1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal@google.com (Sameer Agarwal) 30 // 31 // The LossFunction interface is the way users describe how residuals 32 // are converted to cost terms for the overall problem cost function. 33 // For the exact manner in which loss functions are converted to the 34 // overall cost for a problem, see problem.h. 35 // 36 // For least squares problem where there are no outliers and standard 37 // squared loss is expected, it is not necessary to create a loss 38 // function; instead passing a NULL to the problem when adding 39 // residuals implies a standard squared loss. 40 // 41 // For least squares problems where the minimization may encounter 42 // input terms that contain outliers, that is, completely bogus 43 // measurements, it is important to use a loss function that reduces 44 // their associated penalty. 45 // 46 // Consider a structure from motion problem. The unknowns are 3D 47 // points and camera parameters, and the measurements are image 48 // coordinates describing the expected reprojected position for a 49 // point in a camera. For example, we want to model the geometry of a 50 // street scene with fire hydrants and cars, observed by a moving 51 // camera with unknown parameters, and the only 3D points we care 52 // about are the pointy tippy-tops of the fire hydrants. Our magic 53 // image processing algorithm, which is responsible for producing the 54 // measurements that are input to Ceres, has found and matched all 55 // such tippy-tops in all image frames, except that in one of the 56 // frame it mistook a car's headlight for a hydrant. If we didn't do 57 // anything special (i.e. if we used a basic quadratic loss), the 58 // residual for the erroneous measurement will result in extreme error 59 // due to the quadratic nature of squared loss. This results in the 60 // entire solution getting pulled away from the optimimum to reduce 61 // the large error that would otherwise be attributed to the wrong 62 // measurement. 63 // 64 // Using a robust loss function, the cost for large residuals is 65 // reduced. In the example above, this leads to outlier terms getting 66 // downweighted so they do not overly influence the final solution. 67 // 68 // What cost function is best? 69 // 70 // In general, there isn't a principled way to select a robust loss 71 // function. The authors suggest starting with a non-robust cost, then 72 // only experimenting with robust loss functions if standard squared 73 // loss doesn't work. 74 75 #ifndef CERES_PUBLIC_LOSS_FUNCTION_H_ 76 #define CERES_PUBLIC_LOSS_FUNCTION_H_ 77 78 #include <glog/logging.h> 79 #include "ceres/internal/macros.h" 80 #include "ceres/internal/scoped_ptr.h" 81 #include "ceres/types.h" 82 83 namespace ceres { 84 85 class LossFunction { 86 public: ~LossFunction()87 virtual ~LossFunction() {} 88 89 // For a residual vector with squared 2-norm 'sq_norm', this method 90 // is required to fill in the value and derivatives of the loss 91 // function (rho in this example): 92 // 93 // out[0] = rho(sq_norm), 94 // out[1] = rho'(sq_norm), 95 // out[2] = rho''(sq_norm), 96 // 97 // Here the convention is that the contribution of a term to the 98 // cost function is given by 1/2 rho(s), where 99 // 100 // s = ||residuals||^2. 101 // 102 // Calling the method with a negative value of 's' is an error and 103 // the implementations are not required to handle that case. 104 // 105 // Most sane choices of rho() satisfy: 106 // 107 // rho(0) = 0, 108 // rho'(0) = 1, 109 // rho'(s) < 1 in outlier region, 110 // rho''(s) < 0 in outlier region, 111 // 112 // so that they mimic the least squares cost for small residuals. 113 virtual void Evaluate(double sq_norm, double out[3]) const = 0; 114 }; 115 116 // Some common implementations follow below. 117 // 118 // Note: in the region of interest (i.e. s < 3) we have: 119 // TrivialLoss >= HuberLoss >= SoftLOneLoss >= CauchyLoss 120 121 122 // This corresponds to no robustification. 123 // 124 // rho(s) = s 125 // 126 // At s = 0: rho = [0, 1, 0]. 127 // 128 // It is not normally necessary to use this, as passing NULL for the 129 // loss function when building the problem accomplishes the same 130 // thing. 131 class TrivialLoss : public LossFunction { 132 public: 133 virtual void Evaluate(double, double*) const; 134 }; 135 136 // Scaling 137 // ------- 138 // Given one robustifier 139 // s -> rho(s) 140 // one can change the length scale at which robustification takes 141 // place, by adding a scale factor 'a' as follows: 142 // 143 // s -> a^2 rho(s / a^2). 