1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #ifndef CERES_NO_SUITESPARSE
32
33 #include "ceres/visibility_based_preconditioner.h"
34
35 #include "Eigen/Dense"
36 #include "ceres/block_random_access_dense_matrix.h"
37 #include "ceres/block_random_access_sparse_matrix.h"
38 #include "ceres/block_sparse_matrix.h"
39 #include "ceres/casts.h"
40 #include "ceres/collections_port.h"
41 #include "ceres/file.h"
42 #include "ceres/internal/eigen.h"
43 #include "ceres/internal/scoped_ptr.h"
44 #include "ceres/linear_least_squares_problems.h"
45 #include "ceres/schur_eliminator.h"
46 #include "ceres/stringprintf.h"
47 #include "ceres/types.h"
48 #include "ceres/test_util.h"
49 #include "glog/logging.h"
50 #include "gtest/gtest.h"
51
52 namespace ceres {
53 namespace internal {
54
55 using testing::AssertionResult;
56 using testing::AssertionSuccess;
57 using testing::AssertionFailure;
58
59 static const double kTolerance = 1e-12;
60
61 class VisibilityBasedPreconditionerTest : public ::testing::Test {
62 public:
63 static const int kCameraSize = 9;
64
65 protected:
SetUp()66 void SetUp() {
67 string input_file = TestFileAbsolutePath("problem-6-1384-000.lsqp");
68
69 scoped_ptr<LinearLeastSquaresProblem> problem(
70 CHECK_NOTNULL(CreateLinearLeastSquaresProblemFromFile(input_file)));
71 A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
72 b_.reset(problem->b.release());
73 D_.reset(problem->D.release());
74
75 const CompressedRowBlockStructure* bs =
76 CHECK_NOTNULL(A_->block_structure());
77 const int num_col_blocks = bs->cols.size();
78
79 num_cols_ = A_->num_cols();
80 num_rows_ = A_->num_rows();
81 num_eliminate_blocks_ = problem->num_eliminate_blocks;
82 num_camera_blocks_ = num_col_blocks - num_eliminate_blocks_;
83 options_.elimination_groups.push_back(num_eliminate_blocks_);
84 options_.elimination_groups.push_back(
85 A_->block_structure()->cols.size() - num_eliminate_blocks_);
86
87 vector<int> blocks(num_col_blocks - num_eliminate_blocks_, 0);
88 for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
89 blocks[i - num_eliminate_blocks_] = bs->cols[i].size;
90 }
91
92 // The input matrix is a real jacobian and fairly poorly
93 // conditioned. Setting D to a large constant makes the normal
94 // equations better conditioned and makes the tests below better
95 // conditioned.
96 VectorRef(D_.get(), num_cols_).setConstant(10.0);
97
98 schur_complement_.reset(new BlockRandomAccessDenseMatrix(blocks));
99 Vector rhs(schur_complement_->num_rows());
100
101 scoped_ptr<SchurEliminatorBase> eliminator;
102 eliminator.reset(SchurEliminatorBase::Create(options_));
103 eliminator->Init(num_eliminate_blocks_, bs);
104 eliminator->Eliminate(A_.get(), b_.get(), D_.get(),
105 schur_complement_.get(), rhs.data());
106 }
107
108
IsSparsityStructureValid()109 AssertionResult IsSparsityStructureValid() {
110 preconditioner_->InitStorage(*A_->block_structure());
111 const HashSet<pair<int, int> >& cluster_pairs = get_cluster_pairs();
112 const vector<int>& cluster_membership = get_cluster_membership();
113
114 for (int i = 0; i < num_camera_blocks_; ++i) {
115 for (int j = i; j < num_camera_blocks_; ++j) {
116 if (cluster_pairs.count(make_pair(cluster_membership[i],
117 cluster_membership[j]))) {
118 if (!IsBlockPairInPreconditioner(i, j)) {
119 return AssertionFailure()
120 << "block pair (" << i << "," << j << "missing";
121 }
122 } else {
123 if (IsBlockPairInPreconditioner(i, j)) {
124 return AssertionFailure()
125 << "block pair (" << i << "," << j << "should not be present";
126 }
127 }
128 }
129 }
130 return AssertionSuccess();
131 }
132
PreconditionerValuesMatch()133 AssertionResult PreconditionerValuesMatch() {
134 preconditioner_->Update(*A_, D_.get());
135 const HashSet<pair<int, int> >& cluster_pairs = get_cluster_pairs();
136 const BlockRandomAccessSparseMatrix* m = get_m();
137 Matrix preconditioner_matrix;
138 m->matrix()->ToDenseMatrix(&preconditioner_matrix);
139 ConstMatrixRef full_schur_complement(schur_complement_->values(),
140 m->num_rows(),
141 m->num_rows());
142 const int num_clusters = get_num_clusters();
143 const int kDiagonalBlockSize =
144 kCameraSize * num_camera_blocks_ / num_clusters;
145
146 for (int i = 0; i < num_clusters; ++i) {
