• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //
31 // A simple implementation of N-dimensional dual numbers, for automatically
32 // computing exact derivatives of functions.
33 //
34 // While a complete treatment of the mechanics of automatic differentation is
35 // beyond the scope of this header (see
36 // http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
37 // basic idea is to extend normal arithmetic with an extra element, "e," often
38 // denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual
39 // numbers are extensions of the real numbers analogous to complex numbers:
40 // whereas complex numbers augment the reals by introducing an imaginary unit i
41 // such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such
42 // that e^2 = 0. Dual numbers have two components: the "real" component and the
43 // "infinitesimal" component, generally written as x + y*e. Surprisingly, this
44 // leads to a convenient method for computing exact derivatives without needing
45 // to manipulate complicated symbolic expressions.
46 //
47 // For example, consider the function
48 //
49 //   f(x) = x^2 ,
50 //
51 // evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
52 // Next, augument 10 with an infinitesimal to get:
53 //
54 //   f(10 + e) = (10 + e)^2
55 //             = 100 + 2 * 10 * e + e^2
56 //             = 100 + 20 * e       -+-
57 //                     --            |
58 //                     |             +--- This is zero, since e^2 = 0
59 //                     |
60 //                     +----------------- This is df/dx!
61 //
62 // Note that the derivative of f with respect to x is simply the infinitesimal
63 // component of the value of f(x + e). So, in order to take the derivative of
64 // any function, it is only necessary to replace the numeric "object" used in
65 // the function with one extended with infinitesimals. The class Jet, defined in
66 // this header, is one such example of this, where substitution is done with
67 // templates.
68 //
69 // To handle derivatives of functions taking multiple arguments, different
70 // infinitesimals are used, one for each variable to take the derivative of. For
71 // example, consider a scalar function of two scalar parameters x and y:
72 //
73 //   f(x, y) = x^2 + x * y
74 //
75 // Following the technique above, to compute the derivatives df/dx and df/dy for
76 // f(1, 3) involves doing two evaluations of f, the first time replacing x with
77 // x + e, the second time replacing y with y + e.
78 //
79 // For df/dx:
80 //
81 //   f(1 + e, y) = (1 + e)^2 + (1 + e) * 3
82 //               = 1 + 2 * e + 3 + 3 * e
83 //               = 4 + 5 * e
84 //
85 //               --> df/dx = 5
86 //
87 // For df/dy:
88 //
89 //   f(1, 3 + e) = 1^2 + 1 * (3 + e)
90 //               = 1 + 3 + e
91 //               = 4 + e
92 //
93 //               --> df/dy = 1
94 //
95 // To take the gradient of f with the implementation of dual numbers ("jets") in
96 // this file, it is necessary to create a single jet type which has components
97 // for the derivative in x and y, and passing them to a templated version of f:
98 //
99 //   template<typename T>
100 //   T f(const T &x, const T &y) {
101 //     return x * x + x * y;
102 //   }
103 //
104 //   // The "2" means there should be 2 dual number components.
105 //   Jet<double, 2> x(0);  // Pick the 0th dual number for x.
106 //   Jet<double, 2> y(1);  // Pick the 1st dual number for y.
107 //   Jet<double, 2> z = f(x, y);
108 //
109 //   LG << "df/dx = " << z.a[0]
110 //      << "df/dy = " << z.a[1];
111 //
112 // Most users should not use Jet objects directly; a wrapper around Jet objects,
113 // which makes computing the derivative, gradient, or jacobian of templated
114 // functors simple, is in autodiff.h. Even autodiff.h should not be used
115 // directly; instead autodiff_cost_function.h is typically the file of interest.
116 //
117 // For the more mathematically inclined, this file implements first-order
118 // "jets". A 1st order jet is an element of the ring
119 //
120 //   T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2
121 //
122 // which essentially means that each jet consists of a "scalar" value 'a' from T
123 // and a 1st order perturbation vector 'v' of length N:
124 //
125 //   x = a + \sum_i v[i] t_i
126 //
127 // A shorthand is to write an element as x = a + u, where u is the pertubation.
128 // Then, the main point about the arithmetic of jets is that the product of
129 // perturbations is zero:
130 //
131 //   (a + u) * (b + v) = ab + av + bu + uv
132 //                     = ab + (av + bu) + 0
133 //
134 // which is what operator* implements below. Addition is simpler:
135 //
136 //   (a + u) + (b + v) = (a + b) + (u + v).
