• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
33                                       QualType ET,
34                                       const ObjCMethodDecl *Method,
35                                       RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
getNullForVariable(llvm::Value * addr)39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
40   llvm::Type *type =
41     cast<llvm::PointerType>(addr->getType())->getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
EmitObjCStringLiteral(const ObjCStringLiteral * E)46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
57 ///
58 llvm::Value *
EmitObjCBoxedExpr(const ObjCBoxedExpr * E)59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
60   // Generate the correct selector for this literal's concrete type.
61   const Expr *SubExpr = E->getSubExpr();
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   assert(BoxingMethod && "BoxingMethod is null");
65   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
66   Selector Sel = BoxingMethod->getSelector();
67 
68   // Generate a reference to the class pointer, which will be the receiver.
69   // Assumes that the method was introduced in the class that should be
70   // messaged (avoids pulling it out of the result type).
71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
72   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
73   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
74 
75   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
76   QualType ArgQT = argDecl->getType().getUnqualifiedType();
77   RValue RV = EmitAnyExpr(SubExpr);
78   CallArgList Args;
79   Args.add(RV, ArgQT);
80 
81   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
82                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
83                                               ClassDecl, BoxingMethod);
84   return Builder.CreateBitCast(result.getScalarVal(),
85                                ConvertType(E->getType()));
86 }
87 
EmitObjCCollectionLiteral(const Expr * E,const ObjCMethodDecl * MethodWithObjects)88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
89                                     const ObjCMethodDecl *MethodWithObjects) {
90   ASTContext &Context = CGM.getContext();
91   const ObjCDictionaryLiteral *DLE = 0;
92   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
93   if (!ALE)
94     DLE = cast<ObjCDictionaryLiteral>(E);
95 
96   // Compute the type of the array we're initializing.
97   uint64_t NumElements =
98     ALE ? ALE->getNumElements() : DLE->getNumElements();
99   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
100                             NumElements);
101   QualType ElementType = Context.getObjCIdType().withConst();
102   QualType ElementArrayType
103     = Context.getConstantArrayType(ElementType, APNumElements,
104                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
105 
106   // Allocate the temporary array(s).
107   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
108   llvm::Value *Keys = 0;
109   if (DLE)
110     Keys = CreateMemTemp(ElementArrayType, "keys");
111 
112   // Perform the actual initialialization of the array(s).
113   for (uint64_t i = 0; i < NumElements; i++) {
114     if (ALE) {
115       // Emit the initializer.
116       const Expr *Rhs = ALE->getElement(i);
117       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
118                                    ElementType,
119                                    Context.getTypeAlignInChars(Rhs->getType()),
120                                    Context);
121       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
122     } else {
123       // Emit the key initializer.
124       const Expr *Key = DLE->getKeyValueElement(i).Key;
125       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
126                                       ElementType,
127                                     Context.getTypeAlignInChars(Key->getType()),
128                                       Context);
129       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
130 
131       // Emit the value initializer.
132       const Expr *Value = DLE->getKeyValueElement(i).Value;
133       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
134                                         ElementType,
135                                   Context.getTypeAlignInChars(Value->getType()),
136                                         Context);
137       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
138     }
139   }
140 
141   // Generate the argument list.
142   CallArgList Args;
143   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
144   const ParmVarDecl *argDecl = *PI++;
145   QualType ArgQT = argDecl->getType().getUnqualifiedType();
146   Args.add(RValue::get(Objects), ArgQT);
147   if (DLE) {
148     argDecl = *PI++;
149     ArgQT = argDecl->getType().getUnqualifiedType();
150     Args.add(RValue::get(Keys), ArgQT);
151   }
152   argDecl = *PI;
153   ArgQT = argDecl->getType().getUnqualifiedType();
154   llvm::Value *Count =
155     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
156   Args.add(RValue::get(Count), ArgQT);
157 
158   // Generate a reference to the class pointer, which will be the receiver.
159   Selector Sel = MethodWithObjects->getSelector();
160   QualType ResultType = E->getType();
161   const ObjCObjectPointerType *InterfacePointerType
162     = ResultType->getAsObjCInterfacePointerType();
163   ObjCInterfaceDecl *Class
164     = InterfacePointerType->getObjectType()->getInterface();
165   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
166   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
167 
168   // Generate the message send.
169   RValue result
170     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
171                                   MethodWithObjects->getResultType(),
172                                   Sel,
173                                   Receiver, Args, Class,
174                                   MethodWithObjects);
175   return Builder.CreateBitCast(result.getScalarVal(),
176                                ConvertType(E->getType()));
177 }
178 
EmitObjCArrayLiteral(const ObjCArrayLiteral * E)179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
180   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
181 }
182 
EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral * E)183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
184                                             const ObjCDictionaryLiteral *E) {
185   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
186 }
187 
188 /// Emit a selector.