144 // 145 // The first and second derivatives are: 146 // 147 // s -> rho'(s / a^2), 148 // s -> (1 / a^2) rho''(s / a^2), 149 // 150 // but the behaviour near s = 0 is the same as the original function, 151 // i.e. 152 // 153 // rho(s) = s + higher order terms, 154 // a^2 rho(s / a^2) = s + higher order terms. 155 // 156 // The scalar 'a' should be positive. 157 // 158 // The reason for the appearance of squaring is that 'a' is in the 159 // units of the residual vector norm whereas 's' is a squared 160 // norm. For applications it is more convenient to specify 'a' than 161 // its square. The commonly used robustifiers below are described in 162 // un-scaled format (a = 1) but their implementations work for any 163 // non-zero value of 'a'. 164 165 // Huber. 166 // 167 // rho(s) = s for s <= 1, 168 // rho(s) = 2 sqrt(s) - 1 for s >= 1. 169 // 170 // At s = 0: rho = [0, 1, 0]. 171 // 172 // The scaling parameter 'a' corresponds to 'delta' on this page: 173 // http://en.wikipedia.org/wiki/Huber_Loss_Function 174 class HuberLoss : public LossFunction { 175 public: HuberLoss(double a)176 explicit HuberLoss(double a) : a_(a), b_(a * a) { } 177 virtual void Evaluate(double, double*) const; 178 179 private: 180 const double a_; 181 // b = a^2. 182 const double b_; 183 }; 184 185 // Soft L1, similar to Huber but smooth. 186 // 187 // rho(s) = 2 (sqrt(1 + s) - 1). 188 // 189 // At s = 0: rho = [0, 1, -1/2]. 190 class SoftLOneLoss : public LossFunction { 191 public: SoftLOneLoss(double a)192 explicit SoftLOneLoss(double a) : b_(a * a), c_(1 / b_) { } 193 virtual void Evaluate(double, double*) const; 194 195 private: 196 // b = a^2. 197 const double b_; 198 // c = 1 / a^2. 199 const double c_; 200 }; 201 202 // Inspired by the Cauchy distribution 203 // 204 // rho(s) = log(1 + s). 205 // 206 // At s = 0: rho = [0, 1, -1]. 207 class CauchyLoss : public LossFunction { 208 public: CauchyLoss(double a)209 explicit CauchyLoss(double a) : b_(a * a), c_(1 / b_) { } 210 virtual void Evaluate(double, double*) const; 211 212 private: 213 // b = a^2. 214 const double b_; 215 // c = 1 / a^2. 216 const double c_; 217 }; 218 219 // Loss that is capped beyond a certain level using the arc-tangent function. 220 // The scaling parameter 'a' determines the level where falloff occurs. 221 // For costs much smaller than 'a', the loss function is linear and behaves like 222 // TrivialLoss, and for values much larger than 'a' the value asymptotically 223 // approaches the constant value of a * PI / 2. 224 // 225 // rho(s) = a atan(s / a). 226 // 227 // At s = 0: rho = [0, 1, 0]. 228 class ArctanLoss : public LossFunction { 229 public: ArctanLoss(double a)230 explicit ArctanLoss(double a) : a_(a), b_(1 / (a * a)) { } 231 virtual void Evaluate(double, double*) const; 232 233 private: 234 const double a_; 235 // b = 1 / a^2. 236 const double b_; 237 }; 238 239 // Loss function that maps to approximately zero cost in a range around the 240 // origin, and reverts to linear in error (quadratic in cost) beyond this range. 241 // The tolerance parameter 'a' sets the nominal point at which the 242 // transition occurs, and the transition size parameter 'b' sets the nominal 243 // distance over which most of the transition occurs. Both a and b must be 244 // greater than zero, and typically b will be set to a fraction of a. 245 // The slope rho'[s] varies smoothly from about 0 at s <= a - b to 246 // about 1 at s >= a + b. 247 // 248 // The term is computed as: 249 // 250 // rho(s) = b log(1 + exp((s - a) / b)) - c0. 251 // 252 // where c0 is chosen so that rho(0) == 0 253 // 254 // c0 = b log(1 + exp(-a / b) 255 // 256 // This has the following useful properties: 257 // 258 // rho(s) == 0 for s = 0 259 // rho'(s) ~= 0 for s << a - b 260 // rho'(s) ~= 1 for s >> a + b 261 // rho''(s) > 0 for all s 262 // 263 // In addition, all derivatives are continuous, and the curvature is 264 // concentrated in the range a - b to a + b. 265 // 266 // At s = 0: rho = [0, ~0, ~0]. 267 class TolerantLoss : public LossFunction { 268 public: 269 explicit TolerantLoss(double a, double b); 270 virtual void Evaluate(double, double*) const; 271 272 private: 273 const double a_, b_, c_; 274 }; 275 276 // Composition of two loss functions. The error is the result of first 277 // evaluating g followed by f to yield the composition f(g(s)). 