1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32
EmitDecl(const Decl & D)33 void CodeGenFunction::EmitDecl(const Decl &D) {
34 switch (D.getKind()) {
35 case Decl::TranslationUnit:
36 case Decl::Namespace:
37 case Decl::UnresolvedUsingTypename:
38 case Decl::ClassTemplateSpecialization:
39 case Decl::ClassTemplatePartialSpecialization:
40 case Decl::TemplateTypeParm:
41 case Decl::UnresolvedUsingValue:
42 case Decl::NonTypeTemplateParm:
43 case Decl::CXXMethod:
44 case Decl::CXXConstructor:
45 case Decl::CXXDestructor:
46 case Decl::CXXConversion:
47 case Decl::Field:
48 case Decl::IndirectField:
49 case Decl::ObjCIvar:
50 case Decl::ObjCAtDefsField:
51 case Decl::ParmVar:
52 case Decl::ImplicitParam:
53 case Decl::ClassTemplate:
54 case Decl::FunctionTemplate:
55 case Decl::TypeAliasTemplate:
56 case Decl::TemplateTemplateParm:
57 case Decl::ObjCMethod:
58 case Decl::ObjCCategory:
59 case Decl::ObjCProtocol:
60 case Decl::ObjCInterface:
61 case Decl::ObjCCategoryImpl:
62 case Decl::ObjCImplementation:
63 case Decl::ObjCProperty:
64 case Decl::ObjCCompatibleAlias:
65 case Decl::AccessSpec:
66 case Decl::LinkageSpec:
67 case Decl::ObjCPropertyImpl:
68 case Decl::FileScopeAsm:
69 case Decl::Friend:
70 case Decl::FriendTemplate:
71 case Decl::Block:
72 case Decl::ClassScopeFunctionSpecialization:
73 llvm_unreachable("Declaration should not be in declstmts!");
74 case Decl::Function: // void X();
75 case Decl::Record: // struct/union/class X;
76 case Decl::Enum: // enum X;
77 case Decl::EnumConstant: // enum ? { X = ? }
78 case Decl::CXXRecord: // struct/union/class X; [C++]
79 case Decl::Using: // using X; [C++]
80 case Decl::UsingShadow:
81 case Decl::UsingDirective: // using namespace X; [C++]
82 case Decl::NamespaceAlias:
83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84 case Decl::Label: // __label__ x;
85 case Decl::Import:
86 case Decl::Empty:
87 // None of these decls require codegen support.
88 return;
89
90 case Decl::Var: {
91 const VarDecl &VD = cast<VarDecl>(D);
92 assert(VD.isLocalVarDecl() &&
93 "Should not see file-scope variables inside a function!");
94 return EmitVarDecl(VD);
95 }
96
97 case Decl::Typedef: // typedef int X;
98 case Decl::TypeAlias: { // using X = int; [C++0x]
99 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
100 QualType Ty = TD.getUnderlyingType();
101
102 if (Ty->isVariablyModifiedType())
103 EmitVariablyModifiedType(Ty);
104 }
105 }
106 }
107
108 /// EmitVarDecl - This method handles emission of any variable declaration
109 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)110 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
111 switch (D.getStorageClassAsWritten()) {
112 case SC_None:
113 case SC_Auto:
114 case SC_Register:
115 return EmitAutoVarDecl(D);
116 case SC_Static: {
117 llvm::GlobalValue::LinkageTypes Linkage =
118 llvm::GlobalValue::InternalLinkage;
119
120 // If the function definition has some sort of weak linkage, its
121 // static variables should also be weak so that they get properly
122 // uniqued. We can't do this in C, though, because there's no
123 // standard way to agree on which variables are the same (i.e.
124 // there's no mangling).
125 if (getLangOpts().CPlusPlus)
126 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
127 Linkage = CurFn->getLinkage();
128
129 return EmitStaticVarDecl(D, Linkage);
130 }
131 case SC_Extern:
132 case SC_PrivateExtern:
133 // Don't emit it now, allow it to be emitted lazily on its first use.
134 return;
135 case SC_OpenCLWorkGroupLocal:
136 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
137 }
138
139 llvm_unreachable("Unknown storage class");
140 }
141
GetStaticDeclName(CodeGenFunction & CGF,const VarDecl & D,const char * Separator)142 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
143 const char *Separator) {
144 CodeGenModule &CGM = CGF.CGM;
145 if (CGF.getLangOpts().CPlusPlus) {
146 StringRef Name = CGM.getMangledName(&D);
147 return Name.str();
148 }
149
150 std::string ContextName;
151 if (!CGF.CurFuncDecl) {
152 // Better be in a block declared in global scope.
153 const NamedDecl *ND = cast<NamedDecl>(&D);
154 const DeclContext *DC = ND->getDeclContext();
155 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
156 MangleBuffer Name;
157 CGM.getBlockMangledName(GlobalDecl(), Name, BD);
158 ContextName = Name.getString();
159 }
160 else
161 llvm_unreachable("Unknown context for block static var decl");
162 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
163 StringRef Name = CGM.getMangledName(FD);
164 ContextName = Name.str();
165 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
166 ContextName = CGF.CurFn->getName();
167 else
168 llvm_unreachable("Unknown context for static var decl");
169
170 return ContextName + Separator + D.getNameAsString();
171 }
172
173 llvm::GlobalVariable *
CreateStaticVarDecl(const VarDecl & D,const char * Separator,llvm::GlobalValue::LinkageTypes Linkage)174 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
175 const char *Separator,
176 llvm::GlobalValue::LinkageTypes Linkage) {
177 QualType Ty = D.getType();
178 assert(Ty->isConstantSizeType() && "VLAs can't be static");
179
180 // Use the label if the variable is renamed with the asm-label extension.
181 std::string Name;
182 if (D.hasAttr<AsmLabelAttr>())
183 Name = CGM.getMangledName(&D);
184 else
185 Name = GetStaticDeclName(*this, D, Separator);
186
187 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
188 unsigned AddrSpace =
189 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
190 llvm::GlobalVariable *GV =
191 new llvm::GlobalVariable(CGM.getModule(), LTy,
192 Ty.isConstant(getContext()), Linkage,
193 CGM.EmitNullConstant(D.getType()), Name, 0,
194 llvm::GlobalVariable::NotThreadLocal,
195 AddrSpace);
196 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
197 if (Linkage != llvm::GlobalValue::InternalLinkage)
198 GV->setVisibility(CurFn->getVisibility());
199
200 if (D.isThreadSpecified())
201 CGM.setTLSMode(GV, D);
202
203 return GV;
204 }
205
206 /// hasNontrivialDestruction - Determine whether a type's destruction is
207 /// non-trivial. If so, and the variable uses static initialization, we must
208 /// register its destructor to run on exit.
hasNontrivialDestruction(QualType T)209 static bool hasNontrivialDestruction(QualType T) {
210 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
211 return RD && !RD->hasTrivialDestructor();
212 }
213
214 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
215 /// global variable that has already been created for it. If the initializer
216 /// has a different type than GV does, this may free GV and return a different
217 /// one. Otherwise it just returns GV.