EmitObjCSelectorExpr(const ObjCSelectorExpr * E)189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
190   // Untyped selector.
191   // Note that this implementation allows for non-constant strings to be passed
192   // as arguments to @selector().  Currently, the only thing preventing this
193   // behaviour is the type checking in the front end.
194   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
195 }
196 
EmitObjCProtocolExpr(const ObjCProtocolExpr * E)197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
198   // FIXME: This should pass the Decl not the name.
199   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
200 }
201 
202 /// \brief Adjust the type of the result of an Objective-C message send
203 /// expression when the method has a related result type.
AdjustRelatedResultType(CodeGenFunction & CGF,QualType ExpT,const ObjCMethodDecl * Method,RValue Result)204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
205                                       QualType ExpT,
206                                       const ObjCMethodDecl *Method,
207                                       RValue Result) {
208   if (!Method)
209     return Result;
210 
211   if (!Method->hasRelatedResultType() ||
212       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
213       !Result.isScalar())
214     return Result;
215 
216   // We have applied a related result type. Cast the rvalue appropriately.
217   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
218                                                CGF.ConvertType(ExpT)));
219 }
220 
221 /// Decide whether to extend the lifetime of the receiver of a
222 /// returns-inner-pointer message.
223 static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr * message)224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
225   switch (message->getReceiverKind()) {
226 
227   // For a normal instance message, we should extend unless the
228   // receiver is loaded from a variable with precise lifetime.
229   case ObjCMessageExpr::Instance: {
230     const Expr *receiver = message->getInstanceReceiver();
231     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
232     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
233     receiver = ice->getSubExpr()->IgnoreParens();
234 
235     // Only __strong variables.
236     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
237       return true;
238 
239     // All ivars and fields have precise lifetime.
240     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
241       return false;
242 
243     // Otherwise, check for variables.
244     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
245     if (!declRef) return true;
246     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
247     if (!var) return true;
248 
249     // All variables have precise lifetime except local variables with
250     // automatic storage duration that aren't specially marked.
251     return (var->hasLocalStorage() &&
252             !var->hasAttr<ObjCPreciseLifetimeAttr>());
253   }
254 
255   case ObjCMessageExpr::Class:
256   case ObjCMessageExpr::SuperClass:
257     // It's never necessary for class objects.
258     return false;
259 
260   case ObjCMessageExpr::SuperInstance:
261     // We generally assume that 'self' lives throughout a method call.
262     return false;
263   }
264 
265   llvm_unreachable("invalid receiver kind");
266 }
267 
EmitObjCMessageExpr(const ObjCMessageExpr * E,ReturnValueSlot Return)268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
269                                             ReturnValueSlot Return) {
270   // Only the lookup mechanism and first two arguments of the method
271   // implementation vary between runtimes.  We can get the receiver and
272   // arguments in generic code.
273 
274   bool isDelegateInit = E->isDelegateInitCall();
275 
276   const ObjCMethodDecl *method = E->getMethodDecl();
277 
278   // We don't retain the receiver in delegate init calls, and this is
279   // safe because the receiver value is always loaded from 'self',
280   // which we zero out.  We don't want to Block_copy block receivers,
281   // though.
282   bool retainSelf =
283     (!isDelegateInit &&
284      CGM.getLangOpts().ObjCAutoRefCount &&
285      method &&
286      method->hasAttr<NSConsumesSelfAttr>());
287 
288   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
289   bool isSuperMessage = false;
290   bool isClassMessage = false;
291   ObjCInterfaceDecl *OID = 0;
292   // Find the receiver
293   QualType ReceiverType;
294   llvm::Value *Receiver = 0;
295   switch (E->getReceiverKind()) {
296   case ObjCMessageExpr::Instance:
297     ReceiverType = E->getInstanceReceiver()->getType();
298     if (retainSelf) {
299       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
300                                                    E->getInstanceReceiver());
301       Receiver = ter.getPointer();
302       if (ter.getInt()) retainSelf = false;
303     } else
304       Receiver = EmitScalarExpr(E->getInstanceReceiver());
305     break;
306 
307   case ObjCMessageExpr::Class: {
308     ReceiverType = E->getClassReceiver();
309     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
310     assert(ObjTy && "Invalid Objective-C class message send");
311     OID = ObjTy->getInterface();
312     assert(OID && "Invalid Objective-C class message send");
313     Receiver = Runtime.GetClass(*this, OID);
314     isClassMessage = true;
315     break;
316   }
317 
318   case ObjCMessageExpr::SuperInstance:
319     ReceiverType = E->getSuperType();
320     Receiver = LoadObjCSelf();
321     isSuperMessage = true;
322     break;
323 
324   case ObjCMessageExpr::SuperClass:
325     ReceiverType = E->getSuperType();
326     Receiver = LoadObjCSelf();
327     isSuperMessage = true;
328     isClassMessage = true;
329     break;
330   }
331 
332   if (retainSelf)
333     Receiver = EmitARCRetainNonBlock(Receiver);
334 
335   // In ARC, we sometimes want to "extend the lifetime"
336   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
337   // messages.
