• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/MC/SubtargetFeature.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 /***/
37 
ClangCallConvToLLVMCallConv(CallingConv CC)38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
39   switch (CC) {
40   default: return llvm::CallingConv::C;
41   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
42   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
43   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
44   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
45   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
46   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
47   // TODO: add support for CC_X86Pascal to llvm
48   }
49 }
50 
51 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
52 /// qualification.
53 /// FIXME: address space qualification?
GetThisType(ASTContext & Context,const CXXRecordDecl * RD)54 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
55   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
56   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
57 }
58 
59 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)60 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
61   return MD->getType()->getCanonicalTypeUnqualified()
62            .getAs<FunctionProtoType>();
63 }
64 
65 /// Returns the "extra-canonicalized" return type, which discards
66 /// qualifiers on the return type.  Codegen doesn't care about them,
67 /// and it makes ABI code a little easier to be able to assume that
68 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)69 static CanQualType GetReturnType(QualType RetTy) {
70   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
71 }
72 
73 /// Arrange the argument and result information for a value of the given
74 /// unprototyped freestanding function type.
75 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)76 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
77   // When translating an unprototyped function type, always use a
78   // variadic type.
79   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
80                                  ArrayRef<CanQualType>(),
81                                  FTNP->getExtInfo(),
82                                  RequiredArgs(0));
83 }
84 
85 /// Arrange the LLVM function layout for a value of the given function
86 /// type, on top of any implicit parameters already stored.  Use the
87 /// given ExtInfo instead of the ExtInfo from the function type.
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP,FunctionType::ExtInfo extInfo)88 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
89                                        SmallVectorImpl<CanQualType> &prefix,
90                                              CanQual<FunctionProtoType> FTP,
91                                               FunctionType::ExtInfo extInfo) {
92   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
93   // FIXME: Kill copy.
94   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
95     prefix.push_back(FTP->getArgType(i));
96   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
97   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
98 }
99 
100 /// Arrange the argument and result information for a free function (i.e.
101 /// not a C++ or ObjC instance method) of the given type.
arrangeFreeFunctionType(CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)102 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
103                                       SmallVectorImpl<CanQualType> &prefix,
104                                             CanQual<FunctionProtoType> FTP) {
105   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
106 }
107 
108 /// Given the formal ext-info of a C++ instance method, adjust it
109 /// according to the C++ ABI in effect.
adjustCXXMethodInfo(CodeGenTypes & CGT,FunctionType::ExtInfo & extInfo,bool isVariadic)110 static void adjustCXXMethodInfo(CodeGenTypes &CGT,
111                                 FunctionType::ExtInfo &extInfo,
112                                 bool isVariadic) {
113   if (extInfo.getCC() == CC_Default) {
114     CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
115     extInfo = extInfo.withCallingConv(CC);
116   }
117 }
118 
119 /// Arrange the argument and result information for a free function (i.e.
120 /// not a C++ or ObjC instance method) of the given type.
arrangeCXXMethodType(CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)121 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
122                                       SmallVectorImpl<CanQualType> &prefix,
123                                             CanQual<FunctionProtoType> FTP) {
124   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
125   adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
126   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
127 }
128 
129 /// Arrange the argument and result information for a value of the
130 /// given freestanding function type.
131 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP)132 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
133   SmallVector<CanQualType, 16> argTypes;
134   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
135 }
136 
getCallingConventionForDecl(const Decl * D)137 static CallingConv getCallingConventionForDecl(const Decl *D) {
138   // Set the appropriate calling convention for the Function.
139   if (D->hasAttr<StdCallAttr>())
140     return CC_X86StdCall;
141 
142   if (D->hasAttr<FastCallAttr>())
143     return CC_X86FastCall;
144 
145   if (D->hasAttr<ThisCallAttr>())
146     return CC_X86ThisCall;
147 
148   if (D->hasAttr<PascalAttr>())
149     return CC_X86Pascal;
150 
151   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
152     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
153 
154   if (D->hasAttr<PnaclCallAttr>())
155     return CC_PnaclCall;
156 
157   if (D->hasAttr<IntelOclBiccAttr>())
158     return CC_IntelOclBicc;
159 
160   return CC_C;
161 }
162 
163 /// Arrange the argument and result information for a call to an
164 /// unknown C++ non-static member function of the given abstract type.
165 /// The member function must be an ordinary function, i.e. not a
166 /// constructor or destructor.
167 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP)168 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
169                                    const FunctionProtoType *FTP) {
170   SmallVector<CanQualType, 16> argTypes;
171 
172   // Add the 'this' pointer.
173   argTypes.push_back(GetThisType(Context, RD));
174 
175   return ::arrangeCXXMethodType(*this, argTypes,
176               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
177 }
178 
179 /// Arrange the argument and result information for a declaration or
180 /// definition of the given C++ non-static member function.  The
181 /// member function must be an ordinary function, i.e. not a
182 /// constructor or destructor.
183 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)184 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
185   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
186   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
187 
188   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
189 
190   if (MD->isInstance()) {
191     // The abstract case is perfectly fine.
192     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
193   }
194 
195   return arrangeFreeFunctionType(prototype);
196 }
197 
198 /// Arrange the argument and result information for a declaration
199 /// or definition to the given constructor variant.
200 const CGFunctionInfo &
arrangeCXXConstructorDeclaration(const CXXConstructorDecl * D,CXXCtorType ctorKind)201 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
202                                                CXXCtorType ctorKind) {
203   SmallVector<CanQualType, 16> argTypes;
204   argTypes.push_back(GetThisType(Context, D->getParent()));
205   CanQualType resultType = Context.VoidTy;
206 
207   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
208 
209   CanQual<FunctionProtoType> FTP = GetFormalType(D);
210 
211   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
212 
213   // Add the formal parameters.
214   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
215     argTypes.push_back(FTP->getArgType(i));
216 
217   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
218   adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
219   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
220 }
221 
222 /// Arrange the argument and result information for a declaration,
223 /// definition, or call to the given destructor variant.  It so
224 /// happens that all three cases produce the same information.
225 const CGFunctionInfo &
arrangeCXXDestructor(const CXXDestructorDecl * D,CXXDtorType dtorKind)226 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
227                                    CXXDtorType dtorKind) {
228   SmallVector<CanQualType, 2> argTypes;
229   argTypes.push_back(GetThisType(Context, D->getParent()));
230   CanQualType resultType = Context.VoidTy;
231 
232   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
233 
234   CanQual<FunctionProtoType> FTP = GetFormalType(D);
235   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
236   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
237 
238   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
239   adjustCXXMethodInfo(*this, extInfo, false);
240   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
241                                  RequiredArgs::All);
242 }
243 
244 /// Arrange the argument and result information for the declaration or
245 /// definition of the given function.
246 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)247 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
248   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
249     if (MD->isInstance())
250       return arrangeCXXMethodDeclaration(MD);
251 
252   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
253 
254   assert(isa<FunctionType>(FTy));
255 
256   // When declaring a function without a prototype, always use a
257   // non-variadic type.
258   if (isa<FunctionNoProtoType>(FTy)) {
259     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
260     return arrangeLLVMFunctionInfo(noProto->getResultType(),
261                                    ArrayRef<CanQualType>(),
262                                    noProto->getExtInfo(),
263                                    RequiredArgs::All);
264   }
265 
266   assert(isa<FunctionProtoType>(FTy));
267   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
268 }
269 
270 /// Arrange the argument and result information for the declaration or
271 /// definition of an Objective-C method.
272 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)273 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
274   // It happens that this is the same as a call with no optional
275   // arguments, except also using the formal 'self' type.
276   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
277 }
278 
279 /// Arrange the argument and result information for the function type
280 /// through which to perform a send to the given Objective-C method,
281 /// using the given receiver type.  The receiver type is not always
282 /// the 'self' type of the method or even an Objective-C pointer type.
283 /// This is *not* the right method for actually performing such a
284 /// message send, due to the possibility of optional arguments.
285 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)286 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
287                                               QualType receiverType) {
288   SmallVector<CanQualType, 16> argTys;
289   argTys.push_back(Context.getCanonicalParamType(receiverType));
290   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
291   // FIXME: Kill copy?
292   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
293          e = MD->param_end(); i != e; ++i) {
294     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
295   }
296 
297   FunctionType::ExtInfo einfo;
298   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
299 
300   if (getContext().getLangOpts().ObjCAutoRefCount &&
301       MD->hasAttr<NSReturnsRetainedAttr>())
302     einfo = einfo.withProducesResult(true);
303 
304   RequiredArgs required =
305     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
306 
307   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
308                                  einfo, required);
309 }
310 
311 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)312 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
313   // FIXME: Do we need to handle ObjCMethodDecl?
314   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
315 
316   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
317     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
318 
319   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
320     return arrangeCXXDestructor(DD, GD.getDtorType());
321 
322   return arrangeFunctionDeclaration(FD);
323 }
324 
325 /// Arrange a call as unto a free function, except possibly with an
326 /// additional number of formal parameters considered required.
327 static const CGFunctionInfo &
arrangeFreeFunctionLikeCall(CodeGenTypes & CGT,const CallArgList & args,const FunctionType * fnType,unsigned numExtraRequiredArgs)328 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
329                             const CallArgList &args,
330                             const FunctionType *fnType,
331                             unsigned numExtraRequiredArgs) {
332   assert(args.size() >= numExtraRequiredArgs);
333 
334   // In most cases, there are no optional arguments.
335   RequiredArgs required = RequiredArgs::All;
336 
337   // If we have a variadic prototype, the required arguments are the
338   // extra prefix plus the arguments in the prototype.
339   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
340     if (proto->isVariadic())
341       required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
342 
343   // If we don't have a prototype at all, but we're supposed to
344   // explicitly use the variadic convention for unprototyped calls,
345   // treat all of the arguments as required but preserve the nominal
346   // possibility of variadics.