218 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)219 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
220 llvm::GlobalVariable *GV) {
221 llvm::Constant *Init = CGM.EmitConstantInit(D, this);
222
223 // If constant emission failed, then this should be a C++ static
224 // initializer.
225 if (!Init) {
226 if (!getLangOpts().CPlusPlus)
227 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
228 else if (Builder.GetInsertBlock()) {
229 // Since we have a static initializer, this global variable can't
230 // be constant.
231 GV->setConstant(false);
232
233 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
234 }
235 return GV;
236 }
237
238 // The initializer may differ in type from the global. Rewrite
239 // the global to match the initializer. (We have to do this
240 // because some types, like unions, can't be completely represented
241 // in the LLVM type system.)
242 if (GV->getType()->getElementType() != Init->getType()) {
243 llvm::GlobalVariable *OldGV = GV;
244
245 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
246 OldGV->isConstant(),
247 OldGV->getLinkage(), Init, "",
248 /*InsertBefore*/ OldGV,
249 OldGV->getThreadLocalMode(),
250 CGM.getContext().getTargetAddressSpace(D.getType()));
251 GV->setVisibility(OldGV->getVisibility());
252
253 // Steal the name of the old global
254 GV->takeName(OldGV);
255
256 // Replace all uses of the old global with the new global
257 llvm::Constant *NewPtrForOldDecl =
258 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
259 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
260
261 // Erase the old global, since it is no longer used.
262 OldGV->eraseFromParent();
263 }
264
265 GV->setConstant(CGM.isTypeConstant(D.getType(), true));
266 GV->setInitializer(Init);
267
268 if (hasNontrivialDestruction(D.getType())) {
269 // We have a constant initializer, but a nontrivial destructor. We still
270 // need to perform a guarded "initialization" in order to register the
271 // destructor.
272 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
273 }
274
275 return GV;
276 }
277
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)278 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
279 llvm::GlobalValue::LinkageTypes Linkage) {
280 llvm::Value *&DMEntry = LocalDeclMap[&D];
281 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
282
283 // Check to see if we already have a global variable for this
284 // declaration. This can happen when double-emitting function
285 // bodies, e.g. with complete and base constructors.
286 llvm::Constant *addr =
287 CGM.getStaticLocalDeclAddress(&D);
288
289 llvm::GlobalVariable *var;
290 if (addr) {
291 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts());
292 } else {
293 addr = var = CreateStaticVarDecl(D, ".", Linkage);
294 }
295
296 // Store into LocalDeclMap before generating initializer to handle
297 // circular references.
298 DMEntry = addr;
299 CGM.setStaticLocalDeclAddress(&D, addr);
300
301 // We can't have a VLA here, but we can have a pointer to a VLA,
302 // even though that doesn't really make any sense.
303 // Make sure to evaluate VLA bounds now so that we have them for later.
304 if (D.getType()->isVariablyModifiedType())
305 EmitVariablyModifiedType(D.getType());
306
307 // Save the type in case adding the initializer forces a type change.
308 llvm::Type *expectedType = addr->getType();
309
310 // If this value has an initializer, emit it.
311 if (D.getInit())
312 var = AddInitializerToStaticVarDecl(D, var);
313
314 var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
315
316 if (D.hasAttr<AnnotateAttr>())
317 CGM.AddGlobalAnnotations(&D, var);
318
319 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
320 var->setSection(SA->getName());
321
322 if (D.hasAttr<UsedAttr>())
323 CGM.AddUsedGlobal(var);
324
325 // We may have to cast the constant because of the initializer
326 // mismatch above.
327 //
328 // FIXME: It is really dangerous to store this in the map; if anyone
329 // RAUW's the GV uses of this constant will be invalid.
330 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType);
331 DMEntry = castedAddr;
332 CGM.setStaticLocalDeclAddress(&D, castedAddr);
333
334 // Emit global variable debug descriptor for static vars.
335 CGDebugInfo *DI = getDebugInfo();
336 if (DI &&
337 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
338 DI->setLocation(D.getLocation());
339 DI->EmitGlobalVariable(var, &D);
340 }
341 }
342
343 namespace {
344 struct DestroyObject : EHScopeStack::Cleanup {
DestroyObject__anon3a7970e80111::DestroyObject345 DestroyObject(llvm::Value *addr, QualType type,
346 CodeGenFunction::Destroyer *destroyer,
347 bool useEHCleanupForArray)
348 : addr(addr), type(type), destroyer(destroyer),
349 useEHCleanupForArray(useEHCleanupForArray) {}
350
351 llvm::Value *addr;
352 QualType type;
353 CodeGenFunction::Destroyer *destroyer;
354 bool useEHCleanupForArray;
355
Emit__anon3a7970e80111::DestroyObject356 void Emit(CodeGenFunction &CGF, Flags flags) {
357 // Don't use an EH cleanup recursively from an EH cleanup.
358 bool useEHCleanupForArray =
359 flags.isForNormalCleanup() && this->useEHCleanupForArray;
360
361 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
362 }
363 };
364
365 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anon3a7970e80111::DestroyNRVOVariable366 DestroyNRVOVariable(llvm::Value *addr,
367 const CXXDestructorDecl *Dtor,
368 llvm::Value *NRVOFlag)
369 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
370
371 const CXXDestructorDecl *Dtor;
372 llvm::Value *NRVOFlag;
373 llvm::Value *Loc;
374
Emit__anon3a7970e80111::DestroyNRVOVariable375 void Emit(CodeGenFunction &CGF, Flags flags) {
376 // Along the exceptions path we always execute the dtor.
377 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
378
379 llvm::BasicBlock *SkipDtorBB = 0;
380 if (NRVO) {
381 // If we exited via NRVO, we skip the destructor call.
382 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
383 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
384 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
385 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
386 CGF.EmitBlock(RunDtorBB);
387 }
388
389 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
390 /*ForVirtualBase=*/false,
391 /*Delegating=*/false,
392 Loc);
393
394 if (NRVO) CGF.EmitBlock(SkipDtorBB);
395 }
396 };
397
398 struct CallStackRestore : EHScopeStack::Cleanup {
399 llvm::Value *Stack;
CallStackRestore__anon3a7970e80111::CallStackRestore400 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
Emit__anon3a7970e80111::CallStackRestore401 void Emit(CodeGenFunction &CGF, Flags flags) {
402 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
403 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
404 CGF.Builder.CreateCall(F, V);
405 }
406 };
407
408 struct ExtendGCLifetime : EHScopeStack::Cleanup {
409 const VarDecl &Var;
ExtendGCLifetime__anon3a7970e80111::ExtendGCLifetime410 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
411
Emit__anon3a7970e80111::ExtendGCLifetime412 void Emit(CodeGenFunction &CGF, Flags flags) {
413 // Compute the address of the local variable, in case it's a
414 // byref or something.
