see simple_bundle_adjuster.cc.
36 //
37 // NOTE: This example will not compile without gflags and SuiteSparse.
38 //
39 // The problem being solved here is known as a Bundle Adjustment
40 // problem in computer vision. Given a set of 3d points X_1, ..., X_n,
41 // a set of cameras P_1, ..., P_m. If the point X_i is visible in
42 // image j, then there is a 2D observation u_ij that is the expected
43 // projection of X_i using P_j. The aim of this optimization is to
44 // find values of X_i and P_j such that the reprojection error
45 //
46 // E(X,P) = sum_ij |u_ij - P_j X_i|^2
47 //
48 // is minimized.
49 //
50 // The problem used here comes from a collection of bundle adjustment
51 // problems published at University of Washington.
52 // http://grail.cs.washington.edu/projects/bal
53
54 #include <algorithm>
55 #include <cmath>
56 #include <cstdio>
57 #include <cstdlib>
58 #include <string>
59 #include <vector>
60
61 #include "bal_problem.h"
62 #include "ceres/ceres.h"
63 #include "ceres/random.h"
64 #include "gflags/gflags.h"
65 #include "glog/logging.h"
66 #include "snavely_reprojection_error.h"
67
68 DEFINE_string(input, "", "Input File name");
69 DEFINE_string(trust_region_strategy, "levenberg_marquardt",
70 "Options are: levenberg_marquardt, dogleg.");
71 DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"
72 "subspace_dogleg.");
73
74 DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "
75 "refine each successful trust region step.");
76
77 DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "
78 "automatic, cameras, points, cameras,points, points,cameras");
79
80 DEFINE_string(linear_solver, "sparse_schur", "Options are: "
81 "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, "
82 "dense_qr, dense_normal_cholesky and cgnr.");
83 DEFINE_string(preconditioner, "jacobi", "Options are: "
84 "identity, jacobi, schur_jacobi, cluster_jacobi, "
85 "cluster_tridiagonal.");
86 DEFINE_string(sparse_linear_algebra_library, "suite_sparse",
87 "Options are: suite_sparse and cx_sparse.");
88 DEFINE_string(ordering, "automatic", "Options are: automatic, user.");
89
90 DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
91 "rotations. If false, angle axis is used.");
92 DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "
93 "parameterization.");
94 DEFINE_bool(robustify, false, "Use a robust loss function.");
95
96 DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "
97 "accuracy of each linear solve of the truncated newton step. "
98 "Changing this parameter can affect solve performance.");
99
100 DEFINE_bool(use_block_amd, true, "Use a block oriented fill reducing "
101 "ordering.");
102
103 DEFINE_int32(num_threads, 1, "Number of threads.");
104 DEFINE_int32(num_iterations, 5, "Number of iterations.");
105 DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");
106 DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
107 " nonmonotic steps.");
108
109 DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "
110 "perturbation.");
111 DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "
112 "translation perturbation.");
113 DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "
114 "perturbation.");
115 DEFINE_int32(random_seed, 38401, "Random seed used to set the state "
116 "of the pseudo random number generator used to generate "
117 "the pertubations.");
118 DEFINE_string(solver_log, "", "File to record the solver execution to.");
119
120 namespace ceres {
121 namespace examples {
122
SetLinearSolver(Solver::Options * options)123 void SetLinearSolver(Solver::Options* options) {
124 CHECK(StringToLinearSolverType(FLAGS_linear_solver,
125 &options->linear_solver_type));
126 CHECK(StringToPreconditionerType(FLAGS_preconditioner,
127 &options->preconditioner_type));
128 CHECK(StringToSparseLinearAlgebraLibraryType(
129 FLAGS_sparse_linear_algebra_library,
130 &options->sparse_linear_algebra_library));
131 options->num_linear_solver_threads = FLAGS_num_threads;
132 }
133
SetOrdering(BALProblem * bal_problem,Solver::Options * options)134 void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
135 const int num_points = bal_problem->num_points();
136 const int point_block_size = bal_problem->point_block_size();
137 double* points = bal_problem->mutable_points();
138
139 const int num_cameras = bal_problem->num_cameras();
140 const int camera_block_size = bal_problem->camera_block_size();
141 double* cameras = bal_problem->mutable_cameras();
142
143 options->use_block_amd = FLAGS_use_block_amd;
144
145 if (options->use_inner_iterations) {