347   } else if (CGT.CGM.getTargetCodeGenInfo()
348                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
349     required = RequiredArgs(args.size());
350   }
351 
352   return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
353                                      fnType->getExtInfo(), required);
354 }
355 
356 /// Figure out the rules for calling a function with the given formal
357 /// type using the given arguments.  The arguments are necessary
358 /// because the function might be unprototyped, in which case it's
359 /// target-dependent in crazy ways.
360 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType)361 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
362                                       const FunctionType *fnType) {
363   return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
364 }
365 
366 /// A block function call is essentially a free-function call with an
367 /// extra implicit argument.
368 const CGFunctionInfo &
arrangeBlockFunctionCall(const CallArgList & args,const FunctionType * fnType)369 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
370                                        const FunctionType *fnType) {
371   return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
372 }
373 
374 const CGFunctionInfo &
arrangeFreeFunctionCall(QualType resultType,const CallArgList & args,FunctionType::ExtInfo info,RequiredArgs required)375 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
376                                       const CallArgList &args,
377                                       FunctionType::ExtInfo info,
378                                       RequiredArgs required) {
379   // FIXME: Kill copy.
380   SmallVector<CanQualType, 16> argTypes;
381   for (CallArgList::const_iterator i = args.begin(), e = args.end();
382        i != e; ++i)
383     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
384   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
385                                  required);
386 }
387 
388 /// Arrange a call to a C++ method, passing the given arguments.
389 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * FPT,RequiredArgs required)390 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
391                                    const FunctionProtoType *FPT,
392                                    RequiredArgs required) {
393   // FIXME: Kill copy.
394   SmallVector<CanQualType, 16> argTypes;
395   for (CallArgList::const_iterator i = args.begin(), e = args.end();
396        i != e; ++i)
397     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
398 
399   FunctionType::ExtInfo info = FPT->getExtInfo();
400   adjustCXXMethodInfo(*this, info, FPT->isVariadic());
401   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
402                                  argTypes, info, required);
403 }
404 
405 const CGFunctionInfo &
arrangeFunctionDeclaration(QualType resultType,const FunctionArgList & args,const FunctionType::ExtInfo & info,bool isVariadic)406 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
407                                          const FunctionArgList &args,
408                                          const FunctionType::ExtInfo &info,
409                                          bool isVariadic) {
410   // FIXME: Kill copy.
411   SmallVector<CanQualType, 16> argTypes;
412   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
413        i != e; ++i)
414     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
415 
416   RequiredArgs required =
417     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
418   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
419                                  required);
420 }
421 
arrangeNullaryFunction()422 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
423   return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(),
424                                  FunctionType::ExtInfo(), RequiredArgs::All);
425 }
426 
427 /// Arrange the argument and result information for an abstract value
428 /// of a given function type.  This is the method which all of the
429 /// above functions ultimately defer to.
430 const CGFunctionInfo &
arrangeLLVMFunctionInfo(CanQualType resultType,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,RequiredArgs required)431 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
432                                       ArrayRef<CanQualType> argTypes,
433                                       FunctionType::ExtInfo info,
434                                       RequiredArgs required) {
435 #ifndef NDEBUG
436   for (ArrayRef<CanQualType>::const_iterator
437          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
438     assert(I->isCanonicalAsParam());
439 #endif
440 
441   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
442 
443   // Lookup or create unique function info.
444   llvm::FoldingSetNodeID ID;
445   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
446 
447   void *insertPos = 0;
448   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
449   if (FI)
450     return *FI;
451 
452   // Construct the function info.  We co-allocate the ArgInfos.
453   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
454   FunctionInfos.InsertNode(FI, insertPos);
455 
456   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
457   assert(inserted && "Recursively being processed?");
458 
459   // Compute ABI information.
460   getABIInfo().computeInfo(*FI);
461 
462   // Loop over all of the computed argument and return value info.  If any of
463   // them are direct or extend without a specified coerce type, specify the
464   // default now.
465   ABIArgInfo &retInfo = FI->getReturnInfo();
466   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
467     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
468 
469   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
470        I != E; ++I)
471     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
472       I->info.setCoerceToType(ConvertType(I->type));
473 
474   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
475   assert(erased && "Not in set?");
476 
477   return *FI;
478 }
479 
create(unsigned llvmCC,const FunctionType::ExtInfo & info,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)480 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
481                                        const FunctionType::ExtInfo &info,
482                                        CanQualType resultType,
483                                        ArrayRef<CanQualType> argTypes,
484                                        RequiredArgs required) {
485   void *buffer = operator new(sizeof(CGFunctionInfo) +
486                               sizeof(ArgInfo) * (argTypes.size() + 1));
487   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
488   FI->CallingConvention = llvmCC;
489   FI->EffectiveCallingConvention = llvmCC;
490   FI->ASTCallingConvention = info.getCC();
491   FI->NoReturn = info.getNoReturn();
492   FI->ReturnsRetained = info.getProducesResult();
493   FI->Required = required;
494   FI->HasRegParm = info.getHasRegParm();
495   FI->RegParm = info.getRegParm();
496   FI->NumArgs = argTypes.size();
497   FI->getArgsBuffer()[0].type = resultType;
498   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
499     FI->getArgsBuffer()[i + 1].type = argTypes[i];
500   return FI;
501 }
502 
503 /***/
504 
GetExpandedTypes(QualType type,SmallVectorImpl<llvm::Type * > & expandedTypes)505 void CodeGenTypes::GetExpandedTypes(QualType type,
506                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
507   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
508     uint64_t NumElts = AT->getSize().getZExtValue();
509     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
510       GetExpandedTypes(AT->getElementType(), expandedTypes);
511   } else if (const RecordType *RT = type->getAs<RecordType>()) {
512     const RecordDecl *RD = RT->getDecl();
513     assert(!RD->hasFlexibleArrayMember() &&
514            "Cannot expand structure with flexible array.");
515     if (RD->isUnion()) {
516       // Unions can be here only in degenerative cases - all the fields are same
517       // after flattening. Thus we have to use the "largest" field.
518       const FieldDecl *LargestFD = 0;
519       CharUnits UnionSize = CharUnits::Zero();
520 
521       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
522            i != e; ++i) {
523         const FieldDecl *FD = *i;
524         assert(!FD->isBitField() &&
525                "Cannot expand structure with bit-field members.");
526         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
527         if (UnionSize < FieldSize) {
528           UnionSize = FieldSize;
529           LargestFD = FD;
530         }
531       }
532       if (LargestFD)
533         GetExpandedTypes(LargestFD->getType(), expandedTypes);
534     } else {
535       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
536            i != e; ++i) {
537         assert(!i->isBitField() &&
538                "Cannot expand structure with bit-field members.");
539         GetExpandedTypes(i->getType(), expandedTypes);
540       }
541     }
542   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
543     llvm::Type *EltTy = ConvertType(CT->getElementType());
544     expandedTypes.push_back(EltTy);
545     expandedTypes.push_back(EltTy);
546   } else
547     expandedTypes.push_back(ConvertType(type));
548 }
549 
550 llvm::Function::arg_iterator
ExpandTypeFromArgs(QualType Ty,LValue LV,llvm::Function::arg_iterator AI)551 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
552                                     llvm::Function::arg_iterator AI) {
553   assert(LV.isSimple() &&
554          "Unexpected non-simple lvalue during struct expansion.");
555 
556   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
557     unsigned NumElts = AT->getSize().getZExtValue();
558     QualType EltTy = AT->getElementType();
559     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
560       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
561       LValue LV = MakeAddrLValue(EltAddr, EltTy);
562       AI = ExpandTypeFromArgs(EltTy, LV, AI);
563     }
564   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
565     RecordDecl *RD = RT->getDecl();
566     if (RD->isUnion()) {
567       // Unions can be here only in degenerative cases - all the fields are same
568       // after flattening. Thus we have to use the "largest" field.
569       const FieldDecl *LargestFD = 0;
570       CharUnits UnionSize = CharUnits::Zero();
571 
572       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
573            i != e; ++i) {
574         const FieldDecl *FD = *i;
575         assert(!FD->isBitField() &&
576                "Cannot expand structure with bit-field members.");
577         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
578         if (UnionSize < FieldSize) {
579           UnionSize = FieldSize;
580           LargestFD = FD;
581         }
582       }
583       if (LargestFD) {
584         // FIXME: What are the right qualifiers here?
585         LValue SubLV = EmitLValueForField(LV, LargestFD);
586         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
587       }
588     } else {
589       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
590            i != e; ++i) {
591         FieldDecl *FD = *i;
592         QualType FT = FD->getType();
593 
594         // FIXME: What are the right qualifiers here?
595         LValue SubLV = EmitLValueForField(LV, FD);
596         AI = ExpandTypeFromArgs(FT, SubLV, AI);
597       }
598     }
599   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
600     QualType EltTy = CT->getElementType();
601     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
602     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
603     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
604     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
605   } else {
606     EmitStoreThroughLValue(RValue::get(AI), LV);
607     ++AI;
608   }
609 
610   return AI;
611 }
612 
613 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
614 /// accessing some number of bytes out of it, try to gep into the struct to get
615 /// at its inner goodness.  Dive as deep as possible without entering an element
616 /// with an in-memory size smaller than DstSize.
617 static llvm::Value *
EnterStructPointerForCoercedAccess(llvm::Value * SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)618 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
619                                    llvm::StructType *SrcSTy,
620                                    uint64_t DstSize, CodeGenFunction &CGF) {
621   // We can't dive into a zero-element struct.
622   if (SrcSTy->getNumElements() == 0) return SrcPtr;
623 
624   llvm::Type *FirstElt = SrcSTy->getElementType(0);
625 
626   // If the first elt is at least as large as what we're looking for, or if the
627   // first element is the same size as the whole struct, we can enter it.
