1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #include <algorithm>
32 #include <ctime>
33 #include <set>
34 #include <vector>
35
36 #ifndef CERES_NO_CXSPARSE
37 #include "cs.h"
38 #endif // CERES_NO_CXSPARSE
39
40 #include "Eigen/Dense"
41 #include "ceres/block_random_access_dense_matrix.h"
42 #include "ceres/block_random_access_matrix.h"
43 #include "ceres/block_random_access_sparse_matrix.h"
44 #include "ceres/block_sparse_matrix.h"
45 #include "ceres/block_structure.h"
46 #include "ceres/detect_structure.h"
47 #include "ceres/linear_solver.h"
48 #include "ceres/schur_complement_solver.h"
49 #include "ceres/suitesparse.h"
50 #include "ceres/triplet_sparse_matrix.h"
51 #include "ceres/internal/eigen.h"
52 #include "ceres/internal/port.h"
53 #include "ceres/internal/scoped_ptr.h"
54 #include "ceres/types.h"
55
56
57 namespace ceres {
58 namespace internal {
59
SolveImpl(BlockSparseMatrixBase * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)60 LinearSolver::Summary SchurComplementSolver::SolveImpl(
61 BlockSparseMatrixBase* A,
62 const double* b,
63 const LinearSolver::PerSolveOptions& per_solve_options,
64 double* x) {
65 const time_t start_time = time(NULL);
66 if (eliminator_.get() == NULL) {
67 InitStorage(A->block_structure());
68 DetectStructure(*A->block_structure(),
69 options_.elimination_groups[0],
70 &options_.row_block_size,
71 &options_.e_block_size,
72 &options_.f_block_size);
73 eliminator_.reset(CHECK_NOTNULL(SchurEliminatorBase::Create(options_)));
74 eliminator_->Init(options_.elimination_groups[0], A->block_structure());
75 };
76 const time_t init_time = time(NULL);
77 fill(x, x + A->num_cols(), 0.0);
78
79 LinearSolver::Summary summary;
80 summary.num_iterations = 1;
81 summary.termination_type = FAILURE;
82 eliminator_->Eliminate(A, b, per_solve_options.D, lhs_.get(), rhs_.get());
83 const time_t eliminate_time = time(NULL);
84
85 double* reduced_solution = x + A->num_cols() - lhs_->num_cols();
86 const bool status = SolveReducedLinearSystem(reduced_solution);
87 const time_t solve_time = time(NULL);
88
89 if (!status) {
90 return summary;
91 }
92
93 eliminator_->BackSubstitute(A, b, per_solve_options.D, reduced_solution, x);
94 const time_t backsubstitute_time = time(NULL);
95 summary.termination_type = TOLERANCE;
96
97 VLOG(2) << "time (sec) total: " << (backsubstitute_time - start_time)
98 << " init: " << (init_time - start_time)
99 << " eliminate: " << (eliminate_time - init_time)
100 << " solve: " << (solve_time - eliminate_time)
101 << " backsubstitute: " << (backsubstitute_time - solve_time);
102 return summary;
103 }
104
105 // Initialize a BlockRandomAccessDenseMatrix to store the Schur
106 // complement.
InitStorage(const CompressedRowBlockStructure * bs)107 void DenseSchurComplementSolver::InitStorage(
108 const CompressedRowBlockStructure* bs) {
109 const int num_eliminate_blocks = options().elimination_groups[0];
110 const int num_col_blocks = bs->cols.size();
111
112 vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
113 for (int i = num_eliminate_blocks, j = 0;
114 i < num_col_blocks;
115 ++i, ++j) {
116 blocks[j] = bs->cols[i].size;
117 }
118
119 set_lhs(new BlockRandomAccessDenseMatrix(blocks));
120 set_rhs(new double[lhs()->num_rows()]);
121 }
122
123 // Solve the system Sx = r, assuming that the matrix S is stored in a
124 // BlockRandomAccessDenseMatrix. The linear system is solved using
125 // Eigen's Cholesky factorization.
SolveReducedLinearSystem(double * solution)126 bool DenseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
127 const BlockRandomAccessDenseMatrix* m =
128 down_cast<const BlockRandomAccessDenseMatrix*>(lhs());
129 const int num_rows = m->num_rows();
130
131 // The case where there are no f blocks, and the system is block
132 // diagonal.
133 if (num_rows == 0) {
134 return true;
135 }
136
137 // TODO(sameeragarwal): Add proper error handling; this completely ignores
138 // the quality of the solution to the solve.
