• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include <algorithm>
32 #include <ctime>
33 #include <set>
34 #include <vector>
35 
36 #ifndef CERES_NO_CXSPARSE
37 #include "cs.h"
38 #endif  // CERES_NO_CXSPARSE
39 
40 #include "Eigen/Dense"
41 #include "ceres/block_random_access_dense_matrix.h"
42 #include "ceres/block_random_access_matrix.h"
43 #include "ceres/block_random_access_sparse_matrix.h"
44 #include "ceres/block_sparse_matrix.h"
45 #include "ceres/block_structure.h"
46 #include "ceres/detect_structure.h"
47 #include "ceres/linear_solver.h"
48 #include "ceres/schur_complement_solver.h"
49 #include "ceres/suitesparse.h"
50 #include "ceres/triplet_sparse_matrix.h"
51 #include "ceres/internal/eigen.h"
52 #include "ceres/internal/port.h"
53 #include "ceres/internal/scoped_ptr.h"
54 #include "ceres/types.h"
55 
56 
57 namespace ceres {
58 namespace internal {
59 
SolveImpl(BlockSparseMatrixBase * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)60 LinearSolver::Summary SchurComplementSolver::SolveImpl(
61     BlockSparseMatrixBase* A,
62     const double* b,
63     const LinearSolver::PerSolveOptions& per_solve_options,
64     double* x) {
65   const time_t start_time = time(NULL);
66   if (eliminator_.get() == NULL) {
67     InitStorage(A->block_structure());
68     DetectStructure(*A->block_structure(),
69                     options_.elimination_groups[0],
70                     &options_.row_block_size,
71                     &options_.e_block_size,
72                     &options_.f_block_size);
73     eliminator_.reset(CHECK_NOTNULL(SchurEliminatorBase::Create(options_)));
74     eliminator_->Init(options_.elimination_groups[0], A->block_structure());
75   };
76   const time_t init_time = time(NULL);
77   fill(x, x + A->num_cols(), 0.0);
78 
79   LinearSolver::Summary summary;
80   summary.num_iterations = 1;
81   summary.termination_type = FAILURE;
82   eliminator_->Eliminate(A, b, per_solve_options.D, lhs_.get(), rhs_.get());
83   const time_t eliminate_time = time(NULL);
84 
85   double* reduced_solution = x + A->num_cols() - lhs_->num_cols();
86   const bool status = SolveReducedLinearSystem(reduced_solution);
87   const time_t solve_time = time(NULL);
88 
89   if (!status) {
90     return summary;
91   }
92 
93   eliminator_->BackSubstitute(A, b, per_solve_options.D, reduced_solution, x);
94   const time_t backsubstitute_time = time(NULL);
95   summary.termination_type = TOLERANCE;
96 
97   VLOG(2) << "time (sec) total: " << (backsubstitute_time - start_time)
98           << " init: " << (init_time - start_time)
99           << " eliminate: " << (eliminate_time - init_time)
100           << " solve: " << (solve_time - eliminate_time)
101           << " backsubstitute: " << (backsubstitute_time - solve_time);
102   return summary;
103 }
104 
105 // Initialize a BlockRandomAccessDenseMatrix to store the Schur
106 // complement.
InitStorage(const CompressedRowBlockStructure * bs)107 void DenseSchurComplementSolver::InitStorage(
108     const CompressedRowBlockStructure* bs) {
109   const int num_eliminate_blocks = options().elimination_groups[0];
110   const int num_col_blocks = bs->cols.size();
111 
112   vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
113   for (int i = num_eliminate_blocks, j = 0;
114        i < num_col_blocks;
115        ++i, ++j) {
116     blocks[j] = bs->cols[i].size;
117   }
118 
119   set_lhs(new BlockRandomAccessDenseMatrix(blocks));
120   set_rhs(new double[lhs()->num_rows()]);
121 }
122 
123 // Solve the system Sx = r, assuming that the matrix S is stored in a
124 // BlockRandomAccessDenseMatrix. The linear system is solved using
125 // Eigen's Cholesky factorization.
SolveReducedLinearSystem(double * solution)126 bool DenseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
127   const BlockRandomAccessDenseMatrix* m =
128       down_cast<const BlockRandomAccessDenseMatrix*>(lhs());
129   const int num_rows = m->num_rows();
130 
131   // The case where there are no f blocks, and the system is block
132   // diagonal.
133   if (num_rows == 0) {
134     return true;
135   }
136 
137   // TODO(sameeragarwal): Add proper error handling; this completely ignores
138   // the quality of the solution to the solve.