628   uint64_t FirstEltSize =
629     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
630   if (FirstEltSize < DstSize &&
631       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
632     return SrcPtr;
633 
634   // GEP into the first element.
635   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
636 
637   // If the first element is a struct, recurse.
638   llvm::Type *SrcTy =
639     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
640   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
641     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
642 
643   return SrcPtr;
644 }
645 
646 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
647 /// are either integers or pointers.  This does a truncation of the value if it
648 /// is too large or a zero extension if it is too small.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)649 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
650                                              llvm::Type *Ty,
651                                              CodeGenFunction &CGF) {
652   if (Val->getType() == Ty)
653     return Val;
654 
655   if (isa<llvm::PointerType>(Val->getType())) {
656     // If this is Pointer->Pointer avoid conversion to and from int.
657     if (isa<llvm::PointerType>(Ty))
658       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
659 
660     // Convert the pointer to an integer so we can play with its width.
661     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
662   }
663 
664   llvm::Type *DestIntTy = Ty;
665   if (isa<llvm::PointerType>(DestIntTy))
666     DestIntTy = CGF.IntPtrTy;
667 
668   if (Val->getType() != DestIntTy)
669     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
670 
671   if (isa<llvm::PointerType>(Ty))
672     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
673   return Val;
674 }
675 
676 
677 
678 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
679 /// a pointer to an object of type \arg Ty.
680 ///
681 /// This safely handles the case when the src type is smaller than the
682 /// destination type; in this situation the values of bits which not
683 /// present in the src are undefined.
CreateCoercedLoad(llvm::Value * SrcPtr,llvm::Type * Ty,CodeGenFunction & CGF)684 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
685                                       llvm::Type *Ty,
686                                       CodeGenFunction &CGF) {
687   llvm::Type *SrcTy =
688     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
689 
690   // If SrcTy and Ty are the same, just do a load.
691   if (SrcTy == Ty)
692     return CGF.Builder.CreateLoad(SrcPtr);
693 
694   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
695 
696   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
697     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
698     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
699   }
700 
701   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
702 
703   // If the source and destination are integer or pointer types, just do an
704   // extension or truncation to the desired type.
705   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
706       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
707     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
708     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
709   }
710 
711   // If load is legal, just bitcast the src pointer.
712   if (SrcSize >= DstSize) {
713     // Generally SrcSize is never greater than DstSize, since this means we are
714     // losing bits. However, this can happen in cases where the structure has
715     // additional padding, for example due to a user specified alignment.
716     //
717     // FIXME: Assert that we aren't truncating non-padding bits when have access
718     // to that information.
719     llvm::Value *Casted =
720       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
721     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
722     // FIXME: Use better alignment / avoid requiring aligned load.
723     Load->setAlignment(1);
724     return Load;
725   }
726 
727   // Otherwise do coercion through memory. This is stupid, but
728   // simple.
729   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
730   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
731   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
732   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
733   // FIXME: Use better alignment.
734   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
735       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
736       1, false);
737   return CGF.Builder.CreateLoad(Tmp);
738 }
739 
740 // Function to store a first-class aggregate into memory.  We prefer to
741 // store the elements rather than the aggregate to be more friendly to
742 // fast-isel.
743 // FIXME: Do we need to recurse here?
BuildAggStore(CodeGenFunction & CGF,llvm::Value * Val,llvm::Value * DestPtr,bool DestIsVolatile,bool LowAlignment)744 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
745                           llvm::Value *DestPtr, bool DestIsVolatile,
746                           bool LowAlignment) {
747   // Prefer scalar stores to first-class aggregate stores.
748   if (llvm::StructType *STy =
749         dyn_cast<llvm::StructType>(Val->getType())) {
750     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
751       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
752       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
753       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
754                                                     DestIsVolatile);
755       if (LowAlignment)
756         SI->setAlignment(1);
757     }
758   } else {
759     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
760     if (LowAlignment)
761       SI->setAlignment(1);
762   }
763 }
764 
765 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
766 /// where the source and destination may have different types.
767 ///
768 /// This safely handles the case when the src type is larger than the
769 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,llvm::Value * DstPtr,bool DstIsVolatile,CodeGenFunction & CGF)770 static void CreateCoercedStore(llvm::Value *Src,
771                                llvm::Value *DstPtr,
772                                bool DstIsVolatile,
773                                CodeGenFunction &CGF) {
774   llvm::Type *SrcTy = Src->getType();
775   llvm::Type *DstTy =
776     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
777   if (SrcTy == DstTy) {
778     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
779     return;
780   }
781 
782   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
783 
784   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
785     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
786     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
787   }
788 
789   // If the source and destination are integer or pointer types, just do an
790   // extension or truncation to the desired type.
791   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
792       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
793     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
794     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
795     return;
796   }
797 
798   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
799 
800   // If store is legal, just bitcast the src pointer.
801   if (SrcSize <= DstSize) {
802     llvm::Value *Casted =
803       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
804     // FIXME: Use better alignment / avoid requiring aligned store.
805     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
806   } else {
807     // Otherwise do coercion through memory. This is stupid, but
808     // simple.
809 
810     // Generally SrcSize is never greater than DstSize, since this means we are
811     // losing bits. However, this can happen in cases where the structure has
812     // additional padding, for example due to a user specified alignment.
813     //
814     // FIXME: Assert that we aren't truncating non-padding bits when have access
815     // to that information.
816     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
817     CGF.Builder.CreateStore(Src, Tmp);
818     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
819     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
820     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
821     // FIXME: Use better alignment.
822     CGF.Builder.CreateMemCpy(DstCasted, Casted,
823         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
824         1, false);
825   }
826 }
827 
828 /***/
829 
ReturnTypeUsesSRet(const CGFunctionInfo & FI)830 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
831   return FI.getReturnInfo().isIndirect();
832 }
833 
ReturnTypeUsesFPRet(QualType ResultType)834 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
835   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
836     switch (BT->getKind()) {
837     default:
838       return false;
839     case BuiltinType::Float:
840       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
841     case BuiltinType::Double:
842       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
843     case BuiltinType::LongDouble:
844       return getContext().getTargetInfo().useObjCFPRetForRealType(
845         TargetInfo::LongDouble);
846     }
847   }
848 
849   return false;
850 }
851 
ReturnTypeUsesFP2Ret(QualType ResultType)852 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
853   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
854     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
855       if (BT->getKind() == BuiltinType::LongDouble)
856         return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
857     }
858   }
859 
860   return false;
861 }
862 
GetFunctionType(GlobalDecl GD)863 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
864   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
865   return GetFunctionType(FI);
866 }
867 
868 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)869 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
870 
871   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
872   assert(Inserted && "Recursively being processed?");
873 
874   SmallVector<llvm::Type*, 8> argTypes;
875   llvm::Type *resultType = 0;
876 
877   const ABIArgInfo &retAI = FI.getReturnInfo();
878   switch (retAI.getKind()) {
879   case ABIArgInfo::Expand:
880     llvm_unreachable("Invalid ABI kind for return argument");
881 
882   case ABIArgInfo::Extend:
883   case ABIArgInfo::Direct:
884     resultType = retAI.getCoerceToType();
885     break;
886 
887   case ABIArgInfo::Indirect: {
888     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
889     resultType = llvm::Type::getVoidTy(getLLVMContext());
890 
891     QualType ret = FI.getReturnType();
892     llvm::Type *ty = ConvertType(ret);
893     unsigned addressSpace = Context.getTargetAddressSpace(ret);
894     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
895     break;
896   }
897 
898   case ABIArgInfo::Ignore:
899     resultType = llvm::Type::getVoidTy(getLLVMContext());
900     break;
901   }
902 
903   // Add in all of the required arguments.
904   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
905   if (FI.isVariadic()) {
906     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
907   } else {
908     ie = FI.arg_end();
909   }
910   for (; it != ie; ++it) {
911     const ABIArgInfo &argAI = it->info;
912 
913     // Insert a padding type to ensure proper alignment.
914     if (llvm::Type *PaddingType = argAI.getPaddingType())
915       argTypes.push_back(PaddingType);
916 
917     switch (argAI.getKind()) {
918     case ABIArgInfo::Ignore:
919       break;
920 
921     case ABIArgInfo::Indirect: {
922       // indirect arguments are always on the stack, which is addr space #0.
923       llvm::Type *LTy = ConvertTypeForMem(it->type);
924       argTypes.push_back(LTy->getPointerTo());
925       break;
926     }
927 
928     case ABIArgInfo::Extend:
929     case ABIArgInfo::Direct: {
930       // If the coerce-to type is a first class aggregate, flatten it.  Either
931       // way is semantically identical, but fast-isel and the optimizer
932       // generally likes scalar values better than FCAs.
933       llvm::Type *argType = argAI.getCoerceToType();
934       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
935         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
936           argTypes.push_back(st->getElementType(i));
937       } else {
938         argTypes.push_back(argType);
939       }
940       break;
941     }
942 
943     case ABIArgInfo::Expand:
944       GetExpandedTypes(it->type, argTypes);
945       break;
946     }
947   }
948 
949   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
950   assert(Erased && "Not in set?");
951 
952   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
953 }
954 
GetFunctionTypeForVTable(GlobalDecl GD)955 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
956   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
957   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
958 
959   if (!isFuncTypeConvertible(FPT))
960     return llvm::StructType::get(getLLVMContext());
961 
962   const CGFunctionInfo *Info;
963   if (isa<CXXDestructorDecl>(MD))
964     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
965   else
966     Info = &arrangeCXXMethodDeclaration(MD);
967   return GetFunctionType(*Info);
968 }
969 
ConstructAttributeList(const CGFunctionInfo & FI,const Decl * TargetDecl,AttributeListType & PAL,unsigned & CallingConv,bool AttrOnCallSite)970 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
971                                            const Decl *TargetDecl,
972                                            AttributeListType &PAL,
973                                            unsigned &CallingConv,
974                                            bool AttrOnCallSite) {
975   llvm::AttrBuilder FuncAttrs;
976   llvm::AttrBuilder RetAttrs;
977 
978   CallingConv = FI.getEffectiveCallingConvention();
979 
980   if (FI.isNoReturn())
981     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
982 
983   // FIXME: handle sseregparm someday...
