• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: jorg@google.com (Jorg Brown)
30 //
31 // This is an implementation designed to match the anticipated future TR2
32 // implementation of the scoped_ptr class, and its closely-related brethren,
33 // scoped_array, scoped_ptr_malloc, and make_scoped_ptr.
34 
35 #ifndef CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_
36 #define CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_
37 
38 #include <assert.h>
39 #include <stdlib.h>
40 #include <cstddef>
41 
42 namespace ceres {
43 namespace internal {
44 
45 template <class C> class scoped_ptr;
46 template <class C, class Free> class scoped_ptr_malloc;
47 template <class C> class scoped_array;
48 
49 template <class C>
50 scoped_ptr<C> make_scoped_ptr(C *);
51 
52 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
53 // automatically deletes the pointer it holds (if any). That is, scoped_ptr<T>
54 // owns the T object that it points to. Like a T*, a scoped_ptr<T> may hold
55 // either NULL or a pointer to a T object. Also like T*, scoped_ptr<T> is
56 // thread-compatible, and once you dereference it, you get the threadsafety
57 // guarantees of T.
58 //
59 // The size of a scoped_ptr is small: sizeof(scoped_ptr<C>) == sizeof(C*)
60 template <class C>
61 class scoped_ptr {
62  public:
63 
64   // The element type
65   typedef C element_type;
66 
67   // Constructor.  Defaults to intializing with NULL.
68   // There is no way to create an uninitialized scoped_ptr.
69   // The input parameter must be allocated with new.
ptr_(p)70   explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
71 
72   // Destructor.  If there is a C object, delete it.
73   // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_ptr()74   ~scoped_ptr() {
75     enum { type_must_be_complete = sizeof(C) };
76     delete ptr_;
77   }
78 
79   // Reset.  Deletes the current owned object, if any.
80   // Then takes ownership of a new object, if given.
81   // this->reset(this->get()) works.
82   void reset(C* p = NULL) {
83     if (p != ptr_) {
84       enum { type_must_be_complete = sizeof(C) };
85       delete ptr_;
86       ptr_ = p;
87     }
88   }
89 
90   // Accessors to get the owned object.
91   // operator* and operator-> will assert() if there is no current object.
92   C& operator*() const {
93     assert(ptr_ != NULL);
94     return *ptr_;
95   }
96   C* operator->() const  {
97     assert(ptr_ != NULL);
98     return ptr_;
99   }
get()100   C* get() const { return ptr_; }
101 
102   // Comparison operators.
103   // These return whether a scoped_ptr and a raw pointer refer to
104   // the same object, not just to two different but equal objects.
105   bool operator==(const C* p) const { return ptr_ == p; }
106   bool operator!=(const C* p) const { return ptr_ != p; }
107 
108   // Swap two scoped pointers.
swap(scoped_ptr & p2)109   void swap(scoped_ptr& p2) {
110     C* tmp = ptr_;
111     ptr_ = p2.ptr_;
112     p2.ptr_ = tmp;
113   }
114 
115   // Release a pointer.
116   // The return value is the current pointer held by this object.
117   // If this object holds a NULL pointer, the return value is NULL.
118   // After this operation, this object will hold a NULL pointer,
119   // and will not own the object any more.
release()120   C* release() {
121     C* retVal = ptr_;
122     ptr_ = NULL;
123     return retVal;
124   }
125 
126  private:
127   C* ptr_;
128 
129   // google3 friend class that can access copy ctor (although if it actually
130   // calls a copy ctor, there will be a problem) see below
131   friend scoped_ptr<C> make_scoped_ptr<C>(C *p);
132 
133   // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
134   // make sense, and if C2 == C, it still doesn't make sense because you should
135   // never have the same object owned by two different scoped_ptrs.
136   template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
137   template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
138 
139   // Disallow evil constructors
140   scoped_ptr(const scoped_ptr&);
141   void operator=(const scoped_ptr&);
142 };
143 
144 // Free functions
145 template <class C>
swap(scoped_ptr<C> & p1,scoped_ptr<C> & p2)146 inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
147   p1.swap(p2);
148 }
149 
150 template <class C>
151 inline bool operator==(const C* p1, const scoped_ptr<C>& p2) {
152   return p1 == p2.get();
153 }
154 
155 template <class C>
156 inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) {
157   return p1 == p2.get();
158 }
159 
160 template <class C>
161 inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) {
162   return p1 != p2.get();
163 }
164 
165 template <class C>
166 inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) {
167   return p1 != p2.get();
168 }
169 
170 template <class C>
make_scoped_ptr(C * p)171 scoped_ptr<C> make_scoped_ptr(C *p) {
172   // This does nothing but to return a scoped_ptr of the type that the passed
173   // pointer is of.  (This eliminates the need to specify the name of T when
174   // making a scoped_ptr that is used anonymously/temporarily.)  From an
175   // access control point of view, we construct an unnamed scoped_ptr here
176   // which we return and thus copy-construct.  Hence, we need to have access
177   // to scoped_ptr::scoped_ptr(scoped_ptr const &).  However, it is guaranteed
178   // that we never actually call the copy constructor, which is a good thing
179   // as we would call the temporary's object destructor (and thus delete p)
180   // if we actually did copy some object, here.