146 if (FLAGS_blocks_for_inner_iterations == "cameras") {
147 LOG(INFO) << "Camera blocks for inner iterations";
148 options->inner_iteration_ordering = new ParameterBlockOrdering;
149 for (int i = 0; i < num_cameras; ++i) {
150 options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
151 }
152 } else if (FLAGS_blocks_for_inner_iterations == "points") {
153 LOG(INFO) << "Point blocks for inner iterations";
154 options->inner_iteration_ordering = new ParameterBlockOrdering;
155 for (int i = 0; i < num_points; ++i) {
156 options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
157 }
158 } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") {
159 LOG(INFO) << "Camera followed by point blocks for inner iterations";
160 options->inner_iteration_ordering = new ParameterBlockOrdering;
161 for (int i = 0; i < num_cameras; ++i) {
162 options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
163 }
164 for (int i = 0; i < num_points; ++i) {
165 options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1);
166 }
167 } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") {
168 LOG(INFO) << "Point followed by camera blocks for inner iterations";
169 options->inner_iteration_ordering = new ParameterBlockOrdering;
170 for (int i = 0; i < num_cameras; ++i) {
171 options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
172 }
173 for (int i = 0; i < num_points; ++i) {
174 options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
175 }
176 } else if (FLAGS_blocks_for_inner_iterations == "automatic") {
177 LOG(INFO) << "Choosing automatic blocks for inner iterations";
178 } else {
179 LOG(FATAL) << "Unknown block type for inner iterations: "
180 << FLAGS_blocks_for_inner_iterations;
181 }
182 }
183
184 // Bundle adjustment problems have a sparsity structure that makes
185 // them amenable to more specialized and much more efficient
186 // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
187 // ITERATIVE_SCHUR solvers make use of this specialized
188 // structure.
189 //
190 // This can either be done by specifying Options::ordering_type =
191 // ceres::SCHUR, in which case Ceres will automatically determine
192 // the right ParameterBlock ordering, or by manually specifying a
193 // suitable ordering vector and defining
194 // Options::num_eliminate_blocks.
195 if (FLAGS_ordering == "automatic") {
196 return;
197 }
198
199 ceres::ParameterBlockOrdering* ordering =
200 new ceres::ParameterBlockOrdering;
201
202 // The points come before the cameras.
203 for (int i = 0; i < num_points; ++i) {
204 ordering->AddElementToGroup(points + point_block_size * i, 0);
205 }
206
207 for (int i = 0; i < num_cameras; ++i) {
208 // When using axis-angle, there is a single parameter block for
209 // the entire camera.
210 ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
211 // If quaternions are used, there are two blocks, so add the
212 // second block to the ordering.
213 if (FLAGS_use_quaternions) {
214 ordering->AddElementToGroup(cameras + camera_block_size * i + 4, 1);
215 }
216 }
217
218 options->linear_solver_ordering = ordering;
219 }
220
SetMinimizerOptions(Solver::Options * options)221 void SetMinimizerOptions(Solver::Options* options) {
222 options->max_num_iterations = FLAGS_num_iterations;
223 options->minimizer_progress_to_stdout = true;
224 options->num_threads = FLAGS_num_threads;
225 options->eta = FLAGS_eta;
226 options->max_solver_time_in_seconds = FLAGS_max_solver_time;
227 options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;
228 CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy,
229 &options->trust_region_strategy_type));
230 CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));
231 options->use_inner_iterations = FLAGS_inner_iterations;
232 }
233
SetSolverOptionsFromFlags(BALProblem * bal_problem,Solver::Options * options)234 void SetSolverOptionsFromFlags(BALProblem* bal_problem,
235 Solver::Options* options) {
236 SetMinimizerOptions(options);
237 SetLinearSolver(options);
238 SetOrdering(bal_problem, options);
239 }
240
BuildProblem(BALProblem * bal_problem,Problem * problem)241 void BuildProblem(BALProblem* bal_problem, Problem* problem) {
242 const int point_block_size = bal_problem->point_block_size();
243 const int camera_block_size = bal_problem->camera_block_size();
244 double* points = bal_problem->mutable_points();
245 double* cameras = bal_problem->mutable_cameras();
246
247 // Observations is 2*num_observations long array observations =
248 // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
249 // and y positions of the observation.