137 //
138 // The only remaining question is how to evaluate the function of a jet, for
139 // which we use the chain rule:
140 //
141 //   f(a + u) = f(a) + f'(a) u
142 //
143 // where f'(a) is the (scalar) derivative of f at a.
144 //
145 // By pushing these things through sufficiently and suitably templated
146 // functions, we can do automatic differentiation. Just be sure to turn on
147 // function inlining and common-subexpression elimination, or it will be very
148 // slow!
149 //
150 // WARNING: Most Ceres users should not directly include this file or know the
151 // details of how jets work. Instead the suggested method for automatic
152 // derivatives is to use autodiff_cost_function.h, which is a wrapper around
153 // both jets.h and autodiff.h to make taking derivatives of cost functions for
154 // use in Ceres easier.
155 
156 #ifndef CERES_PUBLIC_JET_H_
157 #define CERES_PUBLIC_JET_H_
158 
159 #include <cmath>
160 #include <iosfwd>
161 #include <iostream>  // NOLINT
162 #include <string>
163 
164 #include "Eigen/Core"
165 #include "ceres/fpclassify.h"
166 
167 namespace ceres {
168 
169 template <typename T, int N>
170 struct Jet {
171   enum { DIMENSION = N };
172 
173   // Default-construct "a" because otherwise this can lead to false errors about
174   // uninitialized uses when other classes relying on default constructed T
175   // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
176   // the C++ standard mandates that e.g. default constructed doubles are
177   // initialized to 0.0; see sections 8.5 of the C++03 standard.
JetJet178   Jet() : a() {
179     v.setZero();
180   }
181 
182   // Constructor from scalar: a + 0.
JetJet183   explicit Jet(const T& value) {
184     a = value;
185     v.setZero();
186   }
187 
188   // Constructor from scalar plus variable: a + t_i.
JetJet189   Jet(const T& value, int k) {
190     a = value;
191     v.setZero();
192     v[k] = T(1.0);
193   }
194 
195   // Compound operators
196   Jet<T, N>& operator+=(const Jet<T, N> &y) {
197     *this = *this + y;
198     return *this;
199   }
200 
201   Jet<T, N>& operator-=(const Jet<T, N> &y) {
202     *this = *this - y;
203     return *this;
204   }
205 
206   Jet<T, N>& operator*=(const Jet<T, N> &y) {
207     *this = *this * y;
208     return *this;
209   }
210 
211   Jet<T, N>& operator/=(const Jet<T, N> &y) {
212     *this = *this / y;
213     return *this;
214   }
215 
216   // The scalar part.
217   T a;
218 
219   // The infinitesimal part.
220   //
221   // Note the Eigen::DontAlign bit is needed here because this object
222   // gets allocated on the stack and as part of other arrays and
223   // structs. Forcing the right alignment there is the source of much
224   // pain and suffering. Even if that works, passing Jets around to
225   // functions by value has problems because the C++ ABI does not
226   // guarantee alignment for function arguments.
227   //
228   // Setting the DontAlign bit prevents Eigen from using SSE for the
229   // various operations on Jets. This is a small performance penalty
230   // since the AutoDiff code will still expose much of the code as
231   // statically sized loops to the compiler. But given the subtle
232   // issues that arise due to alignment, especially when dealing with
233   // multiple platforms, it seems to be a trade off worth making.
234   Eigen::Matrix<T, N, 1, Eigen::DontAlign> v;
235 };
236 
237 // Unary +
238 template<typename T, int N> inline
239 Jet<T, N> const& operator+(const Jet<T, N>& f) {
240   return f;
241 }
242 
243 // TODO(keir): Try adding __attribute__((always_inline)) to these functions to
244 // see if it causes a performance increase.
