• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // An example of solving a dynamically sized problem with various
32 // solvers and loss functions.
33 //
34 // For a simpler bare bones example of doing bundle adjustment with
35 // Ceres, please see simple_bundle_adjuster.cc.
36 //
37 // NOTE: This example will not compile without gflags and SuiteSparse.
38 //
39 // The problem being solved here is known as a Bundle Adjustment
40 // problem in computer vision. Given a set of 3d points X_1, ..., X_n,
41 // a set of cameras P_1, ..., P_m. If the point X_i is visible in
42 // image j, then there is a 2D observation u_ij that is the expected
43 // projection of X_i using P_j. The aim of this optimization is to
44 // find values of X_i and P_j such that the reprojection error
45 //
46 //    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2
47 //
48 // is minimized.
49 //
50 // The problem used here comes from a collection of bundle adjustment
51 // problems published at University of Washington.
52 // http://grail.cs.washington.edu/projects/bal
53 
54 #include <algorithm>
55 #include <cmath>
56 #include <cstdio>
57 #include <cstdlib>
58 #include <string>
59 #include <vector>
60 
61 #include "bal_problem.h"
62 #include "ceres/ceres.h"
63 #include "ceres/random.h"
64 #include "gflags/gflags.h"
65 #include "glog/logging.h"
66 #include "snavely_reprojection_error.h"
67 
68 DEFINE_string(input, "", "Input File name");
69 DEFINE_string(trust_region_strategy, "levenberg_marquardt",
70               "Options are: levenberg_marquardt, dogleg.");
71 DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"
72               "subspace_dogleg.");
73 
74 DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "
75             "refine each successful trust region step.");
76 
77 DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "
78             "automatic, cameras, points, cameras,points, points,cameras");
79 
80 DEFINE_string(linear_solver, "sparse_schur", "Options are: "
81               "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, "
82               "dense_qr, dense_normal_cholesky and cgnr.");
83 DEFINE_string(preconditioner, "jacobi", "Options are: "
84               "identity, jacobi, schur_jacobi, cluster_jacobi, "
85               "cluster_tridiagonal.");
86 DEFINE_string(sparse_linear_algebra_library, "suite_sparse",
87               "Options are: suite_sparse and cx_sparse.");
88 DEFINE_string(ordering, "automatic", "Options are: automatic, user.");
89 
90 DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
91             "rotations. If false, angle axis is used.");
92 DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "
93             "parameterization.");
94 DEFINE_bool(robustify, false, "Use a robust loss function.");
95 
96 DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "
97              "accuracy of each linear solve of the truncated newton step. "
98              "Changing this parameter can affect solve performance.");
99 
100 DEFINE_bool(use_block_amd, true, "Use a block oriented fill reducing "
101             "ordering.");
102 
103 DEFINE_int32(num_threads, 1, "Number of threads.");
104 DEFINE_int32(num_iterations, 5, "Number of iterations.");
105 DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");
106 DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
107             " nonmonotic steps.");
108 
109 DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "
110               "perturbation.");
111 DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "
112               "translation perturbation.");
113 DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "
114               "perturbation.");
115 DEFINE_int32(random_seed, 38401, "Random seed used to set the state "
116              "of the pseudo random number generator used to generate "
117              "the pertubations.");
118 DEFINE_string(solver_log, "", "File to record the solver execution to.");
119 
120 namespace ceres {
121 namespace examples {
122 
SetLinearSolver(Solver::Options * options)123 void SetLinearSolver(Solver::Options* options) {
124   CHECK(StringToLinearSolverType(FLAGS_linear_solver,
125                                  &options->linear_solver_type));
126   CHECK(StringToPreconditionerType(FLAGS_preconditioner,
127                                    &options->preconditioner_type));
128   CHECK(StringToSparseLinearAlgebraLibraryType(
129             FLAGS_sparse_linear_algebra_library,
130             &options->sparse_linear_algebra_library));
131   options->num_linear_solver_threads = FLAGS_num_threads;
132 }
133 
SetOrdering(BALProblem * bal_problem,Solver::Options * options)134 void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
135   const int num_points = bal_problem->num_points();
136   const int point_block_size = bal_problem->point_block_size();
137   double* points = bal_problem->mutable_points();
138 
139   const int num_cameras = bal_problem->num_cameras();
140   const int camera_block_size = bal_problem->camera_block_size();
141   double* cameras = bal_problem->mutable_cameras();