338   if (getLangOpts().ObjCAutoRefCount && method &&
339       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
340       shouldExtendReceiverForInnerPointerMessage(E))
341     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
342 
343   QualType ResultType =
344     method ? method->getResultType() : E->getType();
345 
346   CallArgList Args;
347   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
348 
349   // For delegate init calls in ARC, do an unsafe store of null into
350   // self.  This represents the call taking direct ownership of that
351   // value.  We have to do this after emitting the other call
352   // arguments because they might also reference self, but we don't
353   // have to worry about any of them modifying self because that would
354   // be an undefined read and write of an object in unordered
355   // expressions.
356   if (isDelegateInit) {
357     assert(getLangOpts().ObjCAutoRefCount &&
358            "delegate init calls should only be marked in ARC");
359 
360     // Do an unsafe store of null into self.
361     llvm::Value *selfAddr =
362       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
363     assert(selfAddr && "no self entry for a delegate init call?");
364 
365     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
366   }
367 
368   RValue result;
369   if (isSuperMessage) {
370     // super is only valid in an Objective-C method
371     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
372     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
373     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
374                                               E->getSelector(),
375                                               OMD->getClassInterface(),
376                                               isCategoryImpl,
377                                               Receiver,
378                                               isClassMessage,
379                                               Args,
380                                               method);
381   } else {
382     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
383                                          E->getSelector(),
384                                          Receiver, Args, OID,
385                                          method);
386   }
387 
388   // For delegate init calls in ARC, implicitly store the result of
389   // the call back into self.  This takes ownership of the value.
390   if (isDelegateInit) {
391     llvm::Value *selfAddr =
392       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
393     llvm::Value *newSelf = result.getScalarVal();
394 
395     // The delegate return type isn't necessarily a matching type; in
396     // fact, it's quite likely to be 'id'.
397     llvm::Type *selfTy =
398       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
399     newSelf = Builder.CreateBitCast(newSelf, selfTy);
400 
401     Builder.CreateStore(newSelf, selfAddr);
402   }
403 
404   return AdjustRelatedResultType(*this, E->getType(), method, result);
405 }
406 
407 namespace {
408 struct FinishARCDealloc : EHScopeStack::Cleanup {
Emit__anon87cd100e0111::FinishARCDealloc409   void Emit(CodeGenFunction &CGF, Flags flags) {
410     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
411 
412     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
413     const ObjCInterfaceDecl *iface = impl->getClassInterface();
414     if (!iface->getSuperClass()) return;
415 
416     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
417 
418     // Call [super dealloc] if we have a superclass.
419     llvm::Value *self = CGF.LoadObjCSelf();
420 
421     CallArgList args;
422     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
423                                                       CGF.getContext().VoidTy,
424                                                       method->getSelector(),
425                                                       iface,
426                                                       isCategory,
427                                                       self,
428                                                       /*is class msg*/ false,
429                                                       args,
430                                                       method);
431   }
432 };
433 }
434 
435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
436 /// the LLVM function and sets the other context used by
437 /// CodeGenFunction.
StartObjCMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD,SourceLocation StartLoc)438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
439                                       const ObjCContainerDecl *CD,
440                                       SourceLocation StartLoc) {
441   FunctionArgList args;
442   // Check if we should generate debug info for this method.
443   if (!OMD->hasAttr<NoDebugAttr>())
444     maybeInitializeDebugInfo();
445 
446   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
447 
448   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
449   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
450 
451   args.push_back(OMD->getSelfDecl());
452   args.push_back(OMD->getCmdDecl());
453 
454   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
455          E = OMD->param_end(); PI != E; ++PI)
456     args.push_back(*PI);
457 
458   CurGD = OMD;
459 
460   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
461 
462   // In ARC, certain methods get an extra cleanup.
