• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #ifndef CERES_NO_SUITESPARSE
32 
33 #include "ceres/visibility_based_preconditioner.h"
34 
35 #include "Eigen/Dense"
36 #include "ceres/block_random_access_dense_matrix.h"
37 #include "ceres/block_random_access_sparse_matrix.h"
38 #include "ceres/block_sparse_matrix.h"
39 #include "ceres/casts.h"
40 #include "ceres/collections_port.h"
41 #include "ceres/file.h"
42 #include "ceres/internal/eigen.h"
43 #include "ceres/internal/scoped_ptr.h"
44 #include "ceres/linear_least_squares_problems.h"
45 #include "ceres/schur_eliminator.h"
46 #include "ceres/stringprintf.h"
47 #include "ceres/types.h"
48 #include "ceres/test_util.h"
49 #include "glog/logging.h"
50 #include "gtest/gtest.h"
51 
52 namespace ceres {
53 namespace internal {
54 
55 using testing::AssertionResult;
56 using testing::AssertionSuccess;
57 using testing::AssertionFailure;
58 
59 static const double kTolerance = 1e-12;
60 
61 class VisibilityBasedPreconditionerTest : public ::testing::Test {
62  public:
63   static const int kCameraSize = 9;
64 
65  protected:
SetUp()66   void SetUp() {
67     string input_file = TestFileAbsolutePath("problem-6-1384-000.lsqp");
68 
69     scoped_ptr<LinearLeastSquaresProblem> problem(
70         CHECK_NOTNULL(CreateLinearLeastSquaresProblemFromFile(input_file)));
71     A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
72     b_.reset(problem->b.release());
73     D_.reset(problem->D.release());
74 
75     const CompressedRowBlockStructure* bs =
76         CHECK_NOTNULL(A_->block_structure());
77     const int num_col_blocks = bs->cols.size();
78 
79     num_cols_ = A_->num_cols();
80     num_rows_ = A_->num_rows();
81     num_eliminate_blocks_ = problem->num_eliminate_blocks;
82     num_camera_blocks_ = num_col_blocks - num_eliminate_blocks_;
83     options_.elimination_groups.push_back(num_eliminate_blocks_);
84     options_.elimination_groups.push_back(
85         A_->block_structure()->cols.size() - num_eliminate_blocks_);
86 
87     vector<int> blocks(num_col_blocks - num_eliminate_blocks_, 0);
88     for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
89       blocks[i - num_eliminate_blocks_] = bs->cols[i].size;
90     }
91 
92     // The input matrix is a real jacobian and fairly poorly
93     // conditioned. Setting D to a large constant makes the normal
94     // equations better conditioned and makes the tests below better
95     // conditioned.
96     VectorRef(D_.get(), num_cols_).setConstant(10.0);
97 
98     schur_complement_.reset(new BlockRandomAccessDenseMatrix(blocks));
99     Vector rhs(schur_complement_->num_rows());
100 
101     scoped_ptr<SchurEliminatorBase> eliminator;
102     eliminator.reset(SchurEliminatorBase::Create(options_));
103     eliminator->Init(num_eliminate_blocks_, bs);
104     eliminator->Eliminate(A_.get(), b_.get(), D_.get(),
105                           schur_complement_.get(), rhs.data());
106   }
107 
108 
IsSparsityStructureValid()109   AssertionResult IsSparsityStructureValid() {
110     preconditioner_->InitStorage(*A_->block_structure());
111     const HashSet<pair<int, int> >& cluster_pairs = get_cluster_pairs();
112     const vector<int>& cluster_membership = get_cluster_membership();
113 
114     for (int i = 0; i < num_camera_blocks_; ++i) {
115       for (int j = i; j < num_camera_blocks_; ++j) {
116         if (cluster_pairs.count(make_pair(cluster_membership[i],
117                                           cluster_membership[j]))) {
118           if (!IsBlockPairInPreconditioner(i, j)) {
119             return AssertionFailure()
120                 << "block pair (" << i << "," << j << "missing";
121           }
122         } else {
123           if (IsBlockPairInPreconditioner(i, j)) {
124             return AssertionFailure()
125                 << "block pair (" << i << "," << j << "should not be present";
126           }
127         }
128       }
129     }
130     return AssertionSuccess();
131   }
132 
PreconditionerValuesMatch()133   AssertionResult PreconditionerValuesMatch() {
134     preconditioner_->Update(*A_, D_.get());
135     const HashSet<pair<int, int> >& cluster_pairs = get_cluster_pairs();
136     const BlockRandomAccessSparseMatrix* m = get_m();
137     Matrix preconditioner_matrix;
138     m->matrix()->ToDenseMatrix(&preconditioner_matrix);
139     ConstMatrixRef full_schur_complement(schur_complement_->values(),
140                                          m->num_rows(),
141                                          m->num_rows());
142     const int num_clusters = get_num_clusters();
143     const int kDiagonalBlockSize =
144         kCameraSize * num_camera_blocks_ / num_clusters;
145 
146     for (int i = 0; i < num_clusters; ++i) {
147       for (int j = i; j < num_clusters; ++j) {
148         double diff = 0.0;
149         if (cluster_pairs.count(make_pair(i, j))) {