139 VectorRef(solution, num_rows) =
140 ConstMatrixRef(m->values(), num_rows, num_rows)
141 .selfadjointView<Eigen::Upper>()
142 .ldlt()
143 .solve(ConstVectorRef(rhs(), num_rows));
144
145 return true;
146 }
147
148
SparseSchurComplementSolver(const LinearSolver::Options & options)149 SparseSchurComplementSolver::SparseSchurComplementSolver(
150 const LinearSolver::Options& options)
151 : SchurComplementSolver(options) {
152 #ifndef CERES_NO_SUITESPARSE
153 factor_ = NULL;
154 #endif // CERES_NO_SUITESPARSE
155
156 #ifndef CERES_NO_CXSPARSE
157 cxsparse_factor_ = NULL;
158 #endif // CERES_NO_CXSPARSE
159 }
160
~SparseSchurComplementSolver()161 SparseSchurComplementSolver::~SparseSchurComplementSolver() {
162 #ifndef CERES_NO_SUITESPARSE
163 if (factor_ != NULL) {
164 ss_.Free(factor_);
165 factor_ = NULL;
166 }
167 #endif // CERES_NO_SUITESPARSE
168
169 #ifndef CERES_NO_CXSPARSE
170 if (cxsparse_factor_ != NULL) {
171 cxsparse_.Free(cxsparse_factor_);
172 cxsparse_factor_ = NULL;
173 }
174 #endif // CERES_NO_CXSPARSE
175 }
176
177 // Determine the non-zero blocks in the Schur Complement matrix, and
178 // initialize a BlockRandomAccessSparseMatrix object.
InitStorage(const CompressedRowBlockStructure * bs)179 void SparseSchurComplementSolver::InitStorage(
180 const CompressedRowBlockStructure* bs) {
181 const int num_eliminate_blocks = options().elimination_groups[0];
182 const int num_col_blocks = bs->cols.size();
183 const int num_row_blocks = bs->rows.size();
184
185 blocks_.resize(num_col_blocks - num_eliminate_blocks, 0);
186 for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
187 blocks_[i - num_eliminate_blocks] = bs->cols[i].size;
188 }
189
190 set<pair<int, int> > block_pairs;
191 for (int i = 0; i < blocks_.size(); ++i) {
192 block_pairs.insert(make_pair(i, i));
193 }
194
195 int r = 0;
196 while (r < num_row_blocks) {
197 int e_block_id = bs->rows[r].cells.front().block_id;
198 if (e_block_id >= num_eliminate_blocks) {
199 break;
200 }
201 vector<int> f_blocks;
202
203 // Add to the chunk until the first block in the row is
204 // different than the one in the first row for the chunk.
205 for (; r < num_row_blocks; ++r) {
206 const CompressedRow& row = bs->rows[r];
207 if (row.cells.front().block_id != e_block_id) {
208 break;
209 }
210
211 // Iterate over the blocks in the row, ignoring the first
212 // block since it is the one to be eliminated.
213 for (int c = 1; c < row.cells.size(); ++c) {
214 const Cell& cell = row.cells[c];
215 f_blocks.push_back(cell.block_id - num_eliminate_blocks);
216 }
217 }
218
219 sort(f_blocks.begin(), f_blocks.end());
220 f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end());
221 for (int i = 0; i < f_blocks.size(); ++i) {
222 for (int j = i + 1; j < f_blocks.size(); ++j) {
223 block_pairs.insert(make_pair(f_blocks[i], f_blocks[j]));
224 }
225 }
226 }
227
228 // Remaing rows do not contribute to the chunks and directly go
229 // into the schur complement via an outer product.
230 for (; r < num_row_blocks; ++r) {
231 const CompressedRow& row = bs->rows[r];
232 CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
233 for (int i = 0; i < row.cells.size(); ++i) {
234 int r_block1_id = row.cells[i].block_id - num_eliminate_blocks;
235 for (int j = 0; j < row.cells.size(); ++j) {
236 int r_block2_id = row.cells[j].block_id - num_eliminate_blocks;
237 if (r_block1_id <= r_block2_id) {
238 block_pairs.insert(make_pair(r_block1_id, r_block2_id));
239 }
240 }
241 }
242 }
243
244 set_lhs(new BlockRandomAccessSparseMatrix(blocks_, block_pairs));
245 set_rhs(new double[lhs()->num_rows()]);
246 }
247
SolveReducedLinearSystem(double * solution)248 bool SparseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
249 switch (options().sparse_linear_algebra_library) {
250 case SUITE_SPARSE:
251 return SolveReducedLinearSystemUsingSuiteSparse(solution);
252 case CX_SPARSE:
253 return SolveReducedLinearSystemUsingCXSparse(solution);
254 default:
255 LOG(FATAL) << "Unknown sparse linear algebra library : "
256 << options().sparse_linear_algebra_library;
257 }
258
259 LOG(FATAL) << "Unknown sparse linear algebra library : "
260 << options().sparse_linear_algebra_library;
261 return false;
262 }
263
264 #ifndef CERES_NO_SUITESPARSE
265 // Solve the system Sx = r, assuming that the matrix S is stored in a
266 // BlockRandomAccessSparseMatrix. The linear system is solved using
267 // CHOLMOD's sparse cholesky factorization routines.