415 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
416 Var.getType(), VK_LValue, SourceLocation());
417 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
418 CGF.EmitExtendGCLifetime(value);
419 }
420 };
421
422 struct CallCleanupFunction : EHScopeStack::Cleanup {
423 llvm::Constant *CleanupFn;
424 const CGFunctionInfo &FnInfo;
425 const VarDecl &Var;
426
CallCleanupFunction__anon3a7970e80111::CallCleanupFunction427 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
428 const VarDecl *Var)
429 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
430
Emit__anon3a7970e80111::CallCleanupFunction431 void Emit(CodeGenFunction &CGF, Flags flags) {
432 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
433 Var.getType(), VK_LValue, SourceLocation());
434 // Compute the address of the local variable, in case it's a byref
435 // or something.
436 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
437
438 // In some cases, the type of the function argument will be different from
439 // the type of the pointer. An example of this is
440 // void f(void* arg);
441 // __attribute__((cleanup(f))) void *g;
442 //
443 // To fix this we insert a bitcast here.
444 QualType ArgTy = FnInfo.arg_begin()->type;
445 llvm::Value *Arg =
446 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
447
448 CallArgList Args;
449 Args.add(RValue::get(Arg),
450 CGF.getContext().getPointerType(Var.getType()));
451 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
452 }
453 };
454 }
455
456 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
457 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,llvm::Value * addr,Qualifiers::ObjCLifetime lifetime)458 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
459 llvm::Value *addr,
460 Qualifiers::ObjCLifetime lifetime) {
461 switch (lifetime) {
462 case Qualifiers::OCL_None:
463 llvm_unreachable("present but none");
464
465 case Qualifiers::OCL_ExplicitNone:
466 // nothing to do
467 break;
468
469 case Qualifiers::OCL_Strong: {
470 CodeGenFunction::Destroyer *destroyer =
471 (var.hasAttr<ObjCPreciseLifetimeAttr>()
472 ? CodeGenFunction::destroyARCStrongPrecise
473 : CodeGenFunction::destroyARCStrongImprecise);
474
475 CleanupKind cleanupKind = CGF.getARCCleanupKind();
476 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
477 cleanupKind & EHCleanup);
478 break;
479 }
480 case Qualifiers::OCL_Autoreleasing:
481 // nothing to do
482 break;
483
484 case Qualifiers::OCL_Weak:
485 // __weak objects always get EH cleanups; otherwise, exceptions
486 // could cause really nasty crashes instead of mere leaks.
487 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
488 CodeGenFunction::destroyARCWeak,
489 /*useEHCleanup*/ true);
490 break;
491 }
492 }
493
isAccessedBy(const VarDecl & var,const Stmt * s)494 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
495 if (const Expr *e = dyn_cast<Expr>(s)) {
496 // Skip the most common kinds of expressions that make
497 // hierarchy-walking expensive.
498 s = e = e->IgnoreParenCasts();
499
500 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
501 return (ref->getDecl() == &var);
502 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
503 const BlockDecl *block = be->getBlockDecl();
504 for (BlockDecl::capture_const_iterator i = block->capture_begin(),
505 e = block->capture_end(); i != e; ++i) {
506 if (i->getVariable() == &var)
507 return true;
508 }
509 }
510 }
511
512 for (Stmt::const_child_range children = s->children(); children; ++children)
513 // children might be null; as in missing decl or conditional of an if-stmt.
514 if ((*children) && isAccessedBy(var, *children))
515 return true;
516
517 return false;
518 }
519
isAccessedBy(const ValueDecl * decl,const Expr * e)520 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
521 if (!decl) return false;
522 if (!isa<VarDecl>(decl)) return false;
523 const VarDecl *var = cast<VarDecl>(decl);
524 return isAccessedBy(*var, e);
525 }
526
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)527 static void drillIntoBlockVariable(CodeGenFunction &CGF,
528 LValue &lvalue,
529 const VarDecl *var) {
530 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
531 }
532
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)533 void CodeGenFunction::EmitScalarInit(const Expr *init,
534 const ValueDecl *D,
535 LValue lvalue,
536 bool capturedByInit) {
537 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
538 if (!lifetime) {
539 llvm::Value *value = EmitScalarExpr(init);
540 if (capturedByInit)
541 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
542 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
543 return;
544 }
545
546 // If we're emitting a value with lifetime, we have to do the
547 // initialization *before* we leave the cleanup scopes.
548 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
549 enterFullExpression(ewc);
550 init = ewc->getSubExpr();
551 }
552 CodeGenFunction::RunCleanupsScope Scope(*this);
553
554 // We have to maintain the illusion that the variable is
555 // zero-initialized. If the variable might be accessed in its
556 // initializer, zero-initialize before running the initializer, then
557 // actually perform the initialization with an assign.
558 bool accessedByInit = false;
559 if (lifetime != Qualifiers::OCL_ExplicitNone)
560 accessedByInit = (capturedByInit || isAccessedBy(D, init));
561 if (accessedByInit) {
562 LValue tempLV = lvalue;
563 // Drill down to the __block object if necessary.
564 if (capturedByInit) {
565 // We can use a simple GEP for this because it can't have been
566 // moved yet.
567 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
568 getByRefValueLLVMField(cast<VarDecl>(D))));
569 }
570
571 llvm::PointerType *ty
572 = cast<llvm::PointerType>(tempLV.getAddress()->getType());
573 ty = cast<llvm::PointerType>(ty->getElementType());
574
575 llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
576
577 // If __weak, we want to use a barrier under certain conditions.
578 if (lifetime == Qualifiers::OCL_Weak)
579 EmitARCInitWeak(tempLV.getAddress(), zero);
580
581 // Otherwise just do a simple store.
582 else
583 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
584 }
585
586 // Emit the initializer.
587 llvm::Value *value = 0;
588
589 switch (lifetime) {
590 case Qualifiers::OCL_None:
591 llvm_unreachable("present but none");
592
593 case Qualifiers::OCL_ExplicitNone:
594 // nothing to do
595 value = EmitScalarExpr(init);
596 break;
597
598 case Qualifiers::OCL_Strong: {
599 value = EmitARCRetainScalarExpr(init);
600 break;
601 }
602
603 case Qualifiers::OCL_Weak: {
604 // No way to optimize a producing initializer into this. It's not
605 // worth optimizing for, because the value will immediately
606 // disappear in the common case.
