1 // Copyright (c) 2010 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // STL utility functions. Usually, these replace built-in, but slow(!),
6 // STL functions with more efficient versions.
7
8 #ifndef BASE_STL_UTIL_INL_H_
9 #define BASE_STL_UTIL_INL_H_
10 #pragma once
11
12 #include <string.h> // for memcpy
13 #include <functional>
14 #include <set>
15 #include <string>
16 #include <vector>
17 #include <cassert>
18
19 // Clear internal memory of an STL object.
20 // STL clear()/reserve(0) does not always free internal memory allocated
21 // This function uses swap/destructor to ensure the internal memory is freed.
STLClearObject(T * obj)22 template<class T> void STLClearObject(T* obj) {
23 T tmp;
24 tmp.swap(*obj);
25 obj->reserve(0); // this is because sometimes "T tmp" allocates objects with
26 // memory (arena implementation?). use reserve()
27 // to clear() even if it doesn't always work
28 }
29
30 // Reduce memory usage on behalf of object if it is using more than
31 // "bytes" bytes of space. By default, we clear objects over 1MB.
32 template <class T> inline void STLClearIfBig(T* obj, size_t limit = 1<<20) {
33 if (obj->capacity() >= limit) {
34 STLClearObject(obj);
35 } else {
36 obj->clear();
37 }
38 }
39
40 // Reserve space for STL object.
41 // STL's reserve() will always copy.
42 // This function avoid the copy if we already have capacity
STLReserveIfNeeded(T * obj,int new_size)43 template<class T> void STLReserveIfNeeded(T* obj, int new_size) {
44 if (obj->capacity() < new_size) // increase capacity
45 obj->reserve(new_size);
46 else if (obj->size() > new_size) // reduce size
47 obj->resize(new_size);
48 }
49
50 // STLDeleteContainerPointers()
51 // For a range within a container of pointers, calls delete
52 // (non-array version) on these pointers.
53 // NOTE: for these three functions, we could just implement a DeleteObject
54 // functor and then call for_each() on the range and functor, but this
55 // requires us to pull in all of algorithm.h, which seems expensive.
56 // For hash_[multi]set, it is important that this deletes behind the iterator
57 // because the hash_set may call the hash function on the iterator when it is
58 // advanced, which could result in the hash function trying to deference a
59 // stale pointer.
60 template <class ForwardIterator>
STLDeleteContainerPointers(ForwardIterator begin,ForwardIterator end)61 void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) {
62 while (begin != end) {
63 ForwardIterator temp = begin;
64 ++begin;
65 delete *temp;
66 }
67 }
68
69 // STLDeleteContainerPairPointers()
70 // For a range within a container of pairs, calls delete
71 // (non-array version) on BOTH items in the pairs.
72 // NOTE: Like STLDeleteContainerPointers, it is important that this deletes
73 // behind the iterator because if both the key and value are deleted, the
74 // container may call the hash function on the iterator when it is advanced,
75 // which could result in the hash function trying to dereference a stale
76 // pointer.
77 template <class ForwardIterator>
STLDeleteContainerPairPointers(ForwardIterator begin,ForwardIterator end)78 void STLDeleteContainerPairPointers(ForwardIterator begin,
79 ForwardIterator end) {
80 while (begin != end) {
81 ForwardIterator temp = begin;
82 ++begin;
83 delete temp->first;
84 delete temp->second;
85 }
86 }
87
88 // STLDeleteContainerPairFirstPointers()
89 // For a range within a container of pairs, calls delete (non-array version)
90 // on the FIRST item in the pairs.
91 // NOTE: Like STLDeleteContainerPointers, deleting behind the iterator.
92 template <class ForwardIterator>
STLDeleteContainerPairFirstPointers(ForwardIterator begin,ForwardIterator end)93 void STLDeleteContainerPairFirstPointers(ForwardIterator begin,
94 ForwardIterator end) {
95 while (begin != end) {
96 ForwardIterator temp = begin;
97 ++begin;
98 delete temp->first;
99 }
100 }
101
102 // STLDeleteContainerPairSecondPointers()
103 // For a range within a container of pairs, calls delete
104 // (non-array version) on the SECOND item in the pairs.