139   VectorRef(solution, num_rows) =
140       ConstMatrixRef(m->values(), num_rows, num_rows)
141       .selfadjointView<Eigen::Upper>()
142       .ldlt()
143       .solve(ConstVectorRef(rhs(), num_rows));
144 
145   return true;
146 }
147 
148 
SparseSchurComplementSolver(const LinearSolver::Options & options)149 SparseSchurComplementSolver::SparseSchurComplementSolver(
150     const LinearSolver::Options& options)
151     : SchurComplementSolver(options) {
152 #ifndef CERES_NO_SUITESPARSE
153   factor_ = NULL;
154 #endif  // CERES_NO_SUITESPARSE
155 
156 #ifndef CERES_NO_CXSPARSE
157   cxsparse_factor_ = NULL;
158 #endif  // CERES_NO_CXSPARSE
159 }
160 
~SparseSchurComplementSolver()161 SparseSchurComplementSolver::~SparseSchurComplementSolver() {
162 #ifndef CERES_NO_SUITESPARSE
163   if (factor_ != NULL) {
164     ss_.Free(factor_);
165     factor_ = NULL;
166   }
167 #endif  // CERES_NO_SUITESPARSE
168 
169 #ifndef CERES_NO_CXSPARSE
170   if (cxsparse_factor_ != NULL) {
171     cxsparse_.Free(cxsparse_factor_);
172     cxsparse_factor_ = NULL;
173   }
174 #endif  // CERES_NO_CXSPARSE
175 }
176 
177 // Determine the non-zero blocks in the Schur Complement matrix, and
178 // initialize a BlockRandomAccessSparseMatrix object.
InitStorage(const CompressedRowBlockStructure * bs)179 void SparseSchurComplementSolver::InitStorage(
180     const CompressedRowBlockStructure* bs) {
181   const int num_eliminate_blocks = options().elimination_groups[0];
182   const int num_col_blocks = bs->cols.size();
183   const int num_row_blocks = bs->rows.size();
184 
185   blocks_.resize(num_col_blocks - num_eliminate_blocks, 0);
186   for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
187     blocks_[i - num_eliminate_blocks] = bs->cols[i].size;
188   }
189 
190   set<pair<int, int> > block_pairs;
191   for (int i = 0; i < blocks_.size(); ++i) {
192     block_pairs.insert(make_pair(i, i));
193   }
194 
195   int r = 0;
196   while (r < num_row_blocks) {
197     int e_block_id = bs->rows[r].cells.front().block_id;
198     if (e_block_id >= num_eliminate_blocks) {
199       break;
200     }
201     vector<int> f_blocks;
202 
203     // Add to the chunk until the first block in the row is
204     // different than the one in the first row for the chunk.
205     for (; r < num_row_blocks; ++r) {
206       const CompressedRow& row = bs->rows[r];
207       if (row.cells.front().block_id != e_block_id) {
208         break;
209       }
210 
211       // Iterate over the blocks in the row, ignoring the first
212       // block since it is the one to be eliminated.
213       for (int c = 1; c < row.cells.size(); ++c) {
214         const Cell& cell = row.cells[c];
215         f_blocks.push_back(cell.block_id - num_eliminate_blocks);
216       }
217     }
218 
219     sort(f_blocks.begin(), f_blocks.end());
220     f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end());
221     for (int i = 0; i < f_blocks.size(); ++i) {
222       for (int j = i + 1; j < f_blocks.size(); ++j) {
223         block_pairs.insert(make_pair(f_blocks[i], f_blocks[j]));
224       }
225     }
226   }
227 
228   // Remaing rows do not contribute to the chunks and directly go
229   // into the schur complement via an outer product.
230   for (; r < num_row_blocks; ++r) {
231     const CompressedRow& row = bs->rows[r];
232     CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
233     for (int i = 0; i < row.cells.size(); ++i) {
234       int r_block1_id = row.cells[i].block_id - num_eliminate_blocks;
235       for (int j = 0; j < row.cells.size(); ++j) {
236         int r_block2_id = row.cells[j].block_id - num_eliminate_blocks;
237         if (r_block1_id <= r_block2_id) {
238           block_pairs.insert(make_pair(r_block1_id, r_block2_id));
239         }
240       }
241     }
242   }
243 
244   set_lhs(new BlockRandomAccessSparseMatrix(blocks_, block_pairs));
245   set_rhs(new double[lhs()->num_rows()]);
246 }
247 
SolveReducedLinearSystem(double * solution)248 bool SparseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
249   switch (options().sparse_linear_algebra_library) {
250     case SUITE_SPARSE:
251       return SolveReducedLinearSystemUsingSuiteSparse(solution);
252     case CX_SPARSE:
253       return SolveReducedLinearSystemUsingCXSparse(solution);
254     default:
255       LOG(FATAL) << "Unknown sparse linear algebra library : "
256                  << options().sparse_linear_algebra_library;
257   }
258 
259   LOG(FATAL) << "Unknown sparse linear algebra library : "
260              << options().sparse_linear_algebra_library;
261   return false;
262 }
263 
264 #ifndef CERES_NO_SUITESPARSE
265 // Solve the system Sx = r, assuming that the matrix S is stored in a
266 // BlockRandomAccessSparseMatrix.  The linear system is solved using
267 // CHOLMOD's sparse cholesky factorization routines.