147 for (int j = i; j < num_clusters; ++j) {
148 double diff = 0.0;
149 if (cluster_pairs.count(make_pair(i, j))) {
150 diff =
151 (preconditioner_matrix.block(kDiagonalBlockSize * i,
152 kDiagonalBlockSize * j,
153 kDiagonalBlockSize,
154 kDiagonalBlockSize) -
155 full_schur_complement.block(kDiagonalBlockSize * i,
156 kDiagonalBlockSize * j,
157 kDiagonalBlockSize,
158 kDiagonalBlockSize)).norm();
159 } else {
160 diff = preconditioner_matrix.block(kDiagonalBlockSize * i,
161 kDiagonalBlockSize * j,
162 kDiagonalBlockSize,
163 kDiagonalBlockSize).norm();
164 }
165 if (diff > kTolerance) {
166 return AssertionFailure()
167 << "Preconditioner block " << i << " " << j << " differs "
168 << "from expected value by " << diff;
169 }
170 }
171 }
172 return AssertionSuccess();
173 }
174
175 // Accessors
get_num_blocks()176 int get_num_blocks() { return preconditioner_->num_blocks_; }
177
get_num_clusters()178 int get_num_clusters() { return preconditioner_->num_clusters_; }
get_mutable_num_clusters()179 int* get_mutable_num_clusters() { return &preconditioner_->num_clusters_; }
180
get_block_size()181 const vector<int>& get_block_size() {
182 return preconditioner_->block_size_; }
183
get_mutable_block_size()184 vector<int>* get_mutable_block_size() {
185 return &preconditioner_->block_size_; }
186
get_cluster_membership()187 const vector<int>& get_cluster_membership() {
188 return preconditioner_->cluster_membership_;
189 }
190
get_mutable_cluster_membership()191 vector<int>* get_mutable_cluster_membership() {
192 return &preconditioner_->cluster_membership_;
193 }
194
get_block_pairs()195 const set<pair<int, int> >& get_block_pairs() {
196 return preconditioner_->block_pairs_;
197 }
198
get_mutable_block_pairs()199 set<pair<int, int> >* get_mutable_block_pairs() {
200 return &preconditioner_->block_pairs_;
201 }
202
get_cluster_pairs()203 const HashSet<pair<int, int> >& get_cluster_pairs() {
204 return preconditioner_->cluster_pairs_;
205 }
206
get_mutable_cluster_pairs()207 HashSet<pair<int, int> >* get_mutable_cluster_pairs() {
208 return &preconditioner_->cluster_pairs_;
209 }
210
IsBlockPairInPreconditioner(const int block1,const int block2)211 bool IsBlockPairInPreconditioner(const int block1, const int block2) {
212 return preconditioner_->IsBlockPairInPreconditioner(block1, block2);
213 }
214
IsBlockPairOffDiagonal(const int block1,const int block2)215 bool IsBlockPairOffDiagonal(const int block1, const int block2) {
216 return preconditioner_->IsBlockPairOffDiagonal(block1, block2);
217 }
218
get_m()219 const BlockRandomAccessSparseMatrix* get_m() {
220 return preconditioner_->m_.get();
221 }
222
223 int num_rows_;
224 int num_cols_;
225 int num_eliminate_blocks_;
226 int num_camera_blocks_;
227
228 scoped_ptr<BlockSparseMatrix> A_;
229 scoped_array<double> b_;
230 scoped_array<double> D_;
231
232 LinearSolver::Options options_;
233 scoped_ptr<VisibilityBasedPreconditioner> preconditioner_;
234 scoped_ptr<BlockRandomAccessDenseMatrix> schur_complement_;
235 };
236
237 #ifndef CERES_NO_PROTOCOL_BUFFERS
TEST_F(VisibilityBasedPreconditionerTest,SchurJacobiStructure)238 TEST_F(VisibilityBasedPreconditionerTest, SchurJacobiStructure) {
239 options_.preconditioner_type = SCHUR_JACOBI;
240 preconditioner_.reset(
241 new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
242 EXPECT_EQ(get_num_blocks(), num_camera_blocks_);
243 EXPECT_EQ(get_num_clusters(), num_camera_blocks_);
244 for (int i = 0; i < num_camera_blocks_; ++i) {
245 for (int j = 0; j < num_camera_blocks_; ++j) {
246 const string msg = StringPrintf("Camera pair: %d %d", i, j);
247 SCOPED_TRACE(msg);
248 if (i == j) {
249 EXPECT_TRUE(IsBlockPairInPreconditioner(i, j));
250 EXPECT_FALSE(IsBlockPairOffDiagonal(i, j));
251 } else {
252 EXPECT_FALSE(IsBlockPairInPreconditioner(i, j));
253 EXPECT_TRUE(IsBlockPairOffDiagonal(i, j));
254 }
255 }
256 }
257 }
258
TEST_F(VisibilityBasedPreconditionerTest,OneClusterClusterJacobi)259 TEST_F(VisibilityBasedPreconditionerTest, OneClusterClusterJacobi) {
260 options_.preconditioner_type = CLUSTER_JACOBI;
261 preconditioner_.reset(
262 new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
263
264 // Override the clustering to be a single clustering containing all
265 // the cameras.