105 template <class ForwardIterator>
STLDeleteContainerPairSecondPointers(ForwardIterator begin,ForwardIterator end)106 void STLDeleteContainerPairSecondPointers(ForwardIterator begin,
107 ForwardIterator end) {
108 while (begin != end) {
109 delete begin->second;
110 ++begin;
111 }
112 }
113
114 template<typename T>
STLAssignToVector(std::vector<T> * vec,const T * ptr,size_t n)115 inline void STLAssignToVector(std::vector<T>* vec,
116 const T* ptr,
117 size_t n) {
118 vec->resize(n);
119 memcpy(&vec->front(), ptr, n*sizeof(T));
120 }
121
122 /***** Hack to allow faster assignment to a vector *****/
123
124 // This routine speeds up an assignment of 32 bytes to a vector from
125 // about 250 cycles per assignment to about 140 cycles.
126 //
127 // Usage:
128 // STLAssignToVectorChar(&vec, ptr, size);
129 // STLAssignToString(&str, ptr, size);
130
STLAssignToVectorChar(std::vector<char> * vec,const char * ptr,size_t n)131 inline void STLAssignToVectorChar(std::vector<char>* vec,
132 const char* ptr,
133 size_t n) {
134 STLAssignToVector(vec, ptr, n);
135 }
136
STLAssignToString(std::string * str,const char * ptr,size_t n)137 inline void STLAssignToString(std::string* str, const char* ptr, size_t n) {
138 str->resize(n);
139 memcpy(&*str->begin(), ptr, n);
140 }
141
142 // To treat a possibly-empty vector as an array, use these functions.
143 // If you know the array will never be empty, you can use &*v.begin()
144 // directly, but that is allowed to dump core if v is empty. This
145 // function is the most efficient code that will work, taking into
146 // account how our STL is actually implemented. THIS IS NON-PORTABLE
147 // CODE, so call us instead of repeating the nonportable code
148 // everywhere. If our STL implementation changes, we will need to
149 // change this as well.
150
151 template<typename T>
vector_as_array(std::vector<T> * v)152 inline T* vector_as_array(std::vector<T>* v) {
153 # ifdef NDEBUG
154 return &*v->begin();
155 # else
156 return v->empty() ? NULL : &*v->begin();
157 # endif
158 }
159
160 template<typename T>
vector_as_array(const std::vector<T> * v)161 inline const T* vector_as_array(const std::vector<T>* v) {
162 # ifdef NDEBUG
163 return &*v->begin();
164 # else
165 return v->empty() ? NULL : &*v->begin();
166 # endif
167 }
168
169 // Return a mutable char* pointing to a string's internal buffer,
170 // which may not be null-terminated. Writing through this pointer will
171 // modify the string.
172 //
173 // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
174 // next call to a string method that invalidates iterators.
175 //
176 // As of 2006-04, there is no standard-blessed way of getting a
177 // mutable reference to a string's internal buffer. However, issue 530
178 // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530)
179 // proposes this as the method. According to Matt Austern, this should
180 // already work on all current implementations.
string_as_array(std::string * str)181 inline char* string_as_array(std::string* str) {
182 // DO NOT USE const_cast<char*>(str->data())! See the unittest for why.
183 return str->empty() ? NULL : &*str->begin();
184 }
185
186 // These are methods that test two hash maps/sets for equality. These exist
187 // because the == operator in the STL can return false when the maps/sets
188 // contain identical elements. This is because it compares the internal hash
189 // tables which may be different if the order of insertions and deletions
190 // differed.
191
192 template <class HashSet>
HashSetEquality(const HashSet & set_a,const HashSet & set_b)193 inline bool HashSetEquality(const HashSet& set_a, const HashSet& set_b) {
194 if (set_a.size() != set_b.size()) return false;
195 for (typename HashSet::const_iterator i = set_a.begin();
196 i != set_a.end(); ++i) {
197 if (set_b.find(*i) == set_b.end())
198 return false;
199 }
200 return true;
201 }
202
203 template <class HashMap>
HashMapEquality(const HashMap & map_a,const HashMap & map_b)204 inline bool HashMapEquality(const HashMap& map_a, const HashMap& map_b) {
205 if (map_a.size() != map_b.size()) return false;
206 for (typename HashMap::const_iterator i = map_a.begin();
207 i != map_a.end(); ++i) {
208 typename HashMap::const_iterator j = map_b.find(i->first);
209 if (j == map_b.end()) return false;
210 if (i->second != j->second) return false;
211 }
212 return true;
213 }
214
215 // The following functions are useful for cleaning up STL containers
216 // whose elements point to allocated memory.