984   if (TargetDecl) {
985     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
986       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
987     if (TargetDecl->hasAttr<NoThrowAttr>())
988       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
989     if (TargetDecl->hasAttr<NoReturnAttr>())
990       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
991 
992     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
993       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
994       if (FPT && FPT->isNothrow(getContext()))
995         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
996       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
997       // These attributes are not inherited by overloads.
998       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
999       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1000         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1001     }
1002 
1003     // 'const' and 'pure' attribute functions are also nounwind.
1004     if (TargetDecl->hasAttr<ConstAttr>()) {
1005       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1006       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1007     } else if (TargetDecl->hasAttr<PureAttr>()) {
1008       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1009       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1010     }
1011     if (TargetDecl->hasAttr<MallocAttr>())
1012       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1013   }
1014 
1015   if (CodeGenOpts.OptimizeSize)
1016     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1017   if (CodeGenOpts.OptimizeSize == 2)
1018     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1019   if (CodeGenOpts.DisableRedZone)
1020     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1021   if (CodeGenOpts.NoImplicitFloat)
1022     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1023 
1024   if (AttrOnCallSite) {
1025     // Attributes that should go on the call site only.
1026     if (!CodeGenOpts.SimplifyLibCalls)
1027       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1028   } else {
1029     // Attributes that should go on the function, but not the call site.
1030     if (!CodeGenOpts.DisableFPElim) {
1031       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1032       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false");
1033     } else if (CodeGenOpts.OmitLeafFramePointer) {
1034       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1035       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1036     } else {
1037       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1038       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1039     }
1040 
1041     FuncAttrs.addAttribute("less-precise-fpmad",
1042                            CodeGenOpts.LessPreciseFPMAD ? "true" : "false");
1043     FuncAttrs.addAttribute("no-infs-fp-math",
1044                            CodeGenOpts.NoInfsFPMath ? "true" : "false");
1045     FuncAttrs.addAttribute("no-nans-fp-math",
1046                            CodeGenOpts.NoNaNsFPMath ? "true" : "false");
1047     FuncAttrs.addAttribute("unsafe-fp-math",
1048                            CodeGenOpts.UnsafeFPMath ? "true" : "false");
1049     FuncAttrs.addAttribute("use-soft-float",
1050                            CodeGenOpts.SoftFloat ? "true" : "false");
1051   }
1052 
1053   QualType RetTy = FI.getReturnType();
1054   unsigned Index = 1;
1055   const ABIArgInfo &RetAI = FI.getReturnInfo();
1056   switch (RetAI.getKind()) {
1057   case ABIArgInfo::Extend:
1058    if (RetTy->hasSignedIntegerRepresentation())
1059      RetAttrs.addAttribute(llvm::Attribute::SExt);
1060    else if (RetTy->hasUnsignedIntegerRepresentation())
1061      RetAttrs.addAttribute(llvm::Attribute::ZExt);
1062     break;
1063   case ABIArgInfo::Direct:
1064   case ABIArgInfo::Ignore:
1065     break;
1066 
1067   case ABIArgInfo::Indirect: {
1068     llvm::AttrBuilder SRETAttrs;
1069     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1070     if (RetAI.getInReg())
1071       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1072     PAL.push_back(llvm::
1073                   AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
1074 
1075     ++Index;
1076     // sret disables readnone and readonly
1077     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1078       .removeAttribute(llvm::Attribute::ReadNone);
1079     break;
1080   }
1081 
1082   case ABIArgInfo::Expand:
1083     llvm_unreachable("Invalid ABI kind for return argument");
1084   }
1085 
1086   if (RetAttrs.hasAttributes())
1087     PAL.push_back(llvm::
1088                   AttributeSet::get(getLLVMContext(),
1089                                     llvm::AttributeSet::ReturnIndex,
1090                                     RetAttrs));
1091 
1092   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1093          ie = FI.arg_end(); it != ie; ++it) {
1094     QualType ParamType = it->type;
1095     const ABIArgInfo &AI = it->info;
1096     llvm::AttrBuilder Attrs;
1097 
1098     if (AI.getPaddingType()) {
1099       if (AI.getPaddingInReg())
1100         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1101                                               llvm::Attribute::InReg));
1102       // Increment Index if there is padding.
1103       ++Index;
1104     }
1105 
1106     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1107     // have the corresponding parameter variable.  It doesn't make
1108     // sense to do it here because parameters are so messed up.
1109     switch (AI.getKind()) {
1110     case ABIArgInfo::Extend:
1111       if (ParamType->isSignedIntegerOrEnumerationType())
1112         Attrs.addAttribute(llvm::Attribute::SExt);
1113       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1114         Attrs.addAttribute(llvm::Attribute::ZExt);
1115       // FALL THROUGH
1116     case ABIArgInfo::Direct:
1117       if (AI.getInReg())
1118         Attrs.addAttribute(llvm::Attribute::InReg);
1119 
1120       // FIXME: handle sseregparm someday...
1121 
1122       if (llvm::StructType *STy =
1123           dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1124         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1125         if (Attrs.hasAttributes())
1126           for (unsigned I = 0; I < Extra; ++I)
1127             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1128                                                   Attrs));
1129         Index += Extra;
1130       }
1131       break;
1132 
1133     case ABIArgInfo::Indirect:
1134       if (AI.getInReg())
1135         Attrs.addAttribute(llvm::Attribute::InReg);
1136 
1137       if (AI.getIndirectByVal())
1138         Attrs.addAttribute(llvm::Attribute::ByVal);
1139 
1140       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1141 
1142       // byval disables readnone and readonly.
1143       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1144         .removeAttribute(llvm::Attribute::ReadNone);
1145       break;
1146 
1147     case ABIArgInfo::Ignore:
1148       // Skip increment, no matching LLVM parameter.
1149       continue;
1150 
1151     case ABIArgInfo::Expand: {
1152       SmallVector<llvm::Type*, 8> types;
1153       // FIXME: This is rather inefficient. Do we ever actually need to do
1154       // anything here? The result should be just reconstructed on the other
1155       // side, so extension should be a non-issue.
1156       getTypes().GetExpandedTypes(ParamType, types);
1157       Index += types.size();
1158       continue;
1159     }
1160     }
1161 
1162     if (Attrs.hasAttributes())
1163       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1164     ++Index;
1165   }
1166   if (FuncAttrs.hasAttributes())
1167     PAL.push_back(llvm::
1168                   AttributeSet::get(getLLVMContext(),
1169                                     llvm::AttributeSet::FunctionIndex,
1170                                     FuncAttrs));
1171 }
1172 
1173 /// An argument came in as a promoted argument; demote it back to its
1174 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)1175 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1176                                          const VarDecl *var,
1177                                          llvm::Value *value) {
1178   llvm::Type *varType = CGF.ConvertType(var->getType());
1179 
1180   // This can happen with promotions that actually don't change the
1181   // underlying type, like the enum promotions.
1182   if (value->getType() == varType) return value;
1183 
1184   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1185          && "unexpected promotion type");
1186 
1187   if (isa<llvm::IntegerType>(varType))
1188     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1189 
1190   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1191 }
1192 
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)1193 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1194                                          llvm::Function *Fn,
1195                                          const FunctionArgList &Args) {
1196   // If this is an implicit-return-zero function, go ahead and
1197   // initialize the return value.  TODO: it might be nice to have
1198   // a more general mechanism for this that didn't require synthesized
1199   // return statements.
1200   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1201     if (FD->hasImplicitReturnZero()) {
1202       QualType RetTy = FD->getResultType().getUnqualifiedType();
1203       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1204       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1205       Builder.CreateStore(Zero, ReturnValue);
1206     }
1207   }
1208 
1209   // FIXME: We no longer need the types from FunctionArgList; lift up and
1210   // simplify.
1211 
1212   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1213   llvm::Function::arg_iterator AI = Fn->arg_begin();
1214 
1215   // Name the struct return argument.
1216   if (CGM.ReturnTypeUsesSRet(FI)) {
1217     AI->setName("agg.result");
1218     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1219                                         AI->getArgNo() + 1,
1220                                         llvm::Attribute::NoAlias));
1221     ++AI;
1222   }
1223 
1224   assert(FI.arg_size() == Args.size() &&
1225          "Mismatch between function signature & arguments.");
1226   unsigned ArgNo = 1;
1227   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1228   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1229        i != e; ++i, ++info_it, ++ArgNo) {
1230     const VarDecl *Arg = *i;
1231     QualType Ty = info_it->type;
1232     const ABIArgInfo &ArgI = info_it->info;
1233 
1234     bool isPromoted =
1235       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1236 
1237     // Skip the dummy padding argument.
1238     if (ArgI.getPaddingType())
1239       ++AI;
1240 
1241     switch (ArgI.getKind()) {
1242     case ABIArgInfo::Indirect: {
1243       llvm::Value *V = AI;
1244 
1245       if (!hasScalarEvaluationKind(Ty)) {
1246         // Aggregates and complex variables are accessed by reference.  All we
1247         // need to do is realign the value, if requested
1248         if (ArgI.getIndirectRealign()) {
1249           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1250 
1251           // Copy from the incoming argument pointer to the temporary with the
1252           // appropriate alignment.
1253           //
1254           // FIXME: We should have a common utility for generating an aggregate
1255           // copy.
1256           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1257           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1258           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1259           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1260           Builder.CreateMemCpy(Dst,
1261                                Src,
1262                                llvm::ConstantInt::get(IntPtrTy,
1263                                                       Size.getQuantity()),
1264                                ArgI.getIndirectAlign(),
1265                                false);
1266           V = AlignedTemp;
1267         }
1268       } else {
1269         // Load scalar value from indirect argument.
