• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/implicit_schur_complement.h"
32 
33 #include "Eigen/Dense"
34 #include "ceres/block_sparse_matrix.h"
35 #include "ceres/block_structure.h"
36 #include "ceres/internal/eigen.h"
37 #include "ceres/internal/scoped_ptr.h"
38 #include "ceres/types.h"
39 #include "glog/logging.h"
40 
41 namespace ceres {
42 namespace internal {
43 
ImplicitSchurComplement(int num_eliminate_blocks,bool preconditioner)44 ImplicitSchurComplement::ImplicitSchurComplement(int num_eliminate_blocks,
45                                                  bool preconditioner)
46     : num_eliminate_blocks_(num_eliminate_blocks),
47       preconditioner_(preconditioner),
48       A_(NULL),
49       D_(NULL),
50       b_(NULL),
51       block_diagonal_EtE_inverse_(NULL),
52       block_diagonal_FtF_inverse_(NULL) {
53 }
54 
~ImplicitSchurComplement()55 ImplicitSchurComplement::~ImplicitSchurComplement() {
56 }
57 
Init(const BlockSparseMatrixBase & A,const double * D,const double * b)58 void ImplicitSchurComplement::Init(const BlockSparseMatrixBase& A,
59                                    const double* D,
60                                    const double* b) {
61   // Since initialization is reasonably heavy, perhaps we can save on
62   // constructing a new object everytime.
63   if (A_ == NULL) {
64     A_.reset(new PartitionedMatrixView(A, num_eliminate_blocks_));
65   }
66 
67   D_ = D;
68   b_ = b;
69 
70   // Initialize temporary storage and compute the block diagonals of
71   // E'E and F'E.
72   if (block_diagonal_EtE_inverse_ == NULL) {
73     block_diagonal_EtE_inverse_.reset(A_->CreateBlockDiagonalEtE());
74     if (preconditioner_) {
75       block_diagonal_FtF_inverse_.reset(A_->CreateBlockDiagonalFtF());
76     }
77     rhs_.resize(A_->num_cols_f());
78     rhs_.setZero();
79     tmp_rows_.resize(A_->num_rows());
80     tmp_e_cols_.resize(A_->num_cols_e());
81     tmp_e_cols_2_.resize(A_->num_cols_e());
82     tmp_f_cols_.resize(A_->num_cols_f());
83   } else {
84     A_->UpdateBlockDiagonalEtE(block_diagonal_EtE_inverse_.get());
85     if (preconditioner_) {
86       A_->UpdateBlockDiagonalFtF(block_diagonal_FtF_inverse_.get());
87     }
88   }
89 
90   // The block diagonals of the augmented linear system contain
91   // contributions from the diagonal D if it is non-null. Add that to
92   // the block diagonals and invert them.
93   AddDiagonalAndInvert(D_, block_diagonal_EtE_inverse_.get());
94   if (preconditioner_)  {
95     AddDiagonalAndInvert((D_ ==  NULL) ? NULL : D_ + A_->num_cols_e(),
96                          block_diagonal_FtF_inverse_.get());
97   }
98 
99   // Compute the RHS of the Schur complement system.
100   UpdateRhs();
101 }
102 
103 // Evaluate the product
104 //
105 //   Sx = [F'F - F'E (E'E)^-1 E'F]x
106 //
107 // By breaking it down into individual matrix vector products
108 // involving the matrices E and F. This is implemented using a
109 // PartitionedMatrixView of the input matrix A.
RightMultiply(const double * x,double * y) const110 void ImplicitSchurComplement::RightMultiply(const double* x, double* y) const {
111   // y1 = F x
112   tmp_rows_.setZero();
113   A_->RightMultiplyF(x, tmp_rows_.data());
114 
115   // y2 = E' y1
116   tmp_e_cols_.setZero();
117   A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
118 
119   // y3 = -(E'E)^-1 y2
120   tmp_e_cols_2_.setZero();
121   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(),
122                                              tmp_e_cols_2_.data());
123   tmp_e_cols_2_ *= -1.0;
124 
125   // y1 = y1 + E y3
126   A_->RightMultiplyE(tmp_e_cols_2_.data(), tmp_rows_.data());
127 
128   // y5 = D * x
129   if (D_ != NULL) {
130     ConstVectorRef Dref(D_ + A_->num_cols_e(), num_cols());
131     VectorRef(y, num_cols()) =
132         (Dref.array().square() *
133          ConstVectorRef(x, num_cols()).array()).matrix();
134   } else {
135     VectorRef(y, num_cols()).setZero();
136   }
137 
138   // y = y5 + F' y1
139   A_->LeftMultiplyF(tmp_rows_.data(), y);
140 }
141 
142 // Given a block diagonal matrix and an optional array of diagonal
143 // entries D, add them to the diagonal of the matrix and compute the
144 // inverse of each diagonal block.