266 vector<int>& cluster_membership = *get_mutable_cluster_membership();
267 for (int i = 0; i < num_camera_blocks_; ++i) {
268 cluster_membership[i] = 0;
269 }
270
271 *get_mutable_num_clusters() = 1;
272
273 HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
274 cluster_pairs.clear();
275 cluster_pairs.insert(make_pair(0, 0));
276
277 EXPECT_TRUE(IsSparsityStructureValid());
278 EXPECT_TRUE(PreconditionerValuesMatch());
279
280 // Multiplication by the inverse of the preconditioner.
281 const int num_rows = schur_complement_->num_rows();
282 ConstMatrixRef full_schur_complement(schur_complement_->values(),
283 num_rows,
284 num_rows);
285 Vector x(num_rows);
286 Vector y(num_rows);
287 Vector z(num_rows);
288
289 for (int i = 0; i < num_rows; ++i) {
290 x.setZero();
291 y.setZero();
292 z.setZero();
293 x[i] = 1.0;
294 preconditioner_->RightMultiply(x.data(), y.data());
295 z = full_schur_complement
296 .selfadjointView<Eigen::Upper>()
297 .ldlt().solve(x);
298 double max_relative_difference =
299 ((y - z).array() / z.array()).matrix().lpNorm<Eigen::Infinity>();
300 EXPECT_NEAR(max_relative_difference, 0.0, kTolerance);
301 }
302 }
303
304
305
TEST_F(VisibilityBasedPreconditionerTest,ClusterJacobi)306 TEST_F(VisibilityBasedPreconditionerTest, ClusterJacobi) {
307 options_.preconditioner_type = CLUSTER_JACOBI;
308 preconditioner_.reset(
309 new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
310
311 // Override the clustering to be equal number of cameras.
312 vector<int>& cluster_membership = *get_mutable_cluster_membership();
313 cluster_membership.resize(num_camera_blocks_);
314 static const int kNumClusters = 3;
315
316 for (int i = 0; i < num_camera_blocks_; ++i) {
317 cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;
318 }
319 *get_mutable_num_clusters() = kNumClusters;
320
321 HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
322 cluster_pairs.clear();
323 for (int i = 0; i < kNumClusters; ++i) {
324 cluster_pairs.insert(make_pair(i, i));
325 }
326
327 EXPECT_TRUE(IsSparsityStructureValid());
328 EXPECT_TRUE(PreconditionerValuesMatch());
329 }
330
331
TEST_F(VisibilityBasedPreconditionerTest,ClusterTridiagonal)332 TEST_F(VisibilityBasedPreconditionerTest, ClusterTridiagonal) {
333 options_.preconditioner_type = CLUSTER_TRIDIAGONAL;
334 preconditioner_.reset(
335 new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
336 static const int kNumClusters = 3;
337
338 // Override the clustering to be 3 clusters.
339 vector<int>& cluster_membership = *get_mutable_cluster_membership();
340 cluster_membership.resize(num_camera_blocks_);
341 for (int i = 0; i < num_camera_blocks_; ++i) {
342 cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;
343 }
344 *get_mutable_num_clusters() = kNumClusters;
345
346 // Spanning forest has structure 0-1 2
347 HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
348 cluster_pairs.clear();
349 for (int i = 0; i < kNumClusters; ++i) {
350 cluster_pairs.insert(make_pair(i, i));
351 }
352 cluster_pairs.insert(make_pair(0, 1));
353
354 EXPECT_TRUE(IsSparsityStructureValid());
355 EXPECT_TRUE(PreconditionerValuesMatch());
356 }
357 #endif // CERES_NO_PROTOCOL_BUFFERS
358
359 } // namespace internal
360 } // namespace ceres
361
362 #endif // CERES_NO_SUITESPARSE
363