SolveReducedLinearSystemUsingSuiteSparse(double * solution)268 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
269     double* solution) {
270   const time_t start_time = time(NULL);
271 
272   TripletSparseMatrix* tsm =
273       const_cast<TripletSparseMatrix*>(
274           down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
275 
276   const int num_rows = tsm->num_rows();
277 
278   // The case where there are no f blocks, and the system is block
279   // diagonal.
280   if (num_rows == 0) {
281     return true;
282   }
283 
284   cholmod_sparse* cholmod_lhs = ss_.CreateSparseMatrix(tsm);
285   // The matrix is symmetric, and the upper triangular part of the
286   // matrix contains the values.
287   cholmod_lhs->stype = 1;
288   const time_t lhs_time = time(NULL);
289 
290   cholmod_dense*  cholmod_rhs =
291       ss_.CreateDenseVector(const_cast<double*>(rhs()), num_rows, num_rows);
292   const time_t rhs_time = time(NULL);
293 
294   // Symbolic factorization is computed if we don't already have one handy.
295   if (factor_ == NULL) {
296     if (options().use_block_amd) {
297       factor_ = ss_.BlockAnalyzeCholesky(cholmod_lhs, blocks_, blocks_);
298     } else {
299       factor_ = ss_.AnalyzeCholesky(cholmod_lhs);
300     }
301 
302     if (VLOG_IS_ON(2)) {
303       cholmod_print_common("Symbolic Analysis", ss_.mutable_cc());
304     }
305   }
306 
307   CHECK_NOTNULL(factor_);
308 
309   const time_t symbolic_time = time(NULL);
310   cholmod_dense* cholmod_solution =
311       ss_.SolveCholesky(cholmod_lhs, factor_, cholmod_rhs);
312 
313   const time_t solve_time = time(NULL);
314 
315   ss_.Free(cholmod_lhs);
316   cholmod_lhs = NULL;
317   ss_.Free(cholmod_rhs);
318   cholmod_rhs = NULL;
319 
320   if (cholmod_solution == NULL) {
321     LOG(WARNING) << "CHOLMOD solve failed.";
322     return false;
323   }
324 
325   VectorRef(solution, num_rows)
326       = VectorRef(static_cast<double*>(cholmod_solution->x), num_rows);
327   ss_.Free(cholmod_solution);
328   const time_t final_time = time(NULL);
329   VLOG(2) << "time: " << (final_time - start_time)
330           << " lhs : " << (lhs_time - start_time)
331           << " rhs:  " << (rhs_time - lhs_time)
332           << " analyze: " <<  (symbolic_time - rhs_time)
333           << " factor_and_solve: " << (solve_time - symbolic_time)
334           << " cleanup: " << (final_time - solve_time);
335   return true;
336 }
337 #else
SolveReducedLinearSystemUsingSuiteSparse(double * solution)338 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
339     double* solution) {
340   LOG(FATAL) << "No SuiteSparse support in Ceres.";
341   return false;
342 }
343 #endif  // CERES_NO_SUITESPARSE
344 
345 #ifndef CERES_NO_CXSPARSE
346 // Solve the system Sx = r, assuming that the matrix S is stored in a
347 // BlockRandomAccessSparseMatrix.  The linear system is solved using
348 // CXSparse's sparse cholesky factorization routines.
SolveReducedLinearSystemUsingCXSparse(double * solution)349 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
350     double* solution) {
351   // Extract the TripletSparseMatrix that is used for actually storing S.
352   TripletSparseMatrix* tsm =
353       const_cast<TripletSparseMatrix*>(
354           down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
355 
356   const int num_rows = tsm->num_rows();
357 
358   // The case where there are no f blocks, and the system is block
359   // diagonal.
360   if (num_rows == 0) {
361     return true;
362   }
363 
364   cs_di* lhs = CHECK_NOTNULL(cxsparse_.CreateSparseMatrix(tsm));
365   VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
366 
367   // Compute symbolic factorization if not available.
368   if (cxsparse_factor_ == NULL) {
369     cxsparse_factor_ = CHECK_NOTNULL(cxsparse_.AnalyzeCholesky(lhs));
370   }
371 
372   // Solve the linear system.
373   bool ok = cxsparse_.SolveCholesky(lhs, cxsparse_factor_, solution);
374 
375   cxsparse_.Free(lhs);
376   return ok;
377 }
378 #else
SolveReducedLinearSystemUsingCXSparse(double * solution)379 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
380     double* solution) {
381   LOG(FATAL) << "No CXSparse support in Ceres.";
382   return false;
383 }
384 #endif  // CERES_NO_CXPARSE
385 
386 }  // namespace internal
387 }  // namespace ceres
388