142 
143   options->use_block_amd = FLAGS_use_block_amd;
144 
145   if (options->use_inner_iterations) {
146     if (FLAGS_blocks_for_inner_iterations == "cameras") {
147       LOG(INFO) << "Camera blocks for inner iterations";
148       options->inner_iteration_ordering = new ParameterBlockOrdering;
149       for (int i = 0; i < num_cameras; ++i) {
150         options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
151       }
152     } else if (FLAGS_blocks_for_inner_iterations == "points") {
153       LOG(INFO) << "Point blocks for inner iterations";
154       options->inner_iteration_ordering = new ParameterBlockOrdering;
155       for (int i = 0; i < num_points; ++i) {
156         options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
157       }
158     } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") {
159       LOG(INFO) << "Camera followed by point blocks for inner iterations";
160       options->inner_iteration_ordering = new ParameterBlockOrdering;
161       for (int i = 0; i < num_cameras; ++i) {
162         options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
163       }
164       for (int i = 0; i < num_points; ++i) {
165         options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1);
166       }
167     } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") {
168       LOG(INFO) << "Point followed by camera blocks for inner iterations";
169       options->inner_iteration_ordering = new ParameterBlockOrdering;
170       for (int i = 0; i < num_cameras; ++i) {
171         options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
172       }
173       for (int i = 0; i < num_points; ++i) {
174         options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
175       }
176     } else if (FLAGS_blocks_for_inner_iterations == "automatic") {
177       LOG(INFO) << "Choosing automatic blocks for inner iterations";
178     } else {
179       LOG(FATAL) << "Unknown block type for inner iterations: "
180                  << FLAGS_blocks_for_inner_iterations;
181     }
182   }
183 
184   // Bundle adjustment problems have a sparsity structure that makes
185   // them amenable to more specialized and much more efficient
186   // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
187   // ITERATIVE_SCHUR solvers make use of this specialized
188   // structure.
189   //
190   // This can either be done by specifying Options::ordering_type =
191   // ceres::SCHUR, in which case Ceres will automatically determine
192   // the right ParameterBlock ordering, or by manually specifying a
193   // suitable ordering vector and defining
194   // Options::num_eliminate_blocks.
195   if (FLAGS_ordering == "automatic") {
196     return;
197   }
198 
199   ceres::ParameterBlockOrdering* ordering =
200       new ceres::ParameterBlockOrdering;
201 
202   // The points come before the cameras.
203   for (int i = 0; i < num_points; ++i) {
204     ordering->AddElementToGroup(points + point_block_size * i, 0);
205   }
206 
207   for (int i = 0; i < num_cameras; ++i) {
208     // When using axis-angle, there is a single parameter block for
209     // the entire camera.
210     ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
211     // If quaternions are used, there are two blocks, so add the
212     // second block to the ordering.
213     if (FLAGS_use_quaternions) {
214       ordering->AddElementToGroup(cameras + camera_block_size * i + 4, 1);
215     }
216   }
217 
218   options->linear_solver_ordering = ordering;
219 }
220 
SetMinimizerOptions(Solver::Options * options)221 void SetMinimizerOptions(Solver::Options* options) {
222   options->max_num_iterations = FLAGS_num_iterations;
223   options->minimizer_progress_to_stdout = true;
224   options->num_threads = FLAGS_num_threads;
225   options->eta = FLAGS_eta;
226   options->max_solver_time_in_seconds = FLAGS_max_solver_time;
227   options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;
228   CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy,
229                                         &options->trust_region_strategy_type));
230   CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));
231   options->use_inner_iterations = FLAGS_inner_iterations;
232 }
233 
SetSolverOptionsFromFlags(BALProblem * bal_problem,Solver::Options * options)234 void SetSolverOptionsFromFlags(BALProblem* bal_problem,
235                                Solver::Options* options) {
236   SetMinimizerOptions(options);
237   SetLinearSolver(options);
238   SetOrdering(bal_problem, options);
239 }
240 
BuildProblem(BALProblem * bal_problem,Problem * problem)241 void BuildProblem(BALProblem* bal_problem, Problem* problem) {
242   const int point_block_size = bal_problem->point_block_size();
243   const int camera_block_size = bal_problem->camera_block_size();
244   double* points = bal_problem->mutable_points();
245   double* cameras = bal_problem->mutable_cameras();
246 
247   // Observations is 2*num_observations long array observations =
248   // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
249   // and y positions of the observation.