1270         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1271         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1272 
1273         if (isPromoted)
1274           V = emitArgumentDemotion(*this, Arg, V);
1275       }
1276       EmitParmDecl(*Arg, V, ArgNo);
1277       break;
1278     }
1279 
1280     case ABIArgInfo::Extend:
1281     case ABIArgInfo::Direct: {
1282 
1283       // If we have the trivial case, handle it with no muss and fuss.
1284       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1285           ArgI.getCoerceToType() == ConvertType(Ty) &&
1286           ArgI.getDirectOffset() == 0) {
1287         assert(AI != Fn->arg_end() && "Argument mismatch!");
1288         llvm::Value *V = AI;
1289 
1290         if (Arg->getType().isRestrictQualified())
1291           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1292                                               AI->getArgNo() + 1,
1293                                               llvm::Attribute::NoAlias));
1294 
1295         // Ensure the argument is the correct type.
1296         if (V->getType() != ArgI.getCoerceToType())
1297           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1298 
1299         if (isPromoted)
1300           V = emitArgumentDemotion(*this, Arg, V);
1301 
1302         // Because of merging of function types from multiple decls it is
1303         // possible for the type of an argument to not match the corresponding
1304         // type in the function type. Since we are codegening the callee
1305         // in here, add a cast to the argument type.
1306         llvm::Type *LTy = ConvertType(Arg->getType());
1307         if (V->getType() != LTy)
1308           V = Builder.CreateBitCast(V, LTy);
1309 
1310         EmitParmDecl(*Arg, V, ArgNo);
1311         break;
1312       }
1313 
1314       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1315 
1316       // The alignment we need to use is the max of the requested alignment for
1317       // the argument plus the alignment required by our access code below.
1318       unsigned AlignmentToUse =
1319         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1320       AlignmentToUse = std::max(AlignmentToUse,
1321                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1322 
1323       Alloca->setAlignment(AlignmentToUse);
1324       llvm::Value *V = Alloca;
1325       llvm::Value *Ptr = V;    // Pointer to store into.
1326 
1327       // If the value is offset in memory, apply the offset now.
1328       if (unsigned Offs = ArgI.getDirectOffset()) {
1329         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1330         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1331         Ptr = Builder.CreateBitCast(Ptr,
1332                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1333       }
1334 
1335       // If the coerce-to type is a first class aggregate, we flatten it and
1336       // pass the elements. Either way is semantically identical, but fast-isel
1337       // and the optimizer generally likes scalar values better than FCAs.
1338       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1339       if (STy && STy->getNumElements() > 1) {
1340         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1341         llvm::Type *DstTy =
1342           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1343         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1344 
1345         if (SrcSize <= DstSize) {
1346           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1347 
1348           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1349             assert(AI != Fn->arg_end() && "Argument mismatch!");
1350             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1351             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1352             Builder.CreateStore(AI++, EltPtr);
1353           }
1354         } else {
1355           llvm::AllocaInst *TempAlloca =
1356             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1357           TempAlloca->setAlignment(AlignmentToUse);
1358           llvm::Value *TempV = TempAlloca;
1359 
1360           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1361             assert(AI != Fn->arg_end() && "Argument mismatch!");
1362             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1363             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1364             Builder.CreateStore(AI++, EltPtr);
1365           }
1366 
1367           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1368         }
1369       } else {
1370         // Simple case, just do a coerced store of the argument into the alloca.
1371         assert(AI != Fn->arg_end() && "Argument mismatch!");
1372         AI->setName(Arg->getName() + ".coerce");
1373         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1374       }
1375 
1376 
1377       // Match to what EmitParmDecl is expecting for this type.
1378       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1379         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1380         if (isPromoted)
1381           V = emitArgumentDemotion(*this, Arg, V);
1382       }
1383       EmitParmDecl(*Arg, V, ArgNo);
1384       continue;  // Skip ++AI increment, already done.
1385     }
1386 
1387     case ABIArgInfo::Expand: {
1388       // If this structure was expanded into multiple arguments then
1389       // we need to create a temporary and reconstruct it from the
1390       // arguments.
1391       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1392       CharUnits Align = getContext().getDeclAlign(Arg);
1393       Alloca->setAlignment(Align.getQuantity());
1394       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1395       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1396       EmitParmDecl(*Arg, Alloca, ArgNo);
1397 
1398       // Name the arguments used in expansion and increment AI.
1399       unsigned Index = 0;
1400       for (; AI != End; ++AI, ++Index)
1401         AI->setName(Arg->getName() + "." + Twine(Index));
1402       continue;
1403     }
1404 
1405     case ABIArgInfo::Ignore:
1406       // Initialize the local variable appropriately.
1407       if (!hasScalarEvaluationKind(Ty))
1408         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1409       else
1410         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1411                      ArgNo);
1412 
1413       // Skip increment, no matching LLVM parameter.
1414       continue;
1415     }
1416 
1417     ++AI;
1418   }
1419   assert(AI == Fn->arg_end() && "Argument mismatch!");
1420 }
1421 
eraseUnusedBitCasts(llvm::Instruction * insn)1422 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1423   while (insn->use_empty()) {
1424     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1425     if (!bitcast) return;
1426 
1427     // This is "safe" because we would have used a ConstantExpr otherwise.
1428     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1429     bitcast->eraseFromParent();
1430   }
1431 }
1432 
1433 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)1434 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1435                                                     llvm::Value *result) {
1436   // We must be immediately followed the cast.
1437   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1438   if (BB->empty()) return 0;
1439   if (&BB->back() != result) return 0;
1440 
1441   llvm::Type *resultType = result->getType();
1442 
1443   // result is in a BasicBlock and is therefore an Instruction.
1444   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1445 
1446   SmallVector<llvm::Instruction*,4> insnsToKill;
1447 
1448   // Look for:
1449   //  %generator = bitcast %type1* %generator2 to %type2*
1450   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1451     // We would have emitted this as a constant if the operand weren't
1452     // an Instruction.
1453     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1454 
1455     // Require the generator to be immediately followed by the cast.
1456     if (generator->getNextNode() != bitcast)
1457       return 0;
1458 
1459     insnsToKill.push_back(bitcast);
1460   }
1461 
1462   // Look for:
1463   //   %generator = call i8* @objc_retain(i8* %originalResult)
1464   // or
1465   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1466   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1467   if (!call) return 0;
1468 
1469   bool doRetainAutorelease;
1470 
1471   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1472     doRetainAutorelease = true;
1473   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1474                                           .objc_retainAutoreleasedReturnValue) {
1475     doRetainAutorelease = false;
1476 
1477     // If we emitted an assembly marker for this call (and the
1478     // ARCEntrypoints field should have been set if so), go looking
1479     // for that call.  If we can't find it, we can't do this
1480     // optimization.  But it should always be the immediately previous
1481     // instruction, unless we needed bitcasts around the call.
1482     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1483       llvm::Instruction *prev = call->getPrevNode();
1484       assert(prev);
1485       if (isa<llvm::BitCastInst>(prev)) {
1486         prev = prev->getPrevNode();
1487         assert(prev);
1488       }
1489       assert(isa<llvm::CallInst>(prev));
1490       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1491                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1492       insnsToKill.push_back(prev);
1493     }
1494   } else {
1495     return 0;
1496   }
1497 
1498   result = call->getArgOperand(0);
1499   insnsToKill.push_back(call);
1500 
1501   // Keep killing bitcasts, for sanity.  Note that we no longer care
1502   // about precise ordering as long as there's exactly one use.
1503   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1504     if (!bitcast->hasOneUse()) break;
1505     insnsToKill.push_back(bitcast);
1506     result = bitcast->getOperand(0);
1507   }
1508 
1509   // Delete all the unnecessary instructions, from latest to earliest.
1510   for (SmallVectorImpl<llvm::Instruction*>::iterator
1511          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1512     (*i)->eraseFromParent();
1513 
1514   // Do the fused retain/autorelease if we were asked to.
1515   if (doRetainAutorelease)
1516     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1517 
1518   // Cast back to the result type.
1519   return CGF.Builder.CreateBitCast(result, resultType);
1520 }
1521 
1522 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)1523 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1524                                           llvm::Value *result) {
1525   // This is only applicable to a method with an immutable 'self'.
1526   const ObjCMethodDecl *method =
1527     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1528   if (!method) return 0;
1529   const VarDecl *self = method->getSelfDecl();
1530   if (!self->getType().isConstQualified()) return 0;
1531 
1532   // Look for a retain call.
1533   llvm::CallInst *retainCall =
1534     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1535   if (!retainCall ||
1536       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1537     return 0;
1538 
1539   // Look for an ordinary load of 'self'.
1540   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1541   llvm::LoadInst *load =
1542     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1543   if (!load || load->isAtomic() || load->isVolatile() ||
1544       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1545     return 0;
1546 
1547   // Okay!  Burn it all down.  This relies for correctness on the
1548   // assumption that the retain is emitted as part of the return and
1549   // that thereafter everything is used "linearly".
1550   llvm::Type *resultType = result->getType();
1551   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1552   assert(retainCall->use_empty());
1553   retainCall->eraseFromParent();
1554   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1555 
1556   return CGF.Builder.CreateBitCast(load, resultType);
1557 }
1558 
1559 /// Emit an ARC autorelease of the result of a function.
1560 ///
1561 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)1562 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1563                                             llvm::Value *result) {
1564   // If we're returning 'self', kill the initial retain.  This is a
1565   // heuristic attempt to "encourage correctness" in the really unfortunate
1566   // case where we have a return of self during a dealloc and we desperately
1567   // need to avoid the possible autorelease.
1568   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1569     return self;
1570 
1571   // At -O0, try to emit a fused retain/autorelease.
