• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // A simple C++ interface to the SuiteSparse and CHOLMOD libraries.
32 
33 #ifndef CERES_INTERNAL_SUITESPARSE_H_
34 #define CERES_INTERNAL_SUITESPARSE_H_
35 
36 #ifndef CERES_NO_SUITESPARSE
37 
38 #include <cstring>
39 #include <string>
40 #include <vector>
41 
42 #include <glog/logging.h>
43 #include "cholmod.h"
44 #include "ceres/internal/port.h"
45 
46 namespace ceres {
47 namespace internal {
48 
49 class CompressedRowSparseMatrix;
50 class TripletSparseMatrix;
51 
52 // The raw CHOLMOD and SuiteSparseQR libraries have a slightly
53 // cumbersome c like calling format. This object abstracts it away and
54 // provides the user with a simpler interface. The methods here cannot
55 // be static as a cholmod_common object serves as a global variable
56 // for all cholmod function calls.
57 class SuiteSparse {
58  public:
SuiteSparse()59   SuiteSparse()  { cholmod_start(&cc_);  }
~SuiteSparse()60   ~SuiteSparse() { cholmod_finish(&cc_); }
61 
62   // Functions for building cholmod_sparse objects from sparse
63   // matrices stored in triplet form. The matrix A is not
64   // modifed. Called owns the result.
65   cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A);
66 
67   // This function works like CreateSparseMatrix, except that the
68   // return value corresponds to A' rather than A.
69   cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A);
70 
71   // Create a cholmod_sparse wrapper around the contents of A. This is
72   // a shallow object, which refers to the contents of A and does not
73   // use the SuiteSparse machinery to allocate memory, this object
74   // should be disposed off with a delete and not a call to Free as is
75   // the case for objects returned by CreateSparseMatrixTranspose.
76   cholmod_sparse* CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
77 
78   // Given a vector x, build a cholmod_dense vector of size out_size
79   // with the first in_size entries copied from x. If x is NULL, then
80   // an all zeros vector is returned. Caller owns the result.
81   cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size);
82 
83   // The matrix A is scaled using the matrix whose diagonal is the
84   // vector scale. mode describes how scaling is applied. Possible
85   // values are CHOLMOD_ROW for row scaling - diag(scale) * A,
86   // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM
87   // for symmetric scaling which scales both the rows and the columns
88   // - diag(scale) * A * diag(scale).
Scale(cholmod_dense * scale,int mode,cholmod_sparse * A)89   void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) {
90      cholmod_scale(scale, mode, A, &cc_);
91   }
92 
93   // Create and return a matrix m = A * A'. Caller owns the
94   // result. The matrix A is not modified.
AATranspose(cholmod_sparse * A)95   cholmod_sparse* AATranspose(cholmod_sparse* A) {
96     cholmod_sparse*m =  cholmod_aat(A, NULL, A->nrow, 1, &cc_);
97     m->stype = 1;  // Pay attention to the upper triangular part.
98     return m;
99   }
100 
101   // y = alpha * A * x + beta * y. Only y is modified.
SparseDenseMultiply(cholmod_sparse * A,double alpha,double beta,cholmod_dense * x,cholmod_dense * y)102   void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta,
103                            cholmod_dense* x, cholmod_dense* y) {
104     double alpha_[2] = {alpha, 0};
105     double beta_[2] = {beta, 0};
106     cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_);
107   }
108 
109   // Find an ordering of A or AA' (if A is unsymmetric) that minimizes
110   // the fill-in in the Cholesky factorization of the corresponding
111   // matrix. This is done by using the AMD algorithm.
112   //
113   // Using this ordering, the symbolic Cholesky factorization of A (or
114   // AA') is computed and returned.
115   //
116   // A is not modified, only the pattern of non-zeros of A is used,
117   // the actual numerical values in A are of no consequence.
118   //
119   // Caller owns the result.
120   cholmod_factor* AnalyzeCholesky(cholmod_sparse* A);
121 
122   cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A,
123                                        const vector<int>& row_blocks,
124                                        const vector<int>& col_blocks);
125 
126   // If A is symmetric, then compute the symbolic Cholesky
127   // factorization of A(ordering, ordering). If A is unsymmetric, then
128   // compute the symbolic factorization of
129   // A(ordering,:) A(ordering,:)'.
130   //
131   // A is not modified, only the pattern of non-zeros of A is used,
132   // the actual numerical values in A are of no consequence.