250   const double* observations = bal_problem->observations();
251 
252   for (int i = 0; i < bal_problem->num_observations(); ++i) {
253     CostFunction* cost_function;
254     // Each Residual block takes a point and a camera as input and
255     // outputs a 2 dimensional residual.
256     if (FLAGS_use_quaternions) {
257       cost_function = new AutoDiffCostFunction<
258           SnavelyReprojectionErrorWithQuaternions, 2, 4, 6, 3>(
259               new SnavelyReprojectionErrorWithQuaternions(
260                   observations[2 * i + 0],
261                   observations[2 * i + 1]));
262     } else {
263       cost_function =
264           new AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
265               new SnavelyReprojectionError(observations[2 * i + 0],
266                                            observations[2 * i + 1]));
267     }
268 
269     // If enabled use Huber's loss function.
270     LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;
271 
272     // Each observation correponds to a pair of a camera and a point
273     // which are identified by camera_index()[i] and point_index()[i]
274     // respectively.
275     double* camera =
276         cameras + camera_block_size * bal_problem->camera_index()[i];
277     double* point = points + point_block_size * bal_problem->point_index()[i];
278 
279     if (FLAGS_use_quaternions) {
280       // When using quaternions, we split the camera into two
281       // parameter blocks. One of size 4 for the quaternion and the
282       // other of size 6 containing the translation, focal length and
283       // the radial distortion parameters.
284       problem->AddResidualBlock(cost_function,
285                                 loss_function,
286                                 camera,
287                                 camera + 4,
288                                 point);
289     } else {
290       problem->AddResidualBlock(cost_function, loss_function, camera, point);
291     }
292   }
293 
294   if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {
295     LocalParameterization* quaternion_parameterization =
296          new QuaternionParameterization;
297     for (int i = 0; i < bal_problem->num_cameras(); ++i) {
298       problem->SetParameterization(cameras + camera_block_size * i,
299                                    quaternion_parameterization);
300     }
301   }
302 }
303 
SolveProblem(const char * filename)304 void SolveProblem(const char* filename) {
305   BALProblem bal_problem(filename, FLAGS_use_quaternions);
306   Problem problem;
307 
308   SetRandomState(FLAGS_random_seed);
309   bal_problem.Normalize();
310   bal_problem.Perturb(FLAGS_rotation_sigma,
311                       FLAGS_translation_sigma,
312                       FLAGS_point_sigma);
313 
314   BuildProblem(&bal_problem, &problem);
315   Solver::Options options;
316   SetSolverOptionsFromFlags(&bal_problem, &options);
317   options.solver_log = FLAGS_solver_log;
318   options.gradient_tolerance = 1e-16;
319   options.function_tolerance = 1e-16;
320   Solver::Summary summary;
321   Solve(options, &problem, &summary);
322   std::cout << summary.FullReport() << "\n";
323 }
324 
325 }  // namespace examples
326 }  // namespace ceres
327 
main(int argc,char ** argv)328 int main(int argc, char** argv) {
329   google::ParseCommandLineFlags(&argc, &argv, true);
330   google::InitGoogleLogging(argv[0]);
331   if (FLAGS_input.empty()) {
332     LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem";
333     return 1;
334   }
335 
336   CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)
337       << "--use_local_parameterization can only be used with "
338       << "--use_quaternions.";
339   ceres::examples::SolveProblem(FLAGS_input.c_str());
340   return 0;
341 }
342