245 
246 // Unary -
247 template<typename T, int N> inline
248 Jet<T, N> operator-(const Jet<T, N>&f) {
249   Jet<T, N> g;
250   g.a = -f.a;
251   g.v = -f.v;
252   return g;
253 }
254 
255 // Binary +
256 template<typename T, int N> inline
257 Jet<T, N> operator+(const Jet<T, N>& f,
258                     const Jet<T, N>& g) {
259   Jet<T, N> h;
260   h.a = f.a + g.a;
261   h.v = f.v + g.v;
262   return h;
263 }
264 
265 // Binary + with a scalar: x + s
266 template<typename T, int N> inline
267 Jet<T, N> operator+(const Jet<T, N>& f, T s) {
268   Jet<T, N> h;
269   h.a = f.a + s;
270   h.v = f.v;
271   return h;
272 }
273 
274 // Binary + with a scalar: s + x
275 template<typename T, int N> inline
276 Jet<T, N> operator+(T s, const Jet<T, N>& f) {
277   Jet<T, N> h;
278   h.a = f.a + s;
279   h.v = f.v;
280   return h;
281 }
282 
283 // Binary -
284 template<typename T, int N> inline
285 Jet<T, N> operator-(const Jet<T, N>& f,
286                     const Jet<T, N>& g) {
287   Jet<T, N> h;
288   h.a = f.a - g.a;
289   h.v = f.v - g.v;
290   return h;
291 }
292 
293 // Binary - with a scalar: x - s
294 template<typename T, int N> inline
295 Jet<T, N> operator-(const Jet<T, N>& f, T s) {
296   Jet<T, N> h;
297   h.a = f.a - s;
298   h.v = f.v;
299   return h;
300 }
301 
302 // Binary - with a scalar: s - x
303 template<typename T, int N> inline
304 Jet<T, N> operator-(T s, const Jet<T, N>& f) {
305   Jet<T, N> h;
306   h.a = s - f.a;
307   h.v = -f.v;
308   return h;
309 }
310 
311 // Binary *
312 template<typename T, int N> inline
313 Jet<T, N> operator*(const Jet<T, N>& f,
314                     const Jet<T, N>& g) {
315   Jet<T, N> h;
316   h.a = f.a * g.a;
317   h.v = f.a * g.v + f.v * g.a;
318   return h;
319 }
320 
321 // Binary * with a scalar: x * s
322 template<typename T, int N> inline
323 Jet<T, N> operator*(const Jet<T, N>& f, T s) {
324   Jet<T, N> h;
325   h.a = f.a * s;
326   h.v = f.v * s;
327   return h;
328 }
329 
330 // Binary * with a scalar: s * x
331 template<typename T, int N> inline
332 Jet<T, N> operator*(T s, const Jet<T, N>& f) {
333   Jet<T, N> h;
334   h.a = f.a * s;
335   h.v = f.v * s;
336   return h;
337 }
338 
339 // Binary /
340 template<typename T, int N> inline
341 Jet<T, N> operator/(const Jet<T, N>& f,
342                     const Jet<T, N>& g) {
343   Jet<T, N> h;
344   // This uses:
345   //
346   //   a + u   (a + u)(b - v)   (a + u)(b - v)
347   //   ----- = -------------- = --------------
348   //   b + v   (b + v)(b - v)        b^2
349   //
350   // which holds because v*v = 0.
351   h.a = f.a / g.a;
352   h.v = (f.v - f.a / g.a * g.v) / g.a;
353   return h;
354 }
355 
356 // Binary / with a scalar: s / x
357 template<typename T, int N> inline
358 Jet<T, N> operator/(T s, const Jet<T, N>& g) {
359   Jet<T, N> h;
360   h.a = s / g.a;
361   h.v = - s * g.v / (g.a * g.a);
362   return h;
363 }
364 
365 // Binary / with a scalar: x / s
366 template<typename T, int N> inline
367 Jet<T, N> operator/(const Jet<T, N>& f, T s) {
368   Jet<T, N> h;
369   h.a = f.a / s;
370   h.v = f.v / s;
371   return h;
372 }
373 
374 // Binary comparison operators for both scalars and jets.
375 #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
376 template<typename T, int N> inline \
377 bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
378   return f.a op g.a; \
379 } \
380 template<typename T, int N> inline \
381 bool operator op(const T& s, const Jet<T, N>& g) { \
382   return s op g.a; \
383 } \
384 template<typename T, int N> inline \
385 bool operator op(const Jet<T, N>& f, const T& s) { \
386   return f.a op s; \
387 }
388 CERES_DEFINE_JET_COMPARISON_OPERATOR( <  )  // NOLINT
389 CERES_DEFINE_JET_COMPARISON_OPERATOR( <= )  // NOLINT
390 CERES_DEFINE_JET_COMPARISON_OPERATOR( >  )  // NOLINT
391 CERES_DEFINE_JET_COMPARISON_OPERATOR( >= )  // NOLINT
392 CERES_DEFINE_JET_COMPARISON_OPERATOR( == )  // NOLINT
393 CERES_DEFINE_JET_COMPARISON_OPERATOR( != )  // NOLINT
394 #undef CERES_DEFINE_JET_COMPARISON_OPERATOR
395 
396 // Pull some functions from namespace std.