150           diff =
151               (preconditioner_matrix.block(kDiagonalBlockSize * i,
152                                            kDiagonalBlockSize * j,
153                                            kDiagonalBlockSize,
154                                            kDiagonalBlockSize) -
155                full_schur_complement.block(kDiagonalBlockSize * i,
156                                            kDiagonalBlockSize * j,
157                                            kDiagonalBlockSize,
158                                            kDiagonalBlockSize)).norm();
159         } else {
160           diff = preconditioner_matrix.block(kDiagonalBlockSize * i,
161                                              kDiagonalBlockSize * j,
162                                              kDiagonalBlockSize,
163                                              kDiagonalBlockSize).norm();
164         }
165         if (diff > kTolerance) {
166           return AssertionFailure()
167               << "Preconditioner block " << i << " " << j << " differs "
168               << "from expected value by " << diff;
169         }
170       }
171     }
172     return AssertionSuccess();
173   }
174 
175   // Accessors
get_num_blocks()176   int get_num_blocks() { return preconditioner_->num_blocks_; }
177 
get_num_clusters()178   int get_num_clusters() { return preconditioner_->num_clusters_; }
get_mutable_num_clusters()179   int* get_mutable_num_clusters() { return &preconditioner_->num_clusters_; }
180 
get_block_size()181   const vector<int>& get_block_size() {
182     return preconditioner_->block_size_; }
183 
get_mutable_block_size()184   vector<int>* get_mutable_block_size() {
185     return &preconditioner_->block_size_; }
186 
get_cluster_membership()187   const vector<int>& get_cluster_membership() {
188     return preconditioner_->cluster_membership_;
189   }
190 
get_mutable_cluster_membership()191   vector<int>* get_mutable_cluster_membership() {
192     return &preconditioner_->cluster_membership_;
193   }
194 
get_block_pairs()195   const set<pair<int, int> >& get_block_pairs() {
196     return preconditioner_->block_pairs_;
197   }
198 
get_mutable_block_pairs()199   set<pair<int, int> >* get_mutable_block_pairs() {
200     return &preconditioner_->block_pairs_;
201   }
202 
get_cluster_pairs()203   const HashSet<pair<int, int> >& get_cluster_pairs() {
204     return preconditioner_->cluster_pairs_;
205   }
206 
get_mutable_cluster_pairs()207   HashSet<pair<int, int> >* get_mutable_cluster_pairs() {
208     return &preconditioner_->cluster_pairs_;
209   }
210 
IsBlockPairInPreconditioner(const int block1,const int block2)211   bool IsBlockPairInPreconditioner(const int block1, const int block2) {
212     return preconditioner_->IsBlockPairInPreconditioner(block1, block2);
213   }
214 
IsBlockPairOffDiagonal(const int block1,const int block2)215   bool IsBlockPairOffDiagonal(const int block1, const int block2) {
216     return preconditioner_->IsBlockPairOffDiagonal(block1, block2);
217   }
218 
get_m()219   const BlockRandomAccessSparseMatrix* get_m() {
220     return preconditioner_->m_.get();
221   }
222 
223   int num_rows_;
224   int num_cols_;
225   int num_eliminate_blocks_;
226   int num_camera_blocks_;
227 
228   scoped_ptr<BlockSparseMatrix> A_;
229   scoped_array<double> b_;
230   scoped_array<double> D_;
231 
232   LinearSolver::Options options_;
233   scoped_ptr<VisibilityBasedPreconditioner> preconditioner_;
234   scoped_ptr<BlockRandomAccessDenseMatrix> schur_complement_;
235 };
236 
237 #ifndef CERES_NO_PROTOCOL_BUFFERS
TEST_F(VisibilityBasedPreconditionerTest,SchurJacobiStructure)238 TEST_F(VisibilityBasedPreconditionerTest, SchurJacobiStructure) {
239   options_.preconditioner_type = SCHUR_JACOBI;
240   preconditioner_.reset(
241       new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
242   EXPECT_EQ(get_num_blocks(), num_camera_blocks_);
243   EXPECT_EQ(get_num_clusters(), num_camera_blocks_);
244   for (int i = 0; i < num_camera_blocks_; ++i) {
245     for (int j = 0; j < num_camera_blocks_; ++j) {
246       const string msg = StringPrintf("Camera pair: %d %d", i, j);
247       SCOPED_TRACE(msg);
248       if (i == j) {
249         EXPECT_TRUE(IsBlockPairInPreconditioner(i, j));
250         EXPECT_FALSE(IsBlockPairOffDiagonal(i, j));
251       } else {
252         EXPECT_FALSE(IsBlockPairInPreconditioner(i, j));
253         EXPECT_TRUE(IsBlockPairOffDiagonal(i, j));
254       }
255     }
256   }
257 }
258 
TEST_F(VisibilityBasedPreconditionerTest,OneClusterClusterJacobi)259 TEST_F(VisibilityBasedPreconditionerTest, OneClusterClusterJacobi) {
260   options_.preconditioner_type = CLUSTER_JACOBI;
261   preconditioner_.reset(
262       new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
263 
264   // Override the clustering to be a single clustering containing all
265   // the cameras.