250 const double* observations = bal_problem->observations();
251
252 for (int i = 0; i < bal_problem->num_observations(); ++i) {
253 CostFunction* cost_function;
254 // Each Residual block takes a point and a camera as input and
255 // outputs a 2 dimensional residual.
256 if (FLAGS_use_quaternions) {
257 cost_function = new AutoDiffCostFunction<
258 SnavelyReprojectionErrorWithQuaternions, 2, 4, 6, 3>(
259 new SnavelyReprojectionErrorWithQuaternions(
260 observations[2 * i + 0],
261 observations[2 * i + 1]));
262 } else {
263 cost_function =
264 new AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
265 new SnavelyReprojectionError(observations[2 * i + 0],
266 observations[2 * i + 1]));
267 }
268
269 // If enabled use Huber's loss function.
270 LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;
271
272 // Each observation correponds to a pair of a camera and a point
273 // which are identified by camera_index()[i] and point_index()[i]
274 // respectively.
275 double* camera =
276 cameras + camera_block_size * bal_problem->camera_index()[i];
277 double* point = points + point_block_size * bal_problem->point_index()[i];
278
279 if (FLAGS_use_quaternions) {
280 // When using quaternions, we split the camera into two
281 // parameter blocks. One of size 4 for the quaternion and the
282 // other of size 6 containing the translation, focal length and
283 // the radial distortion parameters.
284 problem->AddResidualBlock(cost_function,
285 loss_function,
286 camera,
287 camera + 4,
288 point);
289 } else {
290 problem->AddResidualBlock(cost_function, loss_function, camera, point);
291 }
292 }
293
294 if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {
295 LocalParameterization* quaternion_parameterization =
296 new QuaternionParameterization;
297 for (int i = 0; i < bal_problem->num_cameras(); ++i) {
298 problem->SetParameterization(cameras + camera_block_size * i,
299 quaternion_parameterization);
300 }
301 }
302 }
303
SolveProblem(const char * filename)304 void SolveProblem(const char* filename) {
305 BALProblem bal_problem(filename, FLAGS_use_quaternions);
306 Problem problem;
307
308 SetRandomState(FLAGS_random_seed);
309 bal_problem.Normalize();
310 bal_problem.Perturb(FLAGS_rotation_sigma,
311 FLAGS_translation_sigma,
312 FLAGS_point_sigma);
313
314 BuildProblem(&bal_problem, &problem);
315 Solver::Options options;
316 SetSolverOptionsFromFlags(&bal_problem, &options);
317 options.solver_log = FLAGS_solver_log;
318 options.gradient_tolerance = 1e-16;
319 options.function_tolerance = 1e-16;
320 Solver::Summary summary;
321 Solve(options, &problem, &summary);
322 std::cout << summary.FullReport() << "\n";
323 }
324
325 } // namespace examples
326 } // namespace ceres
327
main(int argc,char ** argv)328 int main(int argc, char** argv) {
329 google::ParseCommandLineFlags(&argc, &argv, true);
330 google::InitGoogleLogging(argv[0]);
331 if (FLAGS_input.empty()) {
332 LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem";
333 return 1;
334 }
335
336 CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)
337 << "--use_local_parameterization can only be used with "
338 << "--use_quaternions.";
339 ceres::examples::SolveProblem(FLAGS_input.c_str());
340 return 0;
341 }
342