181   return scoped_ptr<C>(p);
182 }
183 
184 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
185 // with new [] and the destructor deletes objects with delete [].
186 //
187 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
188 // or is NULL.  A scoped_array<C> owns the object that it points to.
189 // scoped_array<T> is thread-compatible, and once you index into it,
190 // the returned objects have only the threadsafety guarantees of T.
191 //
192 // Size: sizeof(scoped_array<C>) == sizeof(C*)
193 template <class C>
194 class scoped_array {
195  public:
196 
197   // The element type
198   typedef C element_type;
199 
200   // Constructor.  Defaults to intializing with NULL.
201   // There is no way to create an uninitialized scoped_array.
202   // The input parameter must be allocated with new [].
array_(p)203   explicit scoped_array(C* p = NULL) : array_(p) { }
204 
205   // Destructor.  If there is a C object, delete it.
206   // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_array()207   ~scoped_array() {
208     enum { type_must_be_complete = sizeof(C) };
209     delete[] array_;
210   }
211 
212   // Reset. Deletes the current owned object, if any.
213   // Then takes ownership of a new object, if given.
214   // this->reset(this->get()) works.
215   void reset(C* p = NULL) {
216     if (p != array_) {
217       enum { type_must_be_complete = sizeof(C) };
218       delete[] array_;
219       array_ = p;
220     }
221   }
222 
223   // Get one element of the current object.
224   // Will assert() if there is no current object, or index i is negative.
225   C& operator[](std::ptrdiff_t i) const {
226     assert(i >= 0);
227     assert(array_ != NULL);
228     return array_[i];
229   }
230 
231   // Get a pointer to the zeroth element of the current object.
232   // If there is no current object, return NULL.
get()233   C* get() const {
234     return array_;
235   }
236 
237   // Comparison operators.
238   // These return whether a scoped_array and a raw pointer refer to
239   // the same array, not just to two different but equal arrays.
240   bool operator==(const C* p) const { return array_ == p; }
241   bool operator!=(const C* p) const { return array_ != p; }
242 
243   // Swap two scoped arrays.
swap(scoped_array & p2)244   void swap(scoped_array& p2) {
245     C* tmp = array_;
246     array_ = p2.array_;
247     p2.array_ = tmp;
248   }
249 
250   // Release an array.
251   // The return value is the current pointer held by this object.
252   // If this object holds a NULL pointer, the return value is NULL.
253   // After this operation, this object will hold a NULL pointer,
254   // and will not own the object any more.
release()255   C* release() {
256     C* retVal = array_;
257     array_ = NULL;
258     return retVal;
259   }
260 
261  private:
262   C* array_;
263 
264   // Forbid comparison of different scoped_array types.
265   template <class C2> bool operator==(scoped_array<C2> const& p2) const;
266   template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
267 
268   // Disallow evil constructors
269   scoped_array(const scoped_array&);
270   void operator=(const scoped_array&);
271 };
272 
273 // Free functions
274 template <class C>
swap(scoped_array<C> & p1,scoped_array<C> & p2)275 inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
276   p1.swap(p2);
277 }
278 
279 template <class C>
280 inline bool operator==(const C* p1, const scoped_array<C>& p2) {
281   return p1 == p2.get();
282 }
283 
284 template <class C>
285 inline bool operator==(const C* p1, const scoped_array<const C>& p2) {
286   return p1 == p2.get();
287 }
288 
289 template <class C>
290 inline bool operator!=(const C* p1, const scoped_array<C>& p2) {
291   return p1 != p2.get();
292 }
293 
294 template <class C>
295 inline bool operator!=(const C* p1, const scoped_array<const C>& p2) {
296   return p1 != p2.get();
297 }
298 
299 // This class wraps the c library function free() in a class that can be
300 // passed as a template argument to scoped_ptr_malloc below.
301 class ScopedPtrMallocFree {
302  public:
operator()303   inline void operator()(void* x) const {
304     free(x);
305   }
306 };
307 
308 }  // namespace internal
309 }  // namespace ceres
310 
311 #endif  // CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_
312