1572   if (CGF.shouldUseFusedARCCalls())
1573     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1574       return fused;
1575 
1576   return CGF.EmitARCAutoreleaseReturnValue(result);
1577 }
1578 
1579 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)1580 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1581   // If there are multiple uses of the return-value slot, just check
1582   // for something immediately preceding the IP.  Sometimes this can
1583   // happen with how we generate implicit-returns; it can also happen
1584   // with noreturn cleanups.
1585   if (!CGF.ReturnValue->hasOneUse()) {
1586     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1587     if (IP->empty()) return 0;
1588     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1589     if (!store) return 0;
1590     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1591     assert(!store->isAtomic() && !store->isVolatile()); // see below
1592     return store;
1593   }
1594 
1595   llvm::StoreInst *store =
1596     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1597   if (!store) return 0;
1598 
1599   // These aren't actually possible for non-coerced returns, and we
1600   // only care about non-coerced returns on this code path.
1601   assert(!store->isAtomic() && !store->isVolatile());
1602 
1603   // Now do a first-and-dirty dominance check: just walk up the
1604   // single-predecessors chain from the current insertion point.
1605   llvm::BasicBlock *StoreBB = store->getParent();
1606   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1607   while (IP != StoreBB) {
1608     if (!(IP = IP->getSinglePredecessor()))
1609       return 0;
1610   }
1611 
1612   // Okay, the store's basic block dominates the insertion point; we
1613   // can do our thing.
1614   return store;
1615 }
1616 
EmitFunctionEpilog(const CGFunctionInfo & FI)1617 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1618   // Functions with no result always return void.
1619   if (ReturnValue == 0) {
1620     Builder.CreateRetVoid();
1621     return;
1622   }
1623 
1624   llvm::DebugLoc RetDbgLoc;
1625   llvm::Value *RV = 0;
1626   QualType RetTy = FI.getReturnType();
1627   const ABIArgInfo &RetAI = FI.getReturnInfo();
1628 
1629   switch (RetAI.getKind()) {
1630   case ABIArgInfo::Indirect: {
1631     switch (getEvaluationKind(RetTy)) {
1632     case TEK_Complex: {
1633       ComplexPairTy RT =
1634         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
1635       EmitStoreOfComplex(RT,
1636                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1637                          /*isInit*/ true);
1638       break;
1639     }
1640     case TEK_Aggregate:
1641       // Do nothing; aggregrates get evaluated directly into the destination.
1642       break;
1643     case TEK_Scalar:
1644       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1645                         MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1646                         /*isInit*/ true);
1647       break;
1648     }
1649     break;
1650   }
1651 
1652   case ABIArgInfo::Extend:
1653   case ABIArgInfo::Direct:
1654     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1655         RetAI.getDirectOffset() == 0) {
1656       // The internal return value temp always will have pointer-to-return-type
1657       // type, just do a load.
1658 
1659       // If there is a dominating store to ReturnValue, we can elide
1660       // the load, zap the store, and usually zap the alloca.
1661       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1662         // Get the stored value and nuke the now-dead store.
1663         RetDbgLoc = SI->getDebugLoc();
1664         RV = SI->getValueOperand();
1665         SI->eraseFromParent();
1666 
1667         // If that was the only use of the return value, nuke it as well now.
1668         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1669           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1670           ReturnValue = 0;
1671         }
1672 
1673       // Otherwise, we have to do a simple load.
1674       } else {
1675         RV = Builder.CreateLoad(ReturnValue);
1676       }
1677     } else {
1678       llvm::Value *V = ReturnValue;
1679       // If the value is offset in memory, apply the offset now.
1680       if (unsigned Offs = RetAI.getDirectOffset()) {
1681         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1682         V = Builder.CreateConstGEP1_32(V, Offs);
1683         V = Builder.CreateBitCast(V,
1684                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1685       }
1686 
1687       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1688     }
1689 
1690     // In ARC, end functions that return a retainable type with a call
1691     // to objc_autoreleaseReturnValue.
1692     if (AutoreleaseResult) {
1693       assert(getLangOpts().ObjCAutoRefCount &&
1694              !FI.isReturnsRetained() &&
1695              RetTy->isObjCRetainableType());
1696       RV = emitAutoreleaseOfResult(*this, RV);
1697     }
1698 
1699     break;
1700 
1701   case ABIArgInfo::Ignore:
1702     break;
1703 
1704   case ABIArgInfo::Expand:
1705     llvm_unreachable("Invalid ABI kind for return argument");
1706   }
1707 
1708   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1709   if (!RetDbgLoc.isUnknown())
1710     Ret->setDebugLoc(RetDbgLoc);
1711 }
1712 
EmitDelegateCallArg(CallArgList & args,const VarDecl * param)1713 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1714                                           const VarDecl *param) {
1715   // StartFunction converted the ABI-lowered parameter(s) into a
1716   // local alloca.  We need to turn that into an r-value suitable
1717   // for EmitCall.
1718   llvm::Value *local = GetAddrOfLocalVar(param);
1719 
1720   QualType type = param->getType();
1721 
1722   // For the most part, we just need to load the alloca, except:
1723   // 1) aggregate r-values are actually pointers to temporaries, and
1724   // 2) references to non-scalars are pointers directly to the aggregate.
1725   // I don't know why references to scalars are different here.
1726   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1727     if (!hasScalarEvaluationKind(ref->getPointeeType()))
1728       return args.add(RValue::getAggregate(local), type);
1729 
1730     // Locals which are references to scalars are represented
1731     // with allocas holding the pointer.
1732     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1733   }
1734 
1735   args.add(convertTempToRValue(local, type), type);
1736 }
1737 
isProvablyNull(llvm::Value * addr)1738 static bool isProvablyNull(llvm::Value *addr) {
1739   return isa<llvm::ConstantPointerNull>(addr);
1740 }
1741 
isProvablyNonNull(llvm::Value * addr)1742 static bool isProvablyNonNull(llvm::Value *addr) {
1743   return isa<llvm::AllocaInst>(addr);
1744 }
1745 
1746 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)1747 static void emitWriteback(CodeGenFunction &CGF,
1748                           const CallArgList::Writeback &writeback) {
1749   llvm::Value *srcAddr = writeback.Address;
1750   assert(!isProvablyNull(srcAddr) &&
1751          "shouldn't have writeback for provably null argument");
1752 
1753   llvm::BasicBlock *contBB = 0;
1754 
1755   // If the argument wasn't provably non-null, we need to null check
1756   // before doing the store.
1757   bool provablyNonNull = isProvablyNonNull(srcAddr);
1758   if (!provablyNonNull) {
1759     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1760     contBB = CGF.createBasicBlock("icr.done");
1761 
1762     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1763     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1764     CGF.EmitBlock(writebackBB);
1765   }
1766 
1767   // Load the value to writeback.
1768   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1769 
1770   // Cast it back, in case we're writing an id to a Foo* or something.
1771   value = CGF.Builder.CreateBitCast(value,
1772                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1773                             "icr.writeback-cast");
1774 
1775   // Perform the writeback.
1776   QualType srcAddrType = writeback.AddressType;
1777   CGF.EmitStoreThroughLValue(RValue::get(value),
1778                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
1779 
1780   // Jump to the continuation block.
1781   if (!provablyNonNull)
1782     CGF.EmitBlock(contBB);
1783 }
1784 
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)1785 static void emitWritebacks(CodeGenFunction &CGF,
1786                            const CallArgList &args) {
1787   for (CallArgList::writeback_iterator
1788          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1789     emitWriteback(CGF, *i);
1790 }
1791 
1792 /// Emit an argument that's being passed call-by-writeback.  That is,
1793 /// we are passing the address of
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)1794 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1795                              const ObjCIndirectCopyRestoreExpr *CRE) {
1796   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1797 
1798   // The dest and src types don't necessarily match in LLVM terms
1799   // because of the crazy ObjC compatibility rules.
1800 
1801   llvm::PointerType *destType =
1802     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1803 
1804   // If the address is a constant null, just pass the appropriate null.
1805   if (isProvablyNull(srcAddr)) {
1806     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1807              CRE->getType());
1808     return;
1809   }
1810 
1811   QualType srcAddrType =
1812     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1813 
1814   // Create the temporary.
1815   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1816                                            "icr.temp");
1817   // Loading an l-value can introduce a cleanup if the l-value is __weak,
1818   // and that cleanup will be conditional if we can't prove that the l-value
1819   // isn't null, so we need to register a dominating point so that the cleanups
1820   // system will make valid IR.
1821   CodeGenFunction::ConditionalEvaluation condEval(CGF);
1822 
1823   // Zero-initialize it if we're not doing a copy-initialization.
1824   bool shouldCopy = CRE->shouldCopy();
1825   if (!shouldCopy) {
1826     llvm::Value *null =
1827       llvm::ConstantPointerNull::get(
1828         cast<llvm::PointerType>(destType->getElementType()));
1829     CGF.Builder.CreateStore(null, temp);
1830   }
1831 
1832   llvm::BasicBlock *contBB = 0;
1833 
1834   // If the address is *not* known to be non-null, we need to switch.
1835   llvm::Value *finalArgument;
1836 
1837   bool provablyNonNull = isProvablyNonNull(srcAddr);
1838   if (provablyNonNull) {
1839     finalArgument = temp;
1840   } else {
1841     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1842 
1843     finalArgument = CGF.Builder.CreateSelect(isNull,
1844                                    llvm::ConstantPointerNull::get(destType),
1845                                              temp, "icr.argument");
1846 
1847     // If we need to copy, then the load has to be conditional, which
1848     // means we need control flow.
1849     if (shouldCopy) {
1850       contBB = CGF.createBasicBlock("icr.cont");
1851       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1852       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1853       CGF.EmitBlock(copyBB);
1854       condEval.begin(CGF);
1855     }
1856   }
1857 
1858   // Perform a copy if necessary.