607 value = EmitScalarExpr(init);
608
609 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
610 if (accessedByInit)
611 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
612 else
613 EmitARCInitWeak(lvalue.getAddress(), value);
614 return;
615 }
616
617 case Qualifiers::OCL_Autoreleasing:
618 value = EmitARCRetainAutoreleaseScalarExpr(init);
619 break;
620 }
621
622 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
623
624 // If the variable might have been accessed by its initializer, we
625 // might have to initialize with a barrier. We have to do this for
626 // both __weak and __strong, but __weak got filtered out above.
627 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
628 llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
629 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
630 EmitARCRelease(oldValue, ARCImpreciseLifetime);
631 return;
632 }
633
634 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
635 }
636
637 /// EmitScalarInit - Initialize the given lvalue with the given object.
EmitScalarInit(llvm::Value * init,LValue lvalue)638 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
639 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
640 if (!lifetime)
641 return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
642
643 switch (lifetime) {
644 case Qualifiers::OCL_None:
645 llvm_unreachable("present but none");
646
647 case Qualifiers::OCL_ExplicitNone:
648 // nothing to do
649 break;
650
651 case Qualifiers::OCL_Strong:
652 init = EmitARCRetain(lvalue.getType(), init);
653 break;
654
655 case Qualifiers::OCL_Weak:
656 // Initialize and then skip the primitive store.
657 EmitARCInitWeak(lvalue.getAddress(), init);
658 return;
659
660 case Qualifiers::OCL_Autoreleasing:
661 init = EmitARCRetainAutorelease(lvalue.getType(), init);
662 break;
663 }
664
665 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
666 }
667
668 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
669 /// non-zero parts of the specified initializer with equal or fewer than
670 /// NumStores scalar stores.
canEmitInitWithFewStoresAfterMemset(llvm::Constant * Init,unsigned & NumStores)671 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
672 unsigned &NumStores) {
673 // Zero and Undef never requires any extra stores.
674 if (isa<llvm::ConstantAggregateZero>(Init) ||
675 isa<llvm::ConstantPointerNull>(Init) ||
676 isa<llvm::UndefValue>(Init))
677 return true;
678 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
679 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
680 isa<llvm::ConstantExpr>(Init))
681 return Init->isNullValue() || NumStores--;
682
683 // See if we can emit each element.
684 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
685 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
686 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
687 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
688 return false;
689 }
690 return true;
691 }
692
693 if (llvm::ConstantDataSequential *CDS =
694 dyn_cast<llvm::ConstantDataSequential>(Init)) {
695 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
696 llvm::Constant *Elt = CDS->getElementAsConstant(i);
697 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
698 return false;
699 }
700 return true;
701 }
702
703 // Anything else is hard and scary.
704 return false;
705 }
706
707 /// emitStoresForInitAfterMemset - For inits that
708 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
709 /// stores that would be required.
emitStoresForInitAfterMemset(llvm::Constant * Init,llvm::Value * Loc,bool isVolatile,CGBuilderTy & Builder)710 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
711 bool isVolatile, CGBuilderTy &Builder) {
712 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
713 "called emitStoresForInitAfterMemset for zero or undef value.");
714
715 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
716 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
717 isa<llvm::ConstantExpr>(Init)) {
718 Builder.CreateStore(Init, Loc, isVolatile);
719 return;
720 }
721
722 if (llvm::ConstantDataSequential *CDS =
723 dyn_cast<llvm::ConstantDataSequential>(Init)) {
724 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
725 llvm::Constant *Elt = CDS->getElementAsConstant(i);
726
727 // If necessary, get a pointer to the element and emit it.
728 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
729 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
730 isVolatile, Builder);
731 }
732 return;
733 }
734
735 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
736 "Unknown value type!");
737
738 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
739 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
740
741 // If necessary, get a pointer to the element and emit it.
742 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
743 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
744 isVolatile, Builder);
745 }
746 }
747
748
749 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
750 /// plus some stores to initialize a local variable instead of using a memcpy
751 /// from a constant global. It is beneficial to use memset if the global is all
752 /// zeros, or mostly zeros and large.
shouldUseMemSetPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)753 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
754 uint64_t GlobalSize) {
755 // If a global is all zeros, always use a memset.
756 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
757
758
759 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
760 // do it if it will require 6 or fewer scalar stores.
761 // TODO: Should budget depends on the size? Avoiding a large global warrants
762 // plopping in more stores.
763 unsigned StoreBudget = 6;
764 uint64_t SizeLimit = 32;
765
766 return GlobalSize > SizeLimit &&
767 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
768 }
769
770
771 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
772 /// variable declaration with auto, register, or no storage class specifier.
773 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)774 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
775 AutoVarEmission emission = EmitAutoVarAlloca(D);
776 EmitAutoVarInit(emission);
777 EmitAutoVarCleanups(emission);
778 }
779
780 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
781 /// local variable. Does not emit initalization or destruction.
782 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)783 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
784 QualType Ty = D.getType();
785
786 AutoVarEmission emission(D);
787
788 bool isByRef = D.hasAttr<BlocksAttr>();
789 emission.IsByRef = isByRef;
790
791 CharUnits alignment = getContext().getDeclAlign(&D);
792 emission.Alignment = alignment;
793
794 // If the type is variably-modified, emit all the VLA sizes for it.
795 if (Ty->isVariablyModifiedType())
796 EmitVariablyModifiedType(Ty);
797
798 llvm::Value *DeclPtr;
799 if (Ty->isConstantSizeType()) {
800 if (!Target.useGlobalsForAutomaticVariables()) {
801 bool NRVO = getLangOpts().ElideConstructors &&
802 D.isNRVOVariable();
803
804 // If this value is a POD array or struct with a statically
805 // determinable constant initializer, there are optimizations we can do.
806 //
807 // TODO: We should constant-evaluate the initializer of any variable,
808 // as long as it is initialized by a constant expression. Currently,
809 // isConstantInitializer produces wrong answers for structs with
810 // reference or bitfield members, and a few other cases, and checking
811 // for POD-ness protects us from some of these.
812 if (D.getInit() &&
813 (Ty->isArrayType() || Ty->isRecordType()) &&
814 (Ty.isPODType(getContext()) ||
815 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
816 D.getInit()->isConstantInitializer(getContext(), false)) {
817
818 // If the variable's a const type, and it's neither an NRVO
819 // candidate nor a __block variable and has no mutable members,
820 // emit it as a global instead.
821 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
822 CGM.isTypeConstant(Ty, true)) {
823 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
824
825 emission.Address = 0; // signal this condition to later callbacks
826 assert(emission.wasEmittedAsGlobal());
827 return emission;
828 }
829
830 // Otherwise, tell the initialization code that we're in this case.