266   vector<int>& cluster_membership = *get_mutable_cluster_membership();
267   for (int i = 0; i < num_camera_blocks_; ++i) {
268     cluster_membership[i] = 0;
269   }
270 
271   *get_mutable_num_clusters() = 1;
272 
273   HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
274   cluster_pairs.clear();
275   cluster_pairs.insert(make_pair(0, 0));
276 
277   EXPECT_TRUE(IsSparsityStructureValid());
278   EXPECT_TRUE(PreconditionerValuesMatch());
279 
280   // Multiplication by the inverse of the preconditioner.
281   const int num_rows = schur_complement_->num_rows();
282   ConstMatrixRef full_schur_complement(schur_complement_->values(),
283                                        num_rows,
284                                        num_rows);
285   Vector x(num_rows);
286   Vector y(num_rows);
287   Vector z(num_rows);
288 
289   for (int i = 0; i < num_rows; ++i) {
290     x.setZero();
291     y.setZero();
292     z.setZero();
293     x[i] = 1.0;
294     preconditioner_->RightMultiply(x.data(), y.data());
295     z = full_schur_complement
296         .selfadjointView<Eigen::Upper>()
297         .ldlt().solve(x);
298     double max_relative_difference =
299         ((y - z).array() / z.array()).matrix().lpNorm<Eigen::Infinity>();
300     EXPECT_NEAR(max_relative_difference, 0.0, kTolerance);
301   }
302 }
303 
304 
305 
TEST_F(VisibilityBasedPreconditionerTest,ClusterJacobi)306 TEST_F(VisibilityBasedPreconditionerTest, ClusterJacobi) {
307   options_.preconditioner_type = CLUSTER_JACOBI;
308   preconditioner_.reset(
309       new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
310 
311   // Override the clustering to be equal number of cameras.
312   vector<int>& cluster_membership = *get_mutable_cluster_membership();
313   cluster_membership.resize(num_camera_blocks_);
314   static const int kNumClusters = 3;
315 
316   for (int i = 0; i < num_camera_blocks_; ++i) {
317     cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;
318   }
319   *get_mutable_num_clusters() = kNumClusters;
320 
321   HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
322   cluster_pairs.clear();
323   for (int i = 0; i < kNumClusters; ++i) {
324     cluster_pairs.insert(make_pair(i, i));
325   }
326 
327   EXPECT_TRUE(IsSparsityStructureValid());
328   EXPECT_TRUE(PreconditionerValuesMatch());
329 }
330 
331 
TEST_F(VisibilityBasedPreconditionerTest,ClusterTridiagonal)332 TEST_F(VisibilityBasedPreconditionerTest, ClusterTridiagonal) {
333   options_.preconditioner_type = CLUSTER_TRIDIAGONAL;
334   preconditioner_.reset(
335       new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
336   static const int kNumClusters = 3;
337 
338   // Override the clustering to be 3 clusters.
339   vector<int>& cluster_membership = *get_mutable_cluster_membership();
340   cluster_membership.resize(num_camera_blocks_);
341   for (int i = 0; i < num_camera_blocks_; ++i) {
342     cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;
343   }
344   *get_mutable_num_clusters() = kNumClusters;
345 
346   // Spanning forest has structure 0-1 2
347   HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
348   cluster_pairs.clear();
349   for (int i = 0; i < kNumClusters; ++i) {
350     cluster_pairs.insert(make_pair(i, i));
351   }
352   cluster_pairs.insert(make_pair(0, 1));
353 
354   EXPECT_TRUE(IsSparsityStructureValid());
355   EXPECT_TRUE(PreconditionerValuesMatch());
356 }
357 #endif  // CERES_NO_PROTOCOL_BUFFERS
358 
359 }  // namespace internal
360 }  // namespace ceres
361 
362 #endif  // CERES_NO_SUITESPARSE
363