397 //
398 // This is necessary because we want to use the same name (e.g. 'sqrt') for
399 // double-valued and Jet-valued functions, but we are not allowed to put
400 // Jet-valued functions inside namespace std.
401 //
402 // Missing: cosh, sinh, tanh, tan
403 // TODO(keir): Switch to "using".
abs(double x)404 inline double abs     (double x) { return std::abs(x);      }
log(double x)405 inline double log     (double x) { return std::log(x);      }
exp(double x)406 inline double exp     (double x) { return std::exp(x);      }
sqrt(double x)407 inline double sqrt    (double x) { return std::sqrt(x);     }
cos(double x)408 inline double cos     (double x) { return std::cos(x);      }
acos(double x)409 inline double acos    (double x) { return std::acos(x);     }
sin(double x)410 inline double sin     (double x) { return std::sin(x);      }
asin(double x)411 inline double asin    (double x) { return std::asin(x);     }
pow(double x,double y)412 inline double pow  (double x, double y) { return std::pow(x, y);   }
atan2(double y,double x)413 inline double atan2(double y, double x) { return std::atan2(y, x); }
414 
415 // In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.
416 
417 // abs(x + h) ~= x + h or -(x + h)
418 template <typename T, int N> inline
abs(const Jet<T,N> & f)419 Jet<T, N> abs(const Jet<T, N>& f) {
420   return f.a < T(0.0) ? -f : f;
421 }
422 
423 // log(a + h) ~= log(a) + h / a
424 template <typename T, int N> inline
log(const Jet<T,N> & f)425 Jet<T, N> log(const Jet<T, N>& f) {
426   Jet<T, N> g;
427   g.a = log(f.a);
428   g.v = f.v / f.a;
429   return g;
430 }
431 
432 // exp(a + h) ~= exp(a) + exp(a) h
433 template <typename T, int N> inline
exp(const Jet<T,N> & f)434 Jet<T, N> exp(const Jet<T, N>& f) {
435   Jet<T, N> g;
436   g.a = exp(f.a);
437   g.v = g.a * f.v;
438   return g;
439 }
440 
441 // sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
442 template <typename T, int N> inline
sqrt(const Jet<T,N> & f)443 Jet<T, N> sqrt(const Jet<T, N>& f) {
444   Jet<T, N> g;
445   g.a = sqrt(f.a);
446   g.v = f.v / (T(2.0) * g.a);
447   return g;
448 }
449 
450 // cos(a + h) ~= cos(a) - sin(a) h
451 template <typename T, int N> inline
cos(const Jet<T,N> & f)452 Jet<T, N> cos(const Jet<T, N>& f) {
453   Jet<T, N> g;
454   g.a = cos(f.a);
455   T sin_a = sin(f.a);
456   g.v = - sin_a * f.v;
457   return g;
458 }
459 
460 // acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
461 template <typename T, int N> inline
acos(const Jet<T,N> & f)462 Jet<T, N> acos(const Jet<T, N>& f) {
463   Jet<T, N> g;
464   g.a = acos(f.a);
465   g.v = - T(1.0) / sqrt(T(1.0) - f.a * f.a) * f.v;
466   return g;
467 }
468 
469 // sin(a + h) ~= sin(a) + cos(a) h
470 template <typename T, int N> inline
sin(const Jet<T,N> & f)471 Jet<T, N> sin(const Jet<T, N>& f) {
472   Jet<T, N> g;
473   g.a = sin(f.a);
474   T cos_a = cos(f.a);
475   g.v = cos_a * f.v;
476   return g;
477 }
478 
479 // asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
480 template <typename T, int N> inline
asin(const Jet<T,N> & f)481 Jet<T, N> asin(const Jet<T, N>& f) {
482   Jet<T, N> g;
483   g.a = asin(f.a);
484   g.v = T(1.0) / sqrt(T(1.0) - f.a * f.a) * f.v;
485   return g;
486 }
487 
488 // Jet Classification. It is not clear what the appropriate semantics are for
489 // these classifications. This picks that IsFinite and isnormal are "all"
490 // operations, i.e. all elements of the jet must be finite for the jet itself
491 // to be finite (or normal). For IsNaN and IsInfinite, the answer is less
492 // clear. This takes a "any" approach for IsNaN and IsInfinite such that if any
493 // part of a jet is nan or inf, then the entire jet is nan or inf. This leads
494 // to strange situations like a jet can be both IsInfinite and IsNaN, but in
495 // practice the "any" semantics are the most useful for e.g. checking that
496 // derivatives are sane.