278 // The loss functions must not be NULL. 279 class ComposedLoss : public LossFunction { 280 public: 281 explicit ComposedLoss(const LossFunction* f, Ownership ownership_f, 282 const LossFunction* g, Ownership ownership_g); 283 virtual ~ComposedLoss(); 284 virtual void Evaluate(double, double*) const; 285 286 private: 287 internal::scoped_ptr<const LossFunction> f_, g_; 288 const Ownership ownership_f_, ownership_g_; 289 }; 290 291 // The discussion above has to do with length scaling: it affects the space 292 // in which s is measured. Sometimes you want to simply scale the output 293 // value of the robustifier. For example, you might want to weight 294 // different error terms differently (e.g., weight pixel reprojection 295 // errors differently from terrain errors). 296 // 297 // If rho is the wrapped robustifier, then this simply outputs 298 // s -> a * rho(s) 299 // 300 // The first and second derivatives are, not surprisingly 301 // s -> a * rho'(s) 302 // s -> a * rho''(s) 303 // 304 // Since we treat the a NULL Loss function as the Identity loss 305 // function, rho = NULL is a valid input and will result in the input 306 // being scaled by a. This provides a simple way of implementing a 307 // scaled ResidualBlock. 308 class ScaledLoss : public LossFunction { 309 public: 310 // Constructs a ScaledLoss wrapping another loss function. Takes 311 // ownership of the wrapped loss function or not depending on the 312 // ownership parameter. ScaledLoss(const LossFunction * rho,double a,Ownership ownership)313 ScaledLoss(const LossFunction* rho, double a, Ownership ownership) : 314 rho_(rho), a_(a), ownership_(ownership) { } 315 ~ScaledLoss()316 virtual ~ScaledLoss() { 317 if (ownership_ == DO_NOT_TAKE_OWNERSHIP) { 318 rho_.release(); 319 } 320 } 321 virtual void Evaluate(double, double*) const; 322 323 private: 324 internal::scoped_ptr<const LossFunction> rho_; 325 const double a_; 326 const Ownership ownership_; 327 CERES_DISALLOW_COPY_AND_ASSIGN(ScaledLoss); 328 }; 329 330 // Sometimes after the optimization problem has been constructed, we 331 // wish to mutate the scale of the loss function. For example, when 332 // performing estimation from data which has substantial outliers, 333 // convergence can be improved by starting out with a large scale, 334 // optimizing the problem and then reducing the scale. This can have 335 // better convergence behaviour than just using a loss function with a 336 // small scale. 337 // 338 // This templated class allows the user to implement a loss function 339 // whose scale can be mutated after an optimization problem has been 340 // constructed. 341 // 342 // Example usage 343 // 344 // Problem problem; 345 // 346 // // Add parameter blocks 347 // 348 // CostFunction* cost_function = 349 // new AutoDiffCostFunction < UW_Camera_Mapper, 2, 9, 3>( 350 // new UW_Camera_Mapper(data->observations[2*i + 0], 351 // data->observations[2*i + 1])); 352 // 353 // LossFunctionWrapper* loss_function(new HuberLoss(1.0), TAKE_OWNERSHIP); 354 // 355 // problem.AddResidualBlock(cost_function, loss_function, parameters); 356 // 357 // Solver::Options options; 358 // scoped_ptr<Solver::Summary> summary1(Solve(problem, options)); 359 // 360 // loss_function->Reset(new HuberLoss(1.0), TAKE_OWNERSHIP); 361 // 362 // scoped_ptr<Solver::Summary> summary2(Solve(problem, options)); 363 // 364 class LossFunctionWrapper : public LossFunction { 365 public: LossFunctionWrapper(LossFunction * rho,Ownership ownership)366 LossFunctionWrapper(LossFunction* rho, Ownership ownership) 367 : rho_(rho), ownership_(ownership) { 368 } 369 ~LossFunctionWrapper()370 virtual ~LossFunctionWrapper() { 371 if (ownership_ == DO_NOT_TAKE_OWNERSHIP) { 372 rho_.release(); 373 } 374 } 375 Evaluate(double sq_norm,double out[3])376 virtual void Evaluate(double sq_norm, double out[3]) const { 377 CHECK_NOTNULL(rho_.get()); 378 rho_->Evaluate(sq_norm, out); 379 } 380 Reset(LossFunction * rho,Ownership ownership)381 void Reset(LossFunction* rho, Ownership ownership) { 382 if (ownership_ == DO_NOT_TAKE_OWNERSHIP) { 383 rho_.release(); 384 } 385 rho_.reset(rho); 386 ownership_ = ownership; 387 } 388 389 private: 390 internal::scoped_ptr<const LossFunction> rho_; 391 Ownership ownership_; 392 CERES_DISALLOW_COPY_AND_ASSIGN(LossFunctionWrapper); 393 }; 394 395 } // namespace ceres 396 397 #endif // CERES_PUBLIC_LOSS_FUNCTION_H_ 398