217
218 // STLDeleteElements() deletes all the elements in an STL container and clears
219 // the container. This function is suitable for use with a vector, set,
220 // hash_set, or any other STL container which defines sensible begin(), end(),
221 // and clear() methods.
222 //
223 // If container is NULL, this function is a no-op.
224 //
225 // As an alternative to calling STLDeleteElements() directly, consider
226 // STLElementDeleter (defined below), which ensures that your container's
227 // elements are deleted when the STLElementDeleter goes out of scope.
228 template <class T>
STLDeleteElements(T * container)229 void STLDeleteElements(T *container) {
230 if (!container) return;
231 STLDeleteContainerPointers(container->begin(), container->end());
232 container->clear();
233 }
234
235 // Given an STL container consisting of (key, value) pairs, STLDeleteValues
236 // deletes all the "value" components and clears the container. Does nothing
237 // in the case it's given a NULL pointer.
238
239 template <class T>
STLDeleteValues(T * v)240 void STLDeleteValues(T *v) {
241 if (!v) return;
242 for (typename T::iterator i = v->begin(); i != v->end(); ++i) {
243 delete i->second;
244 }
245 v->clear();
246 }
247
248
249 // The following classes provide a convenient way to delete all elements or
250 // values from STL containers when they goes out of scope. This greatly
251 // simplifies code that creates temporary objects and has multiple return
252 // statements. Example:
253 //
254 // vector<MyProto *> tmp_proto;
255 // STLElementDeleter<vector<MyProto *> > d(&tmp_proto);
256 // if (...) return false;
257 // ...
258 // return success;
259
260 // Given a pointer to an STL container this class will delete all the element
261 // pointers when it goes out of scope.
262
263 template<class STLContainer> class STLElementDeleter {
264 public:
container_ptr_(ptr)265 STLElementDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {}
266 ~STLElementDeleter<STLContainer>() { STLDeleteElements(container_ptr_); }
267 private:
268 STLContainer *container_ptr_;
269 };
270
271 // Given a pointer to an STL container this class will delete all the value
272 // pointers when it goes out of scope.
273
274 template<class STLContainer> class STLValueDeleter {
275 public:
container_ptr_(ptr)276 STLValueDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {}
277 ~STLValueDeleter<STLContainer>() { STLDeleteValues(container_ptr_); }
278 private:
279 STLContainer *container_ptr_;
280 };
281
282
283 // Forward declare some callback classes in callback.h for STLBinaryFunction
284 template <class R, class T1, class T2>
285 class ResultCallback2;
286
287 // STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h
288 // It provides an operator () method instead of a Run method, so it may be
289 // passed to STL functions in <algorithm>.
290 //
291 // The client should create callback with NewPermanentCallback, and should
292 // delete callback after it is done using the STLBinaryFunction.
293
294 template <class Result, class Arg1, class Arg2>
295 class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> {
296 public:
297 typedef ResultCallback2<Result, Arg1, Arg2> Callback;
298
STLBinaryFunction(Callback * callback)299 STLBinaryFunction(Callback* callback)
300 : callback_(callback) {
301 assert(callback_);
302 }
303
operator()304 Result operator() (Arg1 arg1, Arg2 arg2) {
305 return callback_->Run(arg1, arg2);
306 }
307
308 private:
309 Callback* callback_;
310 };
311
312 // STLBinaryPredicate is a specialized version of STLBinaryFunction, where the
313 // return type is bool and both arguments have type Arg. It can be used
314 // wherever STL requires a StrictWeakOrdering, such as in sort() or
315 // lower_bound().
316 //
317 // templated typedefs are not supported, so instead we use inheritance.
318
319 template <class Arg>
320 class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> {
321 public:
322 typedef typename STLBinaryPredicate<Arg>::Callback Callback;
STLBinaryPredicate(Callback * callback)323 STLBinaryPredicate(Callback* callback)
324 : STLBinaryFunction<bool, Arg, Arg>(callback) {
325 }
326 };
327
328 // Functors that compose arbitrary unary and binary functions with a
329 // function that "projects" one of the members of a pair.