SolveReducedLinearSystemUsingSuiteSparse(double * solution)268 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
269 double* solution) {
270 const time_t start_time = time(NULL);
271
272 TripletSparseMatrix* tsm =
273 const_cast<TripletSparseMatrix*>(
274 down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
275
276 const int num_rows = tsm->num_rows();
277
278 // The case where there are no f blocks, and the system is block
279 // diagonal.
280 if (num_rows == 0) {
281 return true;
282 }
283
284 cholmod_sparse* cholmod_lhs = ss_.CreateSparseMatrix(tsm);
285 // The matrix is symmetric, and the upper triangular part of the
286 // matrix contains the values.
287 cholmod_lhs->stype = 1;
288 const time_t lhs_time = time(NULL);
289
290 cholmod_dense* cholmod_rhs =
291 ss_.CreateDenseVector(const_cast<double*>(rhs()), num_rows, num_rows);
292 const time_t rhs_time = time(NULL);
293
294 // Symbolic factorization is computed if we don't already have one handy.
295 if (factor_ == NULL) {
296 if (options().use_block_amd) {
297 factor_ = ss_.BlockAnalyzeCholesky(cholmod_lhs, blocks_, blocks_);
298 } else {
299 factor_ = ss_.AnalyzeCholesky(cholmod_lhs);
300 }
301
302 if (VLOG_IS_ON(2)) {
303 cholmod_print_common("Symbolic Analysis", ss_.mutable_cc());
304 }
305 }
306
307 CHECK_NOTNULL(factor_);
308
309 const time_t symbolic_time = time(NULL);
310 cholmod_dense* cholmod_solution =
311 ss_.SolveCholesky(cholmod_lhs, factor_, cholmod_rhs);
312
313 const time_t solve_time = time(NULL);
314
315 ss_.Free(cholmod_lhs);
316 cholmod_lhs = NULL;
317 ss_.Free(cholmod_rhs);
318 cholmod_rhs = NULL;
319
320 if (cholmod_solution == NULL) {
321 LOG(WARNING) << "CHOLMOD solve failed.";
322 return false;
323 }
324
325 VectorRef(solution, num_rows)
326 = VectorRef(static_cast<double*>(cholmod_solution->x), num_rows);
327 ss_.Free(cholmod_solution);
328 const time_t final_time = time(NULL);
329 VLOG(2) << "time: " << (final_time - start_time)
330 << " lhs : " << (lhs_time - start_time)
331 << " rhs: " << (rhs_time - lhs_time)
332 << " analyze: " << (symbolic_time - rhs_time)
333 << " factor_and_solve: " << (solve_time - symbolic_time)
334 << " cleanup: " << (final_time - solve_time);
335 return true;
336 }
337 #else
SolveReducedLinearSystemUsingSuiteSparse(double * solution)338 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
339 double* solution) {
340 LOG(FATAL) << "No SuiteSparse support in Ceres.";
341 return false;
342 }
343 #endif // CERES_NO_SUITESPARSE
344
345 #ifndef CERES_NO_CXSPARSE
346 // Solve the system Sx = r, assuming that the matrix S is stored in a
347 // BlockRandomAccessSparseMatrix. The linear system is solved using
348 // CXSparse's sparse cholesky factorization routines.
SolveReducedLinearSystemUsingCXSparse(double * solution)349 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
350 double* solution) {
351 // Extract the TripletSparseMatrix that is used for actually storing S.
352 TripletSparseMatrix* tsm =
353 const_cast<TripletSparseMatrix*>(
354 down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
355
356 const int num_rows = tsm->num_rows();
357
358 // The case where there are no f blocks, and the system is block
359 // diagonal.
360 if (num_rows == 0) {
361 return true;
362 }
363
364 cs_di* lhs = CHECK_NOTNULL(cxsparse_.CreateSparseMatrix(tsm));
365 VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
366
367 // Compute symbolic factorization if not available.
368 if (cxsparse_factor_ == NULL) {
369 cxsparse_factor_ = CHECK_NOTNULL(cxsparse_.AnalyzeCholesky(lhs));
370 }
371
372 // Solve the linear system.
373 bool ok = cxsparse_.SolveCholesky(lhs, cxsparse_factor_, solution);
374
375 cxsparse_.Free(lhs);
376 return ok;
377 }
378 #else
SolveReducedLinearSystemUsingCXSparse(double * solution)379 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
380 double* solution) {
381 LOG(FATAL) << "No CXSparse support in Ceres.";
382 return false;
383 }
384 #endif // CERES_NO_CXPARSE
385
386 } // namespace internal
387 } // namespace ceres
388