1859   if (shouldCopy) {
1860     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1861     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1862     assert(srcRV.isScalar());
1863 
1864     llvm::Value *src = srcRV.getScalarVal();
1865     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1866                                     "icr.cast");
1867 
1868     // Use an ordinary store, not a store-to-lvalue.
1869     CGF.Builder.CreateStore(src, temp);
1870   }
1871 
1872   // Finish the control flow if we needed it.
1873   if (shouldCopy && !provablyNonNull) {
1874     CGF.EmitBlock(contBB);
1875     condEval.end(CGF);
1876   }
1877 
1878   args.addWriteback(srcAddr, srcAddrType, temp);
1879   args.add(RValue::get(finalArgument), CRE->getType());
1880 }
1881 
EmitCallArg(CallArgList & args,const Expr * E,QualType type)1882 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1883                                   QualType type) {
1884   if (const ObjCIndirectCopyRestoreExpr *CRE
1885         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1886     assert(getLangOpts().ObjCAutoRefCount);
1887     assert(getContext().hasSameType(E->getType(), type));
1888     return emitWritebackArg(*this, args, CRE);
1889   }
1890 
1891   assert(type->isReferenceType() == E->isGLValue() &&
1892          "reference binding to unmaterialized r-value!");
1893 
1894   if (E->isGLValue()) {
1895     assert(E->getObjectKind() == OK_Ordinary);
1896     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1897                     type);
1898   }
1899 
1900   if (hasAggregateEvaluationKind(type) &&
1901       isa<ImplicitCastExpr>(E) &&
1902       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1903     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1904     assert(L.isSimple());
1905     args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1906     return;
1907   }
1908 
1909   args.add(EmitAnyExprToTemp(E), type);
1910 }
1911 
1912 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1913 // optimizer it can aggressively ignore unwind edges.
1914 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)1915 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1916   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1917       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1918     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1919                       CGM.getNoObjCARCExceptionsMetadata());
1920 }
1921 
1922 /// Emits a call to the given no-arguments nounwind runtime function.
1923 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,const llvm::Twine & name)1924 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
1925                                          const llvm::Twine &name) {
1926   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
1927 }
1928 
1929 /// Emits a call to the given nounwind runtime function.
1930 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)1931 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
1932                                          ArrayRef<llvm::Value*> args,
1933                                          const llvm::Twine &name) {
1934   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
1935   call->setDoesNotThrow();
1936   return call;
1937 }
1938 
1939 /// Emits a simple call (never an invoke) to the given no-arguments
1940 /// runtime function.
1941 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,const llvm::Twine & name)1942 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
1943                                  const llvm::Twine &name) {
1944   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
1945 }
1946 
1947 /// Emits a simple call (never an invoke) to the given runtime
1948 /// function.
1949 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)1950 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
1951                                  ArrayRef<llvm::Value*> args,
1952                                  const llvm::Twine &name) {
1953   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
1954   call->setCallingConv(getRuntimeCC());
1955   return call;
1956 }
1957 
1958 /// Emits a call or invoke to the given noreturn runtime function.
EmitNoreturnRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args)1959 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
1960                                                ArrayRef<llvm::Value*> args) {
1961   if (getInvokeDest()) {
1962     llvm::InvokeInst *invoke =
1963       Builder.CreateInvoke(callee,
1964                            getUnreachableBlock(),
1965                            getInvokeDest(),
1966                            args);
1967     invoke->setDoesNotReturn();
1968     invoke->setCallingConv(getRuntimeCC());
1969   } else {
1970     llvm::CallInst *call = Builder.CreateCall(callee, args);
1971     call->setDoesNotReturn();
1972     call->setCallingConv(getRuntimeCC());
1973     Builder.CreateUnreachable();
1974   }
1975 }
1976 
1977 /// Emits a call or invoke instruction to the given nullary runtime
1978 /// function.
1979 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,const Twine & name)1980 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
1981                                          const Twine &name) {
1982   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
1983 }
1984 
1985 /// Emits a call or invoke instruction to the given runtime function.
1986 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args,const Twine & name)1987 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
1988                                          ArrayRef<llvm::Value*> args,
1989                                          const Twine &name) {
1990   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
1991   callSite.setCallingConv(getRuntimeCC());
1992   return callSite;
1993 }
1994 
1995 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,const Twine & Name)1996 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1997                                   const Twine &Name) {
1998   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1999 }
2000 
2001 /// Emits a call or invoke instruction to the given function, depending
2002 /// on the current state of the EH stack.
2003 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)2004 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2005                                   ArrayRef<llvm::Value *> Args,
2006                                   const Twine &Name) {
2007   llvm::BasicBlock *InvokeDest = getInvokeDest();
2008 
2009   llvm::Instruction *Inst;
2010   if (!InvokeDest)
2011     Inst = Builder.CreateCall(Callee, Args, Name);
2012   else {
2013     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2014     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2015     EmitBlock(ContBB);
2016   }
2017 
2018   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2019   // optimizer it can aggressively ignore unwind edges.
2020   if (CGM.getLangOpts().ObjCAutoRefCount)
2021     AddObjCARCExceptionMetadata(Inst);
2022 
2023   return Inst;
2024 }
2025 
checkArgMatches(llvm::Value * Elt,unsigned & ArgNo,llvm::FunctionType * FTy)2026 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2027                             llvm::FunctionType *FTy) {
2028   if (ArgNo < FTy->getNumParams())
2029     assert(Elt->getType() == FTy->getParamType(ArgNo));
2030   else
2031     assert(FTy->isVarArg());
2032   ++ArgNo;
2033 }
2034 
ExpandTypeToArgs(QualType Ty,RValue RV,SmallVector<llvm::Value *,16> & Args,llvm::FunctionType * IRFuncTy)2035 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2036                                        SmallVector<llvm::Value*,16> &Args,
2037                                        llvm::FunctionType *IRFuncTy) {
2038   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2039     unsigned NumElts = AT->getSize().getZExtValue();
2040     QualType EltTy = AT->getElementType();
2041     llvm::Value *Addr = RV.getAggregateAddr();
2042     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2043       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2044       RValue EltRV = convertTempToRValue(EltAddr, EltTy);
2045       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2046     }
2047   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2048     RecordDecl *RD = RT->getDecl();
2049     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2050     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2051 
2052     if (RD->isUnion()) {
2053       const FieldDecl *LargestFD = 0;
2054       CharUnits UnionSize = CharUnits::Zero();
2055 
2056       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2057            i != e; ++i) {
2058         const FieldDecl *FD = *i;
2059         assert(!FD->isBitField() &&
2060                "Cannot expand structure with bit-field members.");
2061         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2062         if (UnionSize < FieldSize) {
2063           UnionSize = FieldSize;
2064           LargestFD = FD;
2065         }
2066       }
2067       if (LargestFD) {
2068         RValue FldRV = EmitRValueForField(LV, LargestFD);
2069         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2070       }
2071     } else {
2072       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2073            i != e; ++i) {
2074         FieldDecl *FD = *i;
2075 
2076         RValue FldRV = EmitRValueForField(LV, FD);
2077         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2078       }
2079     }
2080   } else if (Ty->isAnyComplexType()) {
2081     ComplexPairTy CV = RV.getComplexVal();
2082     Args.push_back(CV.first);
2083     Args.push_back(CV.second);
2084   } else {
2085     assert(RV.isScalar() &&
2086            "Unexpected non-scalar rvalue during struct expansion.");
2087 
2088     // Insert a bitcast as needed.
2089     llvm::Value *V = RV.getScalarVal();
2090     if (Args.size() < IRFuncTy->getNumParams() &&
2091         V->getType() != IRFuncTy->getParamType(Args.size()))
2092       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2093 
2094     Args.push_back(V);
2095   }
2096 }
2097 
2098 
EmitCall(const CGFunctionInfo & CallInfo,llvm::Value * Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,const Decl * TargetDecl,llvm::Instruction ** callOrInvoke)2099 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2100                                  llvm::Value *Callee,
2101                                  ReturnValueSlot ReturnValue,
2102                                  const CallArgList &CallArgs,
2103                                  const Decl *TargetDecl,
2104                                  llvm::Instruction **callOrInvoke) {
2105   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2106   SmallVector<llvm::Value*, 16> Args;
2107 
2108   // Handle struct-return functions by passing a pointer to the
2109   // location that we would like to return into.
2110   QualType RetTy = CallInfo.getReturnType();
2111   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2112 
2113   // IRArgNo - Keep track of the argument number in the callee we're looking at.
2114   unsigned IRArgNo = 0;
2115   llvm::FunctionType *IRFuncTy =
2116     cast<llvm::FunctionType>(
2117                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2118 
2119   // If the call returns a temporary with struct return, create a temporary
2120   // alloca to hold the result, unless one is given to us.
2121   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2122     llvm::Value *Value = ReturnValue.getValue();
2123     if (!Value)
2124       Value = CreateMemTemp(RetTy);
2125     Args.push_back(Value);
2126     checkArgMatches(Value, IRArgNo, IRFuncTy);
2127   }
2128 
2129   assert(CallInfo.arg_size() == CallArgs.size() &&
2130          "Mismatch between function signature & arguments.");
2131   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2132   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2133        I != E; ++I, ++info_it) {
2134     const ABIArgInfo &ArgInfo = info_it->info;
2135     RValue RV = I->RV;
2136 
2137     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2138 
2139     // Insert a padding argument to ensure proper alignment.
2140     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2141       Args.push_back(llvm::UndefValue::get(PaddingType));
2142       ++IRArgNo;
2143     }
2144 
2145     switch (ArgInfo.getKind()) {
2146     case ABIArgInfo::Indirect: {
2147       if (RV.isScalar() || RV.isComplex()) {
2148         // Make a temporary alloca to pass the argument.