AddDiagonalAndInvert(const double * D,BlockSparseMatrix * block_diagonal)145 void ImplicitSchurComplement::AddDiagonalAndInvert(
146     const double* D,
147     BlockSparseMatrix* block_diagonal) {
148   const CompressedRowBlockStructure* block_diagonal_structure =
149       block_diagonal->block_structure();
150   for (int r = 0; r < block_diagonal_structure->rows.size(); ++r) {
151     const int row_block_pos = block_diagonal_structure->rows[r].block.position;
152     const int row_block_size = block_diagonal_structure->rows[r].block.size;
153     const Cell& cell = block_diagonal_structure->rows[r].cells[0];
154     MatrixRef m(block_diagonal->mutable_values() + cell.position,
155                 row_block_size, row_block_size);
156 
157     if (D != NULL) {
158       ConstVectorRef d(D + row_block_pos, row_block_size);
159       m += d.array().square().matrix().asDiagonal();
160     }
161 
162     m = m
163         .selfadjointView<Eigen::Upper>()
164         .ldlt()
165         .solve(Matrix::Identity(row_block_size, row_block_size));
166   }
167 }
168 
169 // Similar to RightMultiply, use the block structure of the matrix A
170 // to compute y = (E'E)^-1 (E'b - E'F x).
BackSubstitute(const double * x,double * y)171 void ImplicitSchurComplement::BackSubstitute(const double* x, double* y) {
172   const int num_cols_e = A_->num_cols_e();
173   const int num_cols_f = A_->num_cols_f();
174   const int num_cols =  A_->num_cols();
175   const int num_rows = A_->num_rows();
176 
177   // y1 = F x
178   tmp_rows_.setZero();
179   A_->RightMultiplyF(x, tmp_rows_.data());
180 
181   // y2 = b - y1
182   tmp_rows_ = ConstVectorRef(b_, num_rows) - tmp_rows_;
183 
184   // y3 = E' y2
185   tmp_e_cols_.setZero();
186   A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
187 
188   // y = (E'E)^-1 y3
189   VectorRef(y, num_cols).setZero();
190   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y);
191 
192   // The full solution vector y has two blocks. The first block of
193   // variables corresponds to the eliminated variables, which we just
194   // computed via back substitution. The second block of variables
195   // corresponds to the Schur complement system, so we just copy those
196   // values from the solution to the Schur complement.
197   VectorRef(y + num_cols_e, num_cols_f) =  ConstVectorRef(x, num_cols_f);
198 }
199 
200 // Compute the RHS of the Schur complement system.
201 //
202 // rhs = F'b - F'E (E'E)^-1 E'b
203 //
204 // Like BackSubstitute, we use the block structure of A to implement
205 // this using a series of matrix vector products.
UpdateRhs()206 void ImplicitSchurComplement::UpdateRhs() {
207   // y1 = E'b
208   tmp_e_cols_.setZero();
209   A_->LeftMultiplyE(b_, tmp_e_cols_.data());
210 
211   // y2 = (E'E)^-1 y1
212   Vector y2 = Vector::Zero(A_->num_cols_e());
213   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y2.data());
214 
215   // y3 = E y2
216   tmp_rows_.setZero();
217   A_->RightMultiplyE(y2.data(), tmp_rows_.data());
218 
219   // y3 = b - y3
220   tmp_rows_ = ConstVectorRef(b_, A_->num_rows()) - tmp_rows_;
221 
222   // rhs = F' y3
223   rhs_.setZero();
224   A_->LeftMultiplyF(tmp_rows_.data(), rhs_.data());
225 }
226 
227 }  // namespace internal
228 }  // namespace ceres
229