831 emission.IsConstantAggregate = true;
832 }
833
834 // A normal fixed sized variable becomes an alloca in the entry block,
835 // unless it's an NRVO variable.
836 llvm::Type *LTy = ConvertTypeForMem(Ty);
837
838 if (NRVO) {
839 // The named return value optimization: allocate this variable in the
840 // return slot, so that we can elide the copy when returning this
841 // variable (C++0x [class.copy]p34).
842 DeclPtr = ReturnValue;
843
844 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
845 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
846 // Create a flag that is used to indicate when the NRVO was applied
847 // to this variable. Set it to zero to indicate that NRVO was not
848 // applied.
849 llvm::Value *Zero = Builder.getFalse();
850 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
851 EnsureInsertPoint();
852 Builder.CreateStore(Zero, NRVOFlag);
853
854 // Record the NRVO flag for this variable.
855 NRVOFlags[&D] = NRVOFlag;
856 emission.NRVOFlag = NRVOFlag;
857 }
858 }
859 } else {
860 if (isByRef)
861 LTy = BuildByRefType(&D);
862
863 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
864 Alloc->setName(D.getName());
865
866 CharUnits allocaAlignment = alignment;
867 if (isByRef)
868 allocaAlignment = std::max(allocaAlignment,
869 getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
870 Alloc->setAlignment(allocaAlignment.getQuantity());
871 DeclPtr = Alloc;
872 }
873 } else {
874 // Targets that don't support recursion emit locals as globals.
875 const char *Class =
876 D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
877 DeclPtr = CreateStaticVarDecl(D, Class,
878 llvm::GlobalValue::InternalLinkage);
879 }
880 } else {
881 EnsureInsertPoint();
882
883 if (!DidCallStackSave) {
884 // Save the stack.
885 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
886
887 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
888 llvm::Value *V = Builder.CreateCall(F);
889
890 Builder.CreateStore(V, Stack);
891
892 DidCallStackSave = true;
893
894 // Push a cleanup block and restore the stack there.
895 // FIXME: in general circumstances, this should be an EH cleanup.
896 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
897 }
898
899 llvm::Value *elementCount;
900 QualType elementType;
901 llvm::tie(elementCount, elementType) = getVLASize(Ty);
902
903 llvm::Type *llvmTy = ConvertTypeForMem(elementType);
904
905 // Allocate memory for the array.
906 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
907 vla->setAlignment(alignment.getQuantity());
908
909 DeclPtr = vla;
910 }
911
912 llvm::Value *&DMEntry = LocalDeclMap[&D];
913 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
914 DMEntry = DeclPtr;
915 emission.Address = DeclPtr;
916
917 // Emit debug info for local var declaration.
918 if (HaveInsertPoint())
919 if (CGDebugInfo *DI = getDebugInfo()) {
920 if (CGM.getCodeGenOpts().getDebugInfo()
921 >= CodeGenOptions::LimitedDebugInfo) {
922 DI->setLocation(D.getLocation());
923 if (Target.useGlobalsForAutomaticVariables()) {
924 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr),
925 &D);
926 } else
927 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
928 }
929 }
930
931 if (D.hasAttr<AnnotateAttr>())
932 EmitVarAnnotations(&D, emission.Address);
933
934 return emission;
935 }
936
937 /// Determines whether the given __block variable is potentially
938 /// captured by the given expression.
isCapturedBy(const VarDecl & var,const Expr * e)939 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
940 // Skip the most common kinds of expressions that make
941 // hierarchy-walking expensive.
942 e = e->IgnoreParenCasts();
943
944 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
945 const BlockDecl *block = be->getBlockDecl();
946 for (BlockDecl::capture_const_iterator i = block->capture_begin(),
947 e = block->capture_end(); i != e; ++i) {
948 if (i->getVariable() == &var)
949 return true;
950 }
951
952 // No need to walk into the subexpressions.
953 return false;
954 }
955
956 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
957 const CompoundStmt *CS = SE->getSubStmt();
958 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
959 BE = CS->body_end(); BI != BE; ++BI)
960 if (Expr *E = dyn_cast<Expr>((*BI))) {
961 if (isCapturedBy(var, E))
962 return true;
963 }
964 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
965 // special case declarations
966 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
967 I != E; ++I) {
968 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
969 Expr *Init = VD->getInit();
970 if (Init && isCapturedBy(var, Init))
971 return true;
972 }
973 }
974 }
975 else
976 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
977 // Later, provide code to poke into statements for capture analysis.
978 return true;
979 return false;
980 }
981
982 for (Stmt::const_child_range children = e->children(); children; ++children)
983 if (isCapturedBy(var, cast<Expr>(*children)))
984 return true;
985
986 return false;
987 }
988
989 /// \brief Determine whether the given initializer is trivial in the sense
990 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)991 static bool isTrivialInitializer(const Expr *Init) {
992 if (!Init)
993 return true;
994
995 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
996 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
997 if (Constructor->isTrivial() &&
998 Constructor->isDefaultConstructor() &&
999 !Construct->requiresZeroInitialization())
1000 return true;
1001
1002 return false;
1003 }
EmitAutoVarInit(const AutoVarEmission & emission)1004 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1005 assert(emission.Variable && "emission was not valid!");
1006
1007 // If this was emitted as a global constant, we're done.
1008 if (emission.wasEmittedAsGlobal()) return;
1009
1010 const VarDecl &D = *emission.Variable;
1011 QualType type = D.getType();
1012
1013 // If this local has an initializer, emit it now.
1014 const Expr *Init = D.getInit();
1015
1016 // If we are at an unreachable point, we don't need to emit the initializer
1017 // unless it contains a label.
1018 if (!HaveInsertPoint()) {
1019 if (!Init || !ContainsLabel(Init)) return;
1020 EnsureInsertPoint();
1021 }
1022
1023 // Initialize the structure of a __block variable.
1024 if (emission.IsByRef)
1025 emitByrefStructureInit(emission);
1026
1027 if (isTrivialInitializer(Init))
1028 return;
1029
1030 CharUnits alignment = emission.Alignment;
1031
1032 // Check whether this is a byref variable that's potentially
1033 // captured and moved by its own initializer. If so, we'll need to
1034 // emit the initializer first, then copy into the variable.
1035 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1036
1037 llvm::Value *Loc =
1038 capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1039
1040 llvm::Constant *constant = 0;
1041 if (emission.IsConstantAggregate) {
1042 assert(!capturedByInit && "constant init contains a capturing block?");
1043 constant = CGM.EmitConstantInit(D, this);
1044 }
1045
1046 if (!constant) {
1047 LValue lv = MakeAddrLValue(Loc, type, alignment);
1048 lv.setNonGC(true);
1049 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1050 }
1051
1052 // If this is a simple aggregate initialization, we can optimize it
1053 // in various ways.