463   if (CGM.getLangOpts().ObjCAutoRefCount &&
464       OMD->isInstanceMethod() &&
465       OMD->getSelector().isUnarySelector()) {
466     const IdentifierInfo *ident =
467       OMD->getSelector().getIdentifierInfoForSlot(0);
468     if (ident->isStr("dealloc"))
469       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
470   }
471 }
472 
473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
474                                               LValue lvalue, QualType type);
475 
476 /// Generate an Objective-C method.  An Objective-C method is a C function with
477 /// its pointer, name, and types registered in the class struture.
GenerateObjCMethod(const ObjCMethodDecl * OMD)478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
479   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
480   EmitStmt(OMD->getBody());
481   FinishFunction(OMD->getBodyRBrace());
482 }
483 
484 /// emitStructGetterCall - Call the runtime function to load a property
485 /// into the return value slot.
emitStructGetterCall(CodeGenFunction & CGF,ObjCIvarDecl * ivar,bool isAtomic,bool hasStrong)486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
487                                  bool isAtomic, bool hasStrong) {
488   ASTContext &Context = CGF.getContext();
489 
490   llvm::Value *src =
491     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
492                           ivar, 0).getAddress();
493 
494   // objc_copyStruct (ReturnValue, &structIvar,
495   //                  sizeof (Type of Ivar), isAtomic, false);
496   CallArgList args;
497 
498   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
499   args.add(RValue::get(dest), Context.VoidPtrTy);
500 
501   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
502   args.add(RValue::get(src), Context.VoidPtrTy);
503 
504   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
505   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
506   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
507   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
508 
509   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
510   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
511                                                       FunctionType::ExtInfo(),
512                                                       RequiredArgs::All),
513                fn, ReturnValueSlot(), args);
514 }
515 
516 /// Determine whether the given architecture supports unaligned atomic
517 /// accesses.  They don't have to be fast, just faster than a function
518 /// call and a mutex.
hasUnalignedAtomics(llvm::Triple::ArchType arch)519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
520   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
521   // currently supported by the backend.)
522   return 0;
523 }
524 
525 /// Return the maximum size that permits atomic accesses for the given
526 /// architecture.
getMaxAtomicAccessSize(CodeGenModule & CGM,llvm::Triple::ArchType arch)527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
528                                         llvm::Triple::ArchType arch) {
529   // ARM has 8-byte atomic accesses, but it's not clear whether we
530   // want to rely on them here.
531 
532   // In the default case, just assume that any size up to a pointer is
533   // fine given adequate alignment.
534   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
535 }
536 
537 namespace {
538   class PropertyImplStrategy {
539   public:
540     enum StrategyKind {
541       /// The 'native' strategy is to use the architecture's provided
542       /// reads and writes.
543       Native,
544 
545       /// Use objc_setProperty and objc_getProperty.
546       GetSetProperty,
547 
548       /// Use objc_setProperty for the setter, but use expression
549       /// evaluation for the getter.
550       SetPropertyAndExpressionGet,
551 
552       /// Use objc_copyStruct.
553       CopyStruct,
554 
555       /// The 'expression' strategy is to emit normal assignment or
556       /// lvalue-to-rvalue expressions.
557       Expression
558     };
559 
getKind() const560     StrategyKind getKind() const { return StrategyKind(Kind); }
561 
hasStrongMember() const562     bool hasStrongMember() const { return HasStrong; }
isAtomic() const563     bool isAtomic() const { return IsAtomic; }
isCopy() const564     bool isCopy() const { return IsCopy; }
565 
getIvarSize() const566     CharUnits getIvarSize() const { return IvarSize; }
getIvarAlignment() const567     CharUnits getIvarAlignment() const { return IvarAlignment; }
568 
569     PropertyImplStrategy(CodeGenModule &CGM,
570                          const ObjCPropertyImplDecl *propImpl);
571 
572   private:
573     unsigned Kind : 8;
574     unsigned IsAtomic : 1;
575     unsigned IsCopy : 1;
576     unsigned HasStrong : 1;
577 
578     CharUnits IvarSize;
579     CharUnits IvarAlignment;
580   };
581 }
582 
583 /// Pick an implementation strategy for the given property synthesis.
PropertyImplStrategy(CodeGenModule & CGM,const ObjCPropertyImplDecl * propImpl)584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
585                                      const ObjCPropertyImplDecl *propImpl) {
586   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
587   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
588 
589   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
590   IsAtomic = prop->isAtomic();
591   HasStrong = false; // doesn't matter here.
592 
593   // Evaluate the ivar's size and alignment.
594   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
595   QualType ivarType = ivar->getType();
596   llvm::tie(IvarSize, IvarAlignment)
597     = CGM.getContext().getTypeInfoInChars(ivarType);
598 
599   // If we have a copy property, we always have to use getProperty/setProperty.
