1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //
31 // Based on the templated version in public/numeric_diff_cost_function.h.
32
33 #include "ceres/runtime_numeric_diff_cost_function.h"
34
35 #include <algorithm>
36 #include <numeric>
37 #include <vector>
38 #include "Eigen/Dense"
39 #include "ceres/cost_function.h"
40 #include "ceres/internal/scoped_ptr.h"
41 #include "glog/logging.h"
42
43 namespace ceres {
44 namespace internal {
45 namespace {
46
EvaluateJacobianForParameterBlock(const CostFunction * function,int parameter_block_size,int parameter_block,RuntimeNumericDiffMethod method,double relative_step_size,double const * residuals_at_eval_point,double ** parameters,double ** jacobians)47 bool EvaluateJacobianForParameterBlock(const CostFunction* function,
48 int parameter_block_size,
49 int parameter_block,
50 RuntimeNumericDiffMethod method,
51 double relative_step_size,
52 double const* residuals_at_eval_point,
53 double** parameters,
54 double** jacobians) {
55 using Eigen::Map;
56 using Eigen::Matrix;
57 using Eigen::Dynamic;
58 using Eigen::RowMajor;
59
60 typedef Matrix<double, Dynamic, 1> ResidualVector;
61 typedef Matrix<double, Dynamic, 1> ParameterVector;
62 typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix;
63
64 int num_residuals = function->num_residuals();
65
66 Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block],
67 num_residuals,
68 parameter_block_size);
69
70 // Mutate one element at a time and then restore.
71 Map<ParameterVector> x_plus_delta(parameters[parameter_block],
72 parameter_block_size);
73 ParameterVector x(x_plus_delta);
74 ParameterVector step_size = x.array().abs() * relative_step_size;
75
76 // To handle cases where a paremeter is exactly zero, instead use the mean
77 // step_size for the other dimensions.
78 double fallback_step_size = step_size.sum() / step_size.rows();
79 if (fallback_step_size == 0.0) {
80 // If all the parameters are zero, there's no good answer. Use the given
81 // relative step_size as absolute step_size and hope for the best.
82 fallback_step_size = relative_step_size;
83 }
84
85 // For each parameter in the parameter block, use finite differences to
86 // compute the derivative for that parameter.
87 for (int j = 0; j < parameter_block_size; ++j) {
88 if (step_size(j) == 0.0) {
89 // The parameter is exactly zero, so compromise and use the mean step_size
90 // from the other parameters. This can break in many cases, but it's hard
91 // to pick a good number without problem specific knowledge.
92 step_size(j) = fallback_step_size;
93 }
94 x_plus_delta(j) = x(j) + step_size(j);
95
96 ResidualVector residuals(num_residuals);
97 if (!function->Evaluate(parameters, &residuals[0], NULL)) {
98 // Something went wrong; bail.
99 return false;
100 }
101
102 // Compute this column of the jacobian in 3 steps:
103 // 1. Store residuals for the forward part.
104 // 2. Subtract residuals for the backward (or 0) part.
105 // 3. Divide out the run.
106 parameter_jacobian.col(j) = residuals;
107
108 double one_over_h = 1 / step_size(j);
109 if (method == CENTRAL) {
110 // Compute the function on the other side of x(j).
111 x_plus_delta(j) = x(j) - step_size(j);
112
113 if (!function->Evaluate(parameters, &residuals[0], NULL)) {
114 // Something went wrong; bail.
115 return false;
116 }
117 parameter_jacobian.col(j) -= residuals;
118 one_over_h /= 2;
119 } else {
120 // Forward difference only; reuse existing residuals evaluation.
121 parameter_jacobian.col(j) -=
122 Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
123 }
124 x_plus_delta(j) = x(j); // Restore x_plus_delta.
125
126 // Divide out the run to get slope.
127 parameter_jacobian.col(j) *= one_over_h;
128 }
129 return true;
130 }
131
132 class RuntimeNumericDiffCostFunction : public CostFunction {
133 public:
RuntimeNumericDiffCostFunction(const CostFunction * function,RuntimeNumericDiffMethod method,double relative_step_size)134 RuntimeNumericDiffCostFunction(const CostFunction* function,
135 RuntimeNumericDiffMethod method,
136 double relative_step_size)
137 : function_(function),
138 method_(method),
139 relative_step_size_(relative_step_size) {
140 *mutable_parameter_block_sizes() = function->parameter_block_sizes();
141 set_num_residuals(function->num_residuals());
142 }
143
~RuntimeNumericDiffCostFunction()144 virtual ~RuntimeNumericDiffCostFunction() { }
145
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const146 virtual bool Evaluate(double const* const* parameters,
147 double* residuals,
148 double** jacobians) const {
149 // Get the function value (residuals) at the the point to evaluate.
150 bool success = function_->Evaluate(parameters, residuals, NULL);
151 if (!success) {
152 // Something went wrong; ignore the jacobian.
153 return false;
154 }
155 if (!jacobians) {
156 // Nothing to do; just forward.
157 return true;
158 }
159
160 const vector<int16>& block_sizes = function_->parameter_block_sizes();
161 CHECK(!block_sizes.empty());
162
163 // Create local space for a copy of the parameters which will get mutated.
164 int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0);
165 vector<double> parameters_copy(parameters_size);
166 vector<double*> parameters_references_copy(block_sizes.size());
167 parameters_references_copy[0] = ¶meters_copy[0];
168 for (int block = 1; block < block_sizes.size(); ++block) {
169 parameters_references_copy[block] = parameters_references_copy[block - 1]
170 + block_sizes[block - 1];
171 }
172
173 // Copy the parameters into the local temp space.
174 for (int block = 0; block < block_sizes.size(); ++block) {
175 memcpy(parameters_references_copy[block],
176 parameters[block],
177 block_sizes[block] * sizeof(*parameters[block]));
178 }
179
180 for (int block = 0; block < block_sizes.size(); ++block) {
181 if (!jacobians[block]) {
182 // No jacobian requested for this parameter / residual pair.
183 continue;
184 }
185 if (!EvaluateJacobianForParameterBlock(function_,
186 block_sizes[block],
187 block,
188 method_,
189 relative_step_size_,
190 residuals,
191 ¶meters_references_copy[0],
192 jacobians)) {
193 return false;
194 }
195 }
196 return true;
197 }
198
199 private:
200 const CostFunction* function_;
201 RuntimeNumericDiffMethod method_;
202 double relative_step_size_;
203 };
204
205 } // namespace
206
CreateRuntimeNumericDiffCostFunction(const CostFunction * cost_function,RuntimeNumericDiffMethod method,double relative_step_size)207 CostFunction* CreateRuntimeNumericDiffCostFunction(
208 const CostFunction* cost_function,
209 RuntimeNumericDiffMethod method,
210 double relative_step_size) {
211 return new RuntimeNumericDiffCostFunction(cost_function,
212 method,
213 relative_step_size);
214 }
215
216 } // namespace internal
217 } // namespace ceres
218