1054 bool isVolatile = type.isVolatileQualified();
1055
1056 llvm::Value *SizeVal =
1057 llvm::ConstantInt::get(IntPtrTy,
1058 getContext().getTypeSizeInChars(type).getQuantity());
1059
1060 llvm::Type *BP = Int8PtrTy;
1061 if (Loc->getType() != BP)
1062 Loc = Builder.CreateBitCast(Loc, BP);
1063
1064 // If the initializer is all or mostly zeros, codegen with memset then do
1065 // a few stores afterward.
1066 if (shouldUseMemSetPlusStoresToInitialize(constant,
1067 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1068 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1069 alignment.getQuantity(), isVolatile);
1070 // Zero and undef don't require a stores.
1071 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1072 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1073 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1074 }
1075 } else {
1076 // Otherwise, create a temporary global with the initializer then
1077 // memcpy from the global to the alloca.
1078 std::string Name = GetStaticDeclName(*this, D, ".");
1079 llvm::GlobalVariable *GV =
1080 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1081 llvm::GlobalValue::PrivateLinkage,
1082 constant, Name);
1083 GV->setAlignment(alignment.getQuantity());
1084 GV->setUnnamedAddr(true);
1085
1086 llvm::Value *SrcPtr = GV;
1087 if (SrcPtr->getType() != BP)
1088 SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1089
1090 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1091 isVolatile);
1092 }
1093 }
1094
1095 /// Emit an expression as an initializer for a variable at the given
1096 /// location. The expression is not necessarily the normal
1097 /// initializer for the variable, and the address is not necessarily
1098 /// its normal location.
1099 ///
1100 /// \param init the initializing expression
1101 /// \param var the variable to act as if we're initializing
1102 /// \param loc the address to initialize; its type is a pointer
1103 /// to the LLVM mapping of the variable's type
1104 /// \param alignment the alignment of the address
1105 /// \param capturedByInit true if the variable is a __block variable
1106 /// whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1107 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1108 const ValueDecl *D,
1109 LValue lvalue,
1110 bool capturedByInit) {
1111 QualType type = D->getType();
1112
1113 if (type->isReferenceType()) {
1114 RValue rvalue = EmitReferenceBindingToExpr(init, D);
1115 if (capturedByInit)
1116 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1117 EmitStoreThroughLValue(rvalue, lvalue, true);
1118 return;
1119 }
1120 switch (getEvaluationKind(type)) {
1121 case TEK_Scalar:
1122 EmitScalarInit(init, D, lvalue, capturedByInit);
1123 return;
1124 case TEK_Complex: {
1125 ComplexPairTy complex = EmitComplexExpr(init);
1126 if (capturedByInit)
1127 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1128 EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1129 return;
1130 }
1131 case TEK_Aggregate:
1132 if (type->isAtomicType()) {
1133 EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1134 } else {
1135 // TODO: how can we delay here if D is captured by its initializer?
1136 EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1137 AggValueSlot::IsDestructed,
1138 AggValueSlot::DoesNotNeedGCBarriers,
1139 AggValueSlot::IsNotAliased));
1140 }
1141 MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init);
1142 return;
1143 }
1144 llvm_unreachable("bad evaluation kind");
1145 }
1146
1147 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1148 void CodeGenFunction::emitAutoVarTypeCleanup(
1149 const CodeGenFunction::AutoVarEmission &emission,
1150 QualType::DestructionKind dtorKind) {
1151 assert(dtorKind != QualType::DK_none);
1152
1153 // Note that for __block variables, we want to destroy the
1154 // original stack object, not the possibly forwarded object.
1155 llvm::Value *addr = emission.getObjectAddress(*this);
1156
1157 const VarDecl *var = emission.Variable;
1158 QualType type = var->getType();
1159
1160 CleanupKind cleanupKind = NormalAndEHCleanup;
1161 CodeGenFunction::Destroyer *destroyer = 0;
1162
1163 switch (dtorKind) {
1164 case QualType::DK_none:
1165 llvm_unreachable("no cleanup for trivially-destructible variable");
1166
1167 case QualType::DK_cxx_destructor:
1168 // If there's an NRVO flag on the emission, we need a different
1169 // cleanup.
1170 if (emission.NRVOFlag) {
1171 assert(!type->isArrayType());
1172 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1173 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1174 emission.NRVOFlag);
1175 return;
1176 }
1177 break;
1178
1179 case QualType::DK_objc_strong_lifetime:
1180 // Suppress cleanups for pseudo-strong variables.
1181 if (var->isARCPseudoStrong()) return;
1182
1183 // Otherwise, consider whether to use an EH cleanup or not.
1184 cleanupKind = getARCCleanupKind();
1185
1186 // Use the imprecise destroyer by default.
1187 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1188 destroyer = CodeGenFunction::destroyARCStrongImprecise;
1189 break;
1190
1191 case QualType::DK_objc_weak_lifetime:
1192 break;
1193 }
1194
1195 // If we haven't chosen a more specific destroyer, use the default.
1196 if (!destroyer) destroyer = getDestroyer(dtorKind);
1197
1198 // Use an EH cleanup in array destructors iff the destructor itself
1199 // is being pushed as an EH cleanup.
1200 bool useEHCleanup = (cleanupKind & EHCleanup);
1201 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1202 useEHCleanup);
1203 }
1204
EmitAutoVarCleanups(const AutoVarEmission & emission)1205 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1206 assert(emission.Variable && "emission was not valid!");
1207
1208 // If this was emitted as a global constant, we're done.
1209 if (emission.wasEmittedAsGlobal()) return;
1210
1211 // If we don't have an insertion point, we're done. Sema prevents
1212 // us from jumping into any of these scopes anyway.
1213 if (!HaveInsertPoint()) return;
1214
1215 const VarDecl &D = *emission.Variable;
1216
1217 // Check the type for a cleanup.
1218 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1219 emitAutoVarTypeCleanup(emission, dtorKind);
1220
1221 // In GC mode, honor objc_precise_lifetime.
1222 if (getLangOpts().getGC() != LangOptions::NonGC &&
1223 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1224 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1225 }
1226
1227 // Handle the cleanup attribute.
1228 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1229 const FunctionDecl *FD = CA->getFunctionDecl();
1230
1231 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1232 assert(F && "Could not find function!");
1233
1234 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1235 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1236 }
1237
1238 // If this is a block variable, call _Block_object_destroy
1239 // (on the unforwarded address).