330 // Specifically, if p1 and p2, respectively, are the functions that
331 // map a pair to its first and second, respectively, members, the
332 // table below summarizes the functions that can be constructed:
333 //
334 // * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x))
335 // * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x))
336 // * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y))
337 // * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y))
338 //
339 // A typical usage for these functions would be when iterating over
340 // the contents of an STL map. For other sample usage, see the unittest.
341
342 template<typename Pair, typename UnaryOp>
343 class UnaryOperateOnFirst
344 : public std::unary_function<Pair, typename UnaryOp::result_type> {
345 public:
UnaryOperateOnFirst()346 UnaryOperateOnFirst() {
347 }
348
UnaryOperateOnFirst(const UnaryOp & f)349 UnaryOperateOnFirst(const UnaryOp& f) : f_(f) {
350 }
351
operator()352 typename UnaryOp::result_type operator()(const Pair& p) const {
353 return f_(p.first);
354 }
355
356 private:
357 UnaryOp f_;
358 };
359
360 template<typename Pair, typename UnaryOp>
UnaryOperate1st(const UnaryOp & f)361 UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) {
362 return UnaryOperateOnFirst<Pair, UnaryOp>(f);
363 }
364
365 template<typename Pair, typename UnaryOp>
366 class UnaryOperateOnSecond
367 : public std::unary_function<Pair, typename UnaryOp::result_type> {
368 public:
UnaryOperateOnSecond()369 UnaryOperateOnSecond() {
370 }
371
UnaryOperateOnSecond(const UnaryOp & f)372 UnaryOperateOnSecond(const UnaryOp& f) : f_(f) {
373 }
374
operator()375 typename UnaryOp::result_type operator()(const Pair& p) const {
376 return f_(p.second);
377 }
378
379 private:
380 UnaryOp f_;
381 };
382
383 template<typename Pair, typename UnaryOp>
UnaryOperate2nd(const UnaryOp & f)384 UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) {
385 return UnaryOperateOnSecond<Pair, UnaryOp>(f);
386 }
387
388 template<typename Pair, typename BinaryOp>
389 class BinaryOperateOnFirst
390 : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
391 public:
BinaryOperateOnFirst()392 BinaryOperateOnFirst() {
393 }
394
BinaryOperateOnFirst(const BinaryOp & f)395 BinaryOperateOnFirst(const BinaryOp& f) : f_(f) {
396 }
397
operator()398 typename BinaryOp::result_type operator()(const Pair& p1,
399 const Pair& p2) const {
400 return f_(p1.first, p2.first);
401 }
402
403 private:
404 BinaryOp f_;
405 };
406
407 template<typename Pair, typename BinaryOp>
BinaryOperate1st(const BinaryOp & f)408 BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) {
409 return BinaryOperateOnFirst<Pair, BinaryOp>(f);
410 }
411
412 template<typename Pair, typename BinaryOp>
413 class BinaryOperateOnSecond
414 : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
415 public:
BinaryOperateOnSecond()416 BinaryOperateOnSecond() {
417 }
418
BinaryOperateOnSecond(const BinaryOp & f)419 BinaryOperateOnSecond(const BinaryOp& f) : f_(f) {
420 }
421
operator()422 typename BinaryOp::result_type operator()(const Pair& p1,
423 const Pair& p2) const {
424 return f_(p1.second, p2.second);
425 }
426
427 private:
428 BinaryOp f_;
429 };
430
431 template<typename Pair, typename BinaryOp>
BinaryOperate2nd(const BinaryOp & f)432 BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) {
433 return BinaryOperateOnSecond<Pair, BinaryOp>(f);
434 }
435
436 // Translates a set into a vector.
437 template<typename T>
SetToVector(const std::set<T> & values)438 std::vector<T> SetToVector(const std::set<T>& values) {
439 std::vector<T> result;
440 result.reserve(values.size());
441 result.insert(result.begin(), values.begin(), values.end());
442 return result;
443 }
444
445 // Test to see if a set, map, hash_set or hash_map contains a particular key.
446 // Returns true if the key is in the collection.
447 template <typename Collection, typename Key>
ContainsKey(const Collection & collection,const Key & key)448 bool ContainsKey(const Collection& collection, const Key& key) {
449 return collection.find(key) != collection.end();
450 }
451
452 #endif // BASE_STL_UTIL_INL_H_
453