133   //
134   // Caller owns the result.
135   cholmod_factor* AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A,
136                                                   const vector<int>& ordering);
137 
138   // Use the symbolic factorization in L, to find the numerical
139   // factorization for the matrix A or AA^T. Return true if
140   // successful, false otherwise. L contains the numeric factorization
141   // on return.
142   bool Cholesky(cholmod_sparse* A, cholmod_factor* L);
143 
144   // Given a Cholesky factorization of a matrix A = LL^T, solve the
145   // linear system Ax = b, and return the result. If the Solve fails
146   // NULL is returned. Caller owns the result.
147   cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b);
148 
149   // Combine the calls to Cholesky and Solve into a single call. If
150   // the cholesky factorization or the solve fails, return
151   // NULL. Caller owns the result.
152   cholmod_dense* SolveCholesky(cholmod_sparse* A,
153                                cholmod_factor* L,
154                                cholmod_dense* b);
155 
156   // By virtue of the modeling layer in Ceres being block oriented,
157   // all the matrices used by Ceres are also block oriented. When
158   // doing sparse direct factorization of these matrices the
159   // fill-reducing ordering algorithms (in particular AMD) can either
160   // be run on the block or the scalar form of these matrices. The two
161   // SuiteSparse::AnalyzeCholesky methods allows the the client to
162   // compute the symbolic factorization of a matrix by either using
163   // AMD on the matrix or a user provided ordering of the rows.
164   //
165   // But since the underlying matrices are block oriented, it is worth
166   // running AMD on just the block structre of these matrices and then
167   // lifting these block orderings to a full scalar ordering. This
168   // preserves the block structure of the permuted matrix, and exposes
169   // more of the super-nodal structure of the matrix to the numerical
170   // factorization routines.
171   //
172   // Find the block oriented AMD ordering of a matrix A, whose row and
173   // column blocks are given by row_blocks, and col_blocks
174   // respectively. The matrix may or may not be symmetric. The entries
175   // of col_blocks do not need to sum to the number of columns in
176   // A. If this is the case, only the first sum(col_blocks) are used
177   // to compute the ordering.
178   bool BlockAMDOrdering(const cholmod_sparse* A,
179                         const vector<int>& row_blocks,
180                         const vector<int>& col_blocks,
181                         vector<int>* ordering);
182 
183   // Given a set of blocks and a permutation of these blocks, compute
184   // the corresponding "scalar" ordering, where the scalar ordering of
185   // size sum(blocks).
186   static void BlockOrderingToScalarOrdering(const vector<int>& blocks,
187                                             const vector<int>& block_ordering,
188                                             vector<int>* scalar_ordering);
189 
190   // Extract the block sparsity pattern of the scalar sparse matrix
191   // A and return it in compressed column form. The compressed column
192   // form is stored in two vectors block_rows, and block_cols, which
193   // correspond to the row and column arrays in a compressed column sparse
194   // matrix.
195   //
196   // If c_ij is the block in the matrix A corresponding to row block i
197   // and column block j, then it is expected that A contains at least
198   // one non-zero entry corresponding to the top left entry of c_ij,
199   // as that entry is used to detect the presence of a non-zero c_ij.
200   static void ScalarMatrixToBlockMatrix(const cholmod_sparse* A,
201                                         const vector<int>& row_blocks,
202                                         const vector<int>& col_blocks,
203                                         vector<int>* block_rows,
204                                         vector<int>* block_cols);
205 
Free(cholmod_sparse * m)206   void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); }
Free(cholmod_dense * m)207   void Free(cholmod_dense* m)  { cholmod_free_dense(&m, &cc_);  }
Free(cholmod_factor * m)208   void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); }
209 
Print(cholmod_sparse * m,const string & name)210   void Print(cholmod_sparse* m, const string& name) {
211     cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_);
212   }
213 
Print(cholmod_dense * m,const string & name)214   void Print(cholmod_dense* m, const string& name) {
215     cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_);
216   }
217 
Print(cholmod_triplet * m,const string & name)218   void Print(cholmod_triplet* m, const string& name) {
219     cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_);
220   }
221 
mutable_cc()222   cholmod_common* mutable_cc() { return &cc_; }
223 
224  private:
225   cholmod_common cc_;
226 };
227 
228 }  // namespace internal
229 }  // namespace ceres
230 
231 #endif  // CERES_NO_SUITESPARSE
232 
233 #endif  // CERES_INTERNAL_SUITESPARSE_H_
234