1240 if (emission.IsByRef)
1241 enterByrefCleanup(emission);
1242 }
1243
1244 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)1245 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1246 switch (kind) {
1247 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1248 case QualType::DK_cxx_destructor:
1249 return destroyCXXObject;
1250 case QualType::DK_objc_strong_lifetime:
1251 return destroyARCStrongPrecise;
1252 case QualType::DK_objc_weak_lifetime:
1253 return destroyARCWeak;
1254 }
1255 llvm_unreachable("Unknown DestructionKind");
1256 }
1257
1258 /// pushEHDestroy - Push the standard destructor for the given type as
1259 /// an EH-only cleanup.
pushEHDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1260 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1261 llvm::Value *addr, QualType type) {
1262 assert(dtorKind && "cannot push destructor for trivial type");
1263 assert(needsEHCleanup(dtorKind));
1264
1265 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1266 }
1267
1268 /// pushDestroy - Push the standard destructor for the given type as
1269 /// at least a normal cleanup.
pushDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1270 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1271 llvm::Value *addr, QualType type) {
1272 assert(dtorKind && "cannot push destructor for trivial type");
1273
1274 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1275 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1276 cleanupKind & EHCleanup);
1277 }
1278
pushDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1279 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1280 QualType type, Destroyer *destroyer,
1281 bool useEHCleanupForArray) {
1282 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1283 destroyer, useEHCleanupForArray);
1284 }
1285
1286 /// emitDestroy - Immediately perform the destruction of the given
1287 /// object.
1288 ///
1289 /// \param addr - the address of the object; a type*
1290 /// \param type - the type of the object; if an array type, all
1291 /// objects are destroyed in reverse order
1292 /// \param destroyer - the function to call to destroy individual
1293 /// elements
1294 /// \param useEHCleanupForArray - whether an EH cleanup should be
1295 /// used when destroying array elements, in case one of the
1296 /// destructions throws an exception
emitDestroy(llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1297 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1298 Destroyer *destroyer,
1299 bool useEHCleanupForArray) {
1300 const ArrayType *arrayType = getContext().getAsArrayType(type);
1301 if (!arrayType)
1302 return destroyer(*this, addr, type);
1303
1304 llvm::Value *begin = addr;
1305 llvm::Value *length = emitArrayLength(arrayType, type, begin);
1306
1307 // Normally we have to check whether the array is zero-length.
1308 bool checkZeroLength = true;
1309
1310 // But if the array length is constant, we can suppress that.
1311 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1312 // ...and if it's constant zero, we can just skip the entire thing.
1313 if (constLength->isZero()) return;
1314 checkZeroLength = false;
1315 }
1316
1317 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1318 emitArrayDestroy(begin, end, type, destroyer,
1319 checkZeroLength, useEHCleanupForArray);
1320 }
1321
1322 /// emitArrayDestroy - Destroys all the elements of the given array,
1323 /// beginning from last to first. The array cannot be zero-length.
1324 ///
1325 /// \param begin - a type* denoting the first element of the array
1326 /// \param end - a type* denoting one past the end of the array
1327 /// \param type - the element type of the array
1328 /// \param destroyer - the function to call to destroy elements
1329 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1330 /// the remaining elements in case the destruction of a single
1331 /// element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType type,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)1332 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1333 llvm::Value *end,
1334 QualType type,
1335 Destroyer *destroyer,
1336 bool checkZeroLength,
1337 bool useEHCleanup) {
1338 assert(!type->isArrayType());
1339
1340 // The basic structure here is a do-while loop, because we don't
1341 // need to check for the zero-element case.
1342 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1343 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1344
1345 if (checkZeroLength) {
1346 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1347 "arraydestroy.isempty");
1348 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1349 }
1350
1351 // Enter the loop body, making that address the current address.
1352 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1353 EmitBlock(bodyBB);
1354 llvm::PHINode *elementPast =
1355 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1356 elementPast->addIncoming(end, entryBB);
1357
1358 // Shift the address back by one element.
1359 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1360 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1361 "arraydestroy.element");
1362
1363 if (useEHCleanup)
1364 pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1365
1366 // Perform the actual destruction there.
1367 destroyer(*this, element, type);
1368
1369 if (useEHCleanup)
1370 PopCleanupBlock();
1371
1372 // Check whether we've reached the end.
1373 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1374 Builder.CreateCondBr(done, doneBB, bodyBB);
1375 elementPast->addIncoming(element, Builder.GetInsertBlock());
1376
1377 // Done.
1378 EmitBlock(doneBB);
1379 }
1380
1381 /// Perform partial array destruction as if in an EH cleanup. Unlike
1382 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CodeGenFunction::Destroyer * destroyer)1383 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1384 llvm::Value *begin, llvm::Value *end,
1385 QualType type,
1386 CodeGenFunction::Destroyer *destroyer) {
1387 // If the element type is itself an array, drill down.
1388 unsigned arrayDepth = 0;
1389 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1390 // VLAs don't require a GEP index to walk into.
1391 if (!isa<VariableArrayType>(arrayType))
1392 arrayDepth++;
1393 type = arrayType->getElementType();
1394 }
1395
1396 if (arrayDepth) {
1397 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1398
1399 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1400 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1401 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1402 }
1403
1404 // Destroy the array. We don't ever need an EH cleanup because we
1405 // assume that we're in an EH cleanup ourselves, so a throwing
1406 // destructor causes an immediate terminate.
1407 CGF.emitArrayDestroy(begin, end, type, destroyer,
1408 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1409 }
1410
1411 namespace {
1412 /// RegularPartialArrayDestroy - a cleanup which performs a partial
1413 /// array destroy where the end pointer is regularly determined and
1414 /// does not need to be loaded from a local.
1415 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1416 llvm::Value *ArrayBegin;
1417 llvm::Value *ArrayEnd;
1418 QualType ElementType;
1419 CodeGenFunction::Destroyer *Destroyer;
1420 public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CodeGenFunction::Destroyer * destroyer)1421 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1422 QualType elementType,
1423 CodeGenFunction::Destroyer *destroyer)
1424 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1425 ElementType(elementType), Destroyer(destroyer) {}
1426
Emit(CodeGenFunction & CGF,Flags flags)1427 void Emit(CodeGenFunction &CGF, Flags flags) {
1428 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1429 ElementType, Destroyer);
1430 }
1431 };
1432
1433 /// IrregularPartialArrayDestroy - a cleanup which performs a
1434 /// partial array destroy where the end pointer is irregularly
1435 /// determined and must be loaded from a local.