497 
498 // The jet is finite if all parts of the jet are finite.
499 template <typename T, int N> inline
IsFinite(const Jet<T,N> & f)500 bool IsFinite(const Jet<T, N>& f) {
501   if (!IsFinite(f.a)) {
502     return false;
503   }
504   for (int i = 0; i < N; ++i) {
505     if (!IsFinite(f.v[i])) {
506       return false;
507     }
508   }
509   return true;
510 }
511 
512 // The jet is infinite if any part of the jet is infinite.
513 template <typename T, int N> inline
IsInfinite(const Jet<T,N> & f)514 bool IsInfinite(const Jet<T, N>& f) {
515   if (IsInfinite(f.a)) {
516     return true;
517   }
518   for (int i = 0; i < N; i++) {
519     if (IsInfinite(f.v[i])) {
520       return true;
521     }
522   }
523   return false;
524 }
525 
526 // The jet is NaN if any part of the jet is NaN.
527 template <typename T, int N> inline
IsNaN(const Jet<T,N> & f)528 bool IsNaN(const Jet<T, N>& f) {
529   if (IsNaN(f.a)) {
530     return true;
531   }
532   for (int i = 0; i < N; ++i) {
533     if (IsNaN(f.v[i])) {
534       return true;
535     }
536   }
537   return false;
538 }
539 
540 // The jet is normal if all parts of the jet are normal.
541 template <typename T, int N> inline
IsNormal(const Jet<T,N> & f)542 bool IsNormal(const Jet<T, N>& f) {
543   if (!IsNormal(f.a)) {
544     return false;
545   }
546   for (int i = 0; i < N; ++i) {
547     if (!IsNormal(f.v[i])) {
548       return false;
549     }
550   }
551   return true;
552 }
553 
554 // atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
555 //
556 // In words: the rate of change of theta is 1/r times the rate of
557 // change of (x, y) in the positive angular direction.
558 template <typename T, int N> inline
atan2(const Jet<T,N> & g,const Jet<T,N> & f)559 Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
560   // Note order of arguments:
561   //
562   //   f = a + da
563   //   g = b + db
564 
565   Jet<T, N> out;
566 
567   out.a = atan2(g.a, f.a);
568 
569   T const temp = T(1.0) / (f.a * f.a + g.a * g.a);
570   out.v = temp * (- g.a * f.v + f.a * g.v);
571   return out;
572 }
573 
574 
575 // pow -- base is a differentiatble function, exponent is a constant.
576 // (a+da)^p ~= a^p + p*a^(p-1) da
577 template <typename T, int N> inline
pow(const Jet<T,N> & f,double g)578 Jet<T, N> pow(const Jet<T, N>& f, double g) {
579   Jet<T, N> out;
580   out.a = pow(f.a, g);
581   T const temp = g * pow(f.a, g - T(1.0));
582   out.v = temp * f.v;
583   return out;
584 }
585 
586 // pow -- base is a constant, exponent is a differentiable function.
587 // (a)^(p+dp) ~= a^p + a^p log(a) dp
588 template <typename T, int N> inline
pow(double f,const Jet<T,N> & g)589 Jet<T, N> pow(double f, const Jet<T, N>& g) {
590   Jet<T, N> out;
591   out.a = pow(f, g.a);
592   T const temp = log(f) * out.a;
593   out.v = temp * g.v;
594   return out;
595 }
596 
597 
598 // pow -- both base and exponent are differentiable functions.