2149         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2150         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2151           AI->setAlignment(ArgInfo.getIndirectAlign());
2152         Args.push_back(AI);
2153 
2154         LValue argLV =
2155           MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2156 
2157         if (RV.isScalar())
2158           EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
2159         else
2160           EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
2161 
2162         // Validate argument match.
2163         checkArgMatches(AI, IRArgNo, IRFuncTy);
2164       } else {
2165         // We want to avoid creating an unnecessary temporary+copy here;
2166         // however, we need one in three cases:
2167         // 1. If the argument is not byval, and we are required to copy the
2168         //    source.  (This case doesn't occur on any common architecture.)
2169         // 2. If the argument is byval, RV is not sufficiently aligned, and
2170         //    we cannot force it to be sufficiently aligned.
2171         // 3. If the argument is byval, but RV is located in an address space
2172         //    different than that of the argument (0).
2173         llvm::Value *Addr = RV.getAggregateAddr();
2174         unsigned Align = ArgInfo.getIndirectAlign();
2175         const llvm::DataLayout *TD = &CGM.getDataLayout();
2176         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2177         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2178           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2179         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2180             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2181              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2182              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2183           // Create an aligned temporary, and copy to it.
2184           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2185           if (Align > AI->getAlignment())
2186             AI->setAlignment(Align);
2187           Args.push_back(AI);
2188           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2189 
2190           // Validate argument match.
2191           checkArgMatches(AI, IRArgNo, IRFuncTy);
2192         } else {
2193           // Skip the extra memcpy call.
2194           Args.push_back(Addr);
2195 
2196           // Validate argument match.
2197           checkArgMatches(Addr, IRArgNo, IRFuncTy);
2198         }
2199       }
2200       break;
2201     }
2202 
2203     case ABIArgInfo::Ignore:
2204       break;
2205 
2206     case ABIArgInfo::Extend:
2207     case ABIArgInfo::Direct: {
2208       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2209           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2210           ArgInfo.getDirectOffset() == 0) {
2211         llvm::Value *V;
2212         if (RV.isScalar())
2213           V = RV.getScalarVal();
2214         else
2215           V = Builder.CreateLoad(RV.getAggregateAddr());
2216 
2217         // If the argument doesn't match, perform a bitcast to coerce it.  This
2218         // can happen due to trivial type mismatches.
2219         if (IRArgNo < IRFuncTy->getNumParams() &&
2220             V->getType() != IRFuncTy->getParamType(IRArgNo))
2221           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2222         Args.push_back(V);
2223 
2224         checkArgMatches(V, IRArgNo, IRFuncTy);
2225         break;
2226       }
2227 
2228       // FIXME: Avoid the conversion through memory if possible.
2229       llvm::Value *SrcPtr;
2230       if (RV.isScalar() || RV.isComplex()) {
2231         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2232         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2233         if (RV.isScalar()) {
2234           EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
2235         } else {
2236           EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
2237         }
2238       } else
2239         SrcPtr = RV.getAggregateAddr();
2240 
2241       // If the value is offset in memory, apply the offset now.
2242       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2243         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2244         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2245         SrcPtr = Builder.CreateBitCast(SrcPtr,
2246                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2247 
2248       }
2249 
2250       // If the coerce-to type is a first class aggregate, we flatten it and
2251       // pass the elements. Either way is semantically identical, but fast-isel
2252       // and the optimizer generally likes scalar values better than FCAs.
2253       if (llvm::StructType *STy =
2254             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2255         llvm::Type *SrcTy =
2256           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2257         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2258         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2259 
2260         // If the source type is smaller than the destination type of the
2261         // coerce-to logic, copy the source value into a temp alloca the size
2262         // of the destination type to allow loading all of it. The bits past
2263         // the source value are left undef.
2264         if (SrcSize < DstSize) {
2265           llvm::AllocaInst *TempAlloca
2266             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2267           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2268           SrcPtr = TempAlloca;
2269         } else {
2270           SrcPtr = Builder.CreateBitCast(SrcPtr,
2271                                          llvm::PointerType::getUnqual(STy));
2272         }
2273 
2274         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2275           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2276           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2277           // We don't know what we're loading from.
2278           LI->setAlignment(1);
2279           Args.push_back(LI);
2280 
2281           // Validate argument match.
2282           checkArgMatches(LI, IRArgNo, IRFuncTy);
2283         }
2284       } else {
2285         // In the simple case, just pass the coerced loaded value.
2286         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2287                                          *this));
2288 
2289         // Validate argument match.
2290         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2291       }
2292 
2293       break;
2294     }
2295 
2296     case ABIArgInfo::Expand:
2297       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2298       IRArgNo = Args.size();
2299       break;
2300     }
2301   }
2302 
2303   // If the callee is a bitcast of a function to a varargs pointer to function
2304   // type, check to see if we can remove the bitcast.  This handles some cases
2305   // with unprototyped functions.
2306   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2307     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2308       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2309       llvm::FunctionType *CurFT =
2310         cast<llvm::FunctionType>(CurPT->getElementType());
2311       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2312 
2313       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2314           ActualFT->getReturnType() == CurFT->getReturnType() &&
2315           ActualFT->getNumParams() == CurFT->getNumParams() &&
2316           ActualFT->getNumParams() == Args.size() &&
2317           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2318         bool ArgsMatch = true;
2319         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2320           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2321             ArgsMatch = false;
2322             break;
2323           }
2324 
2325         // Strip the cast if we can get away with it.  This is a nice cleanup,
2326         // but also allows us to inline the function at -O0 if it is marked
2327         // always_inline.
2328         if (ArgsMatch)
2329           Callee = CalleeF;
2330       }
2331     }
2332 
2333   unsigned CallingConv;
2334   CodeGen::AttributeListType AttributeList;
2335   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2336                              CallingConv, true);
2337   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2338                                                      AttributeList);
2339 
2340   llvm::BasicBlock *InvokeDest = 0;
2341   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2342                           llvm::Attribute::NoUnwind))
2343     InvokeDest = getInvokeDest();
2344 
2345   llvm::CallSite CS;
2346   if (!InvokeDest) {
2347     CS = Builder.CreateCall(Callee, Args);
2348   } else {
2349     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2350     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2351     EmitBlock(Cont);
2352   }
2353   if (callOrInvoke)
2354     *callOrInvoke = CS.getInstruction();
2355 
2356   CS.setAttributes(Attrs);
2357   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2358 
2359   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2360   // optimizer it can aggressively ignore unwind edges.
2361   if (CGM.getLangOpts().ObjCAutoRefCount)
2362     AddObjCARCExceptionMetadata(CS.getInstruction());
2363 
2364   // If the call doesn't return, finish the basic block and clear the
2365   // insertion point; this allows the rest of IRgen to discard
2366   // unreachable code.
2367   if (CS.doesNotReturn()) {
2368     Builder.CreateUnreachable();
2369     Builder.ClearInsertionPoint();
2370 
2371     // FIXME: For now, emit a dummy basic block because expr emitters in
2372     // generally are not ready to handle emitting expressions at unreachable
2373     // points.
2374     EnsureInsertPoint();
2375 
2376     // Return a reasonable RValue.
2377     return GetUndefRValue(RetTy);
2378   }
2379 
2380   llvm::Instruction *CI = CS.getInstruction();
2381   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2382     CI->setName("call");
2383 
2384   // Emit any writebacks immediately.  Arguably this should happen
2385   // after any return-value munging.
2386   if (CallArgs.hasWritebacks())
2387     emitWritebacks(*this, CallArgs);
2388 
2389   switch (RetAI.getKind()) {
2390   case ABIArgInfo::Indirect:
2391     return convertTempToRValue(Args[0], RetTy);
2392 
2393   case ABIArgInfo::Ignore:
2394     // If we are ignoring an argument that had a result, make sure to
2395     // construct the appropriate return value for our caller.
2396     return GetUndefRValue(RetTy);
2397 
2398   case ABIArgInfo::Extend:
2399   case ABIArgInfo::Direct: {
2400     llvm::Type *RetIRTy = ConvertType(RetTy);
2401     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2402       switch (getEvaluationKind(RetTy)) {
2403       case TEK_Complex: {
2404         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2405         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2406         return RValue::getComplex(std::make_pair(Real, Imag));
2407       }
2408       case TEK_Aggregate: {
2409         llvm::Value *DestPtr = ReturnValue.getValue();
2410         bool DestIsVolatile = ReturnValue.isVolatile();
2411 
2412         if (!DestPtr) {
2413           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2414           DestIsVolatile = false;
2415         }
2416         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2417         return RValue::getAggregate(DestPtr);
2418       }
2419       case TEK_Scalar: {
2420         // If the argument doesn't match, perform a bitcast to coerce it.  This
2421         // can happen due to trivial type mismatches.
2422         llvm::Value *V = CI;
2423         if (V->getType() != RetIRTy)
2424           V = Builder.CreateBitCast(V, RetIRTy);
2425         return RValue::get(V);
2426       }
2427       }
2428       llvm_unreachable("bad evaluation kind");
2429     }
2430 
2431     llvm::Value *DestPtr = ReturnValue.getValue();
2432     bool DestIsVolatile = ReturnValue.isVolatile();
2433 
2434     if (!DestPtr) {
2435       DestPtr = CreateMemTemp(RetTy, "coerce");
2436       DestIsVolatile = false;
2437     }
2438 
2439     // If the value is offset in memory, apply the offset now.
2440     llvm::Value *StorePtr = DestPtr;
2441     if (unsigned Offs = RetAI.getDirectOffset()) {
2442       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2443       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2444       StorePtr = Builder.CreateBitCast(StorePtr,
2445                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2446     }
2447     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2448 
2449     return convertTempToRValue(DestPtr, RetTy);
2450   }
2451 
2452   case ABIArgInfo::Expand:
2453     llvm_unreachable("Invalid ABI kind for return argument");
2454   }
2455 
2456   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2457 }
2458 
2459 /* VarArg handling */
2460 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty)2461 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2462   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2463 }
2464