1436 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1437 llvm::Value *ArrayBegin;
1438 llvm::Value *ArrayEndPointer;
1439 QualType ElementType;
1440 CodeGenFunction::Destroyer *Destroyer;
1441 public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,CodeGenFunction::Destroyer * destroyer)1442 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1443 llvm::Value *arrayEndPointer,
1444 QualType elementType,
1445 CodeGenFunction::Destroyer *destroyer)
1446 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1447 ElementType(elementType), Destroyer(destroyer) {}
1448
Emit(CodeGenFunction & CGF,Flags flags)1449 void Emit(CodeGenFunction &CGF, Flags flags) {
1450 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1451 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1452 ElementType, Destroyer);
1453 }
1454 };
1455 }
1456
1457 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1458 /// already-constructed elements of the given array. The cleanup
1459 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1460 ///
1461 /// \param elementType - the immediate element type of the array;
1462 /// possibly still an array type
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,Destroyer * destroyer)1463 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1464 llvm::Value *arrayEndPointer,
1465 QualType elementType,
1466 Destroyer *destroyer) {
1467 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1468 arrayBegin, arrayEndPointer,
1469 elementType, destroyer);
1470 }
1471
1472 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1473 /// already-constructed elements of the given array. The cleanup
1474 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1475 ///
1476 /// \param elementType - the immediate element type of the array;
1477 /// possibly still an array type
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,Destroyer * destroyer)1478 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1479 llvm::Value *arrayEnd,
1480 QualType elementType,
1481 Destroyer *destroyer) {
1482 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1483 arrayBegin, arrayEnd,
1484 elementType, destroyer);
1485 }
1486
1487 namespace {
1488 /// A cleanup to perform a release of an object at the end of a
1489 /// function. This is used to balance out the incoming +1 of a
1490 /// ns_consumed argument when we can't reasonably do that just by
1491 /// not doing the initial retain for a __block argument.
1492 struct ConsumeARCParameter : EHScopeStack::Cleanup {
ConsumeARCParameter__anon3a7970e80311::ConsumeARCParameter1493 ConsumeARCParameter(llvm::Value *param,
1494 ARCPreciseLifetime_t precise)
1495 : Param(param), Precise(precise) {}
1496
1497 llvm::Value *Param;
1498 ARCPreciseLifetime_t Precise;
1499
Emit__anon3a7970e80311::ConsumeARCParameter1500 void Emit(CodeGenFunction &CGF, Flags flags) {
1501 CGF.EmitARCRelease(Param, Precise);
1502 }
1503 };
1504 }
1505
1506 /// Emit an alloca (or GlobalValue depending on target)
1507 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,llvm::Value * Arg,unsigned ArgNo)1508 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1509 unsigned ArgNo) {
1510 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1511 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1512 "Invalid argument to EmitParmDecl");
1513
1514 Arg->setName(D.getName());
1515
1516 QualType Ty = D.getType();
1517
1518 // Use better IR generation for certain implicit parameters.
1519 if (isa<ImplicitParamDecl>(D)) {
1520 // The only implicit argument a block has is its literal.
1521 if (BlockInfo) {
1522 LocalDeclMap[&D] = Arg;
1523 llvm::Value *LocalAddr = 0;
1524 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1525 // Allocate a stack slot to let debug info survive the RA.
1526 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1527 D.getName() + ".addr");
1528 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1529 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1530 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1531 LocalAddr = Builder.CreateLoad(Alloc);
1532 }
1533
1534 if (CGDebugInfo *DI = getDebugInfo()) {
1535 if (CGM.getCodeGenOpts().getDebugInfo()
1536 >= CodeGenOptions::LimitedDebugInfo) {
1537 DI->setLocation(D.getLocation());
1538 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder);
1539 }
1540 }
1541
1542 return;
1543 }
1544 }
1545
1546 llvm::Value *DeclPtr;
1547 // If this is an aggregate or variable sized value, reuse the input pointer.
1548 if (!Ty->isConstantSizeType() ||
1549 !CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1550 DeclPtr = Arg;
1551 } else {
1552 // Otherwise, create a temporary to hold the value.
1553 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1554 D.getName() + ".addr");
1555 CharUnits Align = getContext().getDeclAlign(&D);
1556 Alloc->setAlignment(Align.getQuantity());
1557 DeclPtr = Alloc;
1558
1559 bool doStore = true;
1560
1561 Qualifiers qs = Ty.getQualifiers();
1562 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1563 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1564 // We honor __attribute__((ns_consumed)) for types with lifetime.
1565 // For __strong, it's handled by just skipping the initial retain;
1566 // otherwise we have to balance out the initial +1 with an extra
1567 // cleanup to do the release at the end of the function.
1568 bool isConsumed = D.hasAttr<NSConsumedAttr>();
1569
1570 // 'self' is always formally __strong, but if this is not an
1571 // init method then we don't want to retain it.
1572 if (D.isARCPseudoStrong()) {
1573 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1574 assert(&D == method->getSelfDecl());
1575 assert(lt == Qualifiers::OCL_Strong);
1576 assert(qs.hasConst());
1577 assert(method->getMethodFamily() != OMF_init);
1578 (void) method;
1579 lt = Qualifiers::OCL_ExplicitNone;
1580 }
1581
1582 if (lt == Qualifiers::OCL_Strong) {
1583 if (!isConsumed) {
1584 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1585 // use objc_storeStrong(&dest, value) for retaining the
1586 // object. But first, store a null into 'dest' because
1587 // objc_storeStrong attempts to release its old value.
1588 llvm::Value * Null = CGM.EmitNullConstant(D.getType());
1589 EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1590 EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1591 doStore = false;
1592 }
1593 else
1594 // Don't use objc_retainBlock for block pointers, because we
1595 // don't want to Block_copy something just because we got it
1596 // as a parameter.
1597 Arg = EmitARCRetainNonBlock(Arg);
1598 }
1599 } else {
1600 // Push the cleanup for a consumed parameter.
1601 if (isConsumed) {
1602 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1603 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1604 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1605 precise);
1606 }
1607
1608 if (lt == Qualifiers::OCL_Weak) {
1609 EmitARCInitWeak(DeclPtr, Arg);
1610 doStore = false; // The weak init is a store, no need to do two.
1611 }
1612 }
1613
1614 // Enter the cleanup scope.
1615 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1616 }
1617
1618 // Store the initial value into the alloca.
1619 if (doStore)
1620 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1621 }
1622
1623 llvm::Value *&DMEntry = LocalDeclMap[&D];
1624 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1625 DMEntry = DeclPtr;
1626
1627 // Emit debug info for param declaration.
1628 if (CGDebugInfo *DI = getDebugInfo()) {
1629 if (CGM.getCodeGenOpts().getDebugInfo()
1630 >= CodeGenOptions::LimitedDebugInfo) {
1631 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1632 }
1633 }
1634
1635 if (D.hasAttr<AnnotateAttr>())
1636 EmitVarAnnotations(&D, DeclPtr);
1637 }
1638