599 // (a+da)^(b+db) ~= a^b + b * a^(b-1) da + a^b log(a) * db
600 template <typename T, int N> inline
pow(const Jet<T,N> & f,const Jet<T,N> & g)601 Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
602   Jet<T, N> out;
603 
604   T const temp1 = pow(f.a, g.a);
605   T const temp2 = g.a * pow(f.a, g.a - T(1.0));
606   T const temp3 = temp1 * log(f.a);
607 
608   out.a = temp1;
609   out.v = temp2 * f.v + temp3 * g.v;
610   return out;
611 }
612 
613 // Define the helper functions Eigen needs to embed Jet types.
614 //
615 // NOTE(keir): machine_epsilon() and precision() are missing, because they don't
616 // work with nested template types (e.g. where the scalar is itself templated).
617 // Among other things, this means that decompositions of Jet's does not work,
618 // for example
619 //
620 //   Matrix<Jet<T, N> ... > A, x, b;
621 //   ...
622 //   A.solve(b, &x)
623 //
624 // does not work and will fail with a strange compiler error.
625 //
626 // TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we
627 // switch to 3.0, also add the rest of the specialization functionality.
ei_conj(const Jet<T,N> & x)628 template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x;              }  // NOLINT
ei_real(const Jet<T,N> & x)629 template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x;              }  // NOLINT
ei_imag(const Jet<T,N> &)630 template<typename T, int N> inline       Jet<T, N>  ei_imag(const Jet<T, N>&  ) { return Jet<T, N>(0.0); }  // NOLINT
ei_abs(const Jet<T,N> & x)631 template<typename T, int N> inline       Jet<T, N>  ei_abs (const Jet<T, N>& x) { return fabs(x);        }  // NOLINT
ei_abs2(const Jet<T,N> & x)632 template<typename T, int N> inline       Jet<T, N>  ei_abs2(const Jet<T, N>& x) { return x * x;          }  // NOLINT
ei_sqrt(const Jet<T,N> & x)633 template<typename T, int N> inline       Jet<T, N>  ei_sqrt(const Jet<T, N>& x) { return sqrt(x);        }  // NOLINT
ei_exp(const Jet<T,N> & x)634 template<typename T, int N> inline       Jet<T, N>  ei_exp (const Jet<T, N>& x) { return exp(x);         }  // NOLINT
ei_log(const Jet<T,N> & x)635 template<typename T, int N> inline       Jet<T, N>  ei_log (const Jet<T, N>& x) { return log(x);         }  // NOLINT
ei_sin(const Jet<T,N> & x)636 template<typename T, int N> inline       Jet<T, N>  ei_sin (const Jet<T, N>& x) { return sin(x);         }  // NOLINT
ei_cos(const Jet<T,N> & x)637 template<typename T, int N> inline       Jet<T, N>  ei_cos (const Jet<T, N>& x) { return cos(x);         }  // NOLINT
ei_pow(const Jet<T,N> & x,Jet<T,N> y)638 template<typename T, int N> inline       Jet<T, N>  ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); }  // NOLINT
639 
640 // Note: This has to be in the ceres namespace for argument dependent lookup to
641 // function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
642 // strange compile errors.
643 template <typename T, int N>
644 inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
645   return s << "[" << z.a << " ; " << z.v.transpose() << "]";
646 }
647 
648 }  // namespace ceres
649 
650 namespace Eigen {
651 
652 // Creating a specialization of NumTraits enables placing Jet objects inside
653 // Eigen arrays, getting all the goodness of Eigen combined with autodiff.
654 template<typename T, int N>
655 struct NumTraits<ceres::Jet<T, N> > {
656   typedef ceres::Jet<T, N> Real;
657   typedef ceres::Jet<T, N> NonInteger;
658   typedef ceres::Jet<T, N> Nested;
659 
660   static typename ceres::Jet<T, N> dummy_precision() {
661     return ceres::Jet<T, N>(1e-12);
662   }
663 
664   enum {
665     IsComplex = 0,
666     IsInteger = 0,
667     IsSigned,
668     ReadCost = 1,
669     AddCost = 1,
670     // For Jet types, multiplication is more expensive than addition.
671     MulCost = 3,
672     HasFloatingPoint = 1
673   };
674 };
675 
676 }  // namespace Eigen
677 
678 #endif  // CERES_PUBLIC_JET_H_
679