600   // TODO: we could actually use setProperty and an expression for non-atomics.
601   if (IsCopy) {
602     Kind = GetSetProperty;
603     return;
604   }
605 
606   // Handle retain.
607   if (setterKind == ObjCPropertyDecl::Retain) {
608     // In GC-only, there's nothing special that needs to be done.
609     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
610       // fallthrough
611 
612     // In ARC, if the property is non-atomic, use expression emission,
613     // which translates to objc_storeStrong.  This isn't required, but
614     // it's slightly nicer.
615     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
616       // Using standard expression emission for the setter is only
617       // acceptable if the ivar is __strong, which won't be true if
618       // the property is annotated with __attribute__((NSObject)).
619       // TODO: falling all the way back to objc_setProperty here is
620       // just laziness, though;  we could still use objc_storeStrong
621       // if we hacked it right.
622       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
623         Kind = Expression;
624       else
625         Kind = SetPropertyAndExpressionGet;
626       return;
627 
628     // Otherwise, we need to at least use setProperty.  However, if
629     // the property isn't atomic, we can use normal expression
630     // emission for the getter.
631     } else if (!IsAtomic) {
632       Kind = SetPropertyAndExpressionGet;
633       return;
634 
635     // Otherwise, we have to use both setProperty and getProperty.
636     } else {
637       Kind = GetSetProperty;
638       return;
639     }
640   }
641 
642   // If we're not atomic, just use expression accesses.
643   if (!IsAtomic) {
644     Kind = Expression;
645     return;
646   }
647 
648   // Properties on bitfield ivars need to be emitted using expression
649   // accesses even if they're nominally atomic.
650   if (ivar->isBitField()) {
651     Kind = Expression;
652     return;
653   }
654 
655   // GC-qualified or ARC-qualified ivars need to be emitted as
656   // expressions.  This actually works out to being atomic anyway,
657   // except for ARC __strong, but that should trigger the above code.
658   if (ivarType.hasNonTrivialObjCLifetime() ||
659       (CGM.getLangOpts().getGC() &&
660        CGM.getContext().getObjCGCAttrKind(ivarType))) {
661     Kind = Expression;
662     return;
663   }
664 
665   // Compute whether the ivar has strong members.
666   if (CGM.getLangOpts().getGC())
667     if (const RecordType *recordType = ivarType->getAs<RecordType>())
668       HasStrong = recordType->getDecl()->hasObjectMember();
669 
670   // We can never access structs with object members with a native
671   // access, because we need to use write barriers.  This is what
672   // objc_copyStruct is for.
673   if (HasStrong) {
674     Kind = CopyStruct;
675     return;
676   }
677 
678   // Otherwise, this is target-dependent and based on the size and
679   // alignment of the ivar.
680 
681   // If the size of the ivar is not a power of two, give up.  We don't
682   // want to get into the business of doing compare-and-swaps.
683   if (!IvarSize.isPowerOfTwo()) {
684     Kind = CopyStruct;
685     return;
686   }
687 
688   llvm::Triple::ArchType arch =
689     CGM.getContext().getTargetInfo().getTriple().getArch();
690 
691   // Most architectures require memory to fit within a single cache
692   // line, so the alignment has to be at least the size of the access.
693   // Otherwise we have to grab a lock.
694   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
695     Kind = CopyStruct;
696     return;
697   }
698 
699   // If the ivar's size exceeds the architecture's maximum atomic
700   // access size, we have to use CopyStruct.
701   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
702     Kind = CopyStruct;
703     return;
704   }
705 
706   // Otherwise, we can use native loads and stores.
707   Kind = Native;
708 }
709 
710 /// \brief Generate an Objective-C property getter function.
711 ///
712 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
713 /// is illegal within a category.
GenerateObjCGetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)714 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
715                                          const ObjCPropertyImplDecl *PID) {
716   llvm::Constant *AtomicHelperFn =
717     GenerateObjCAtomicGetterCopyHelperFunction(PID);
718   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
719   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
720   assert(OMD && "Invalid call to generate getter (empty method)");
721   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
722 
723   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
724 
725   FinishFunction();
726 }
727 
hasTrivialGetExpr(const ObjCPropertyImplDecl * propImpl)728 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
729   const Expr *getter = propImpl->getGetterCXXConstructor();
730   if (!getter) return true;
731 
732   // Sema only makes only of these when the ivar has a C++ class type,
733   // so the form is pretty constrained.
734 
735   // If the property has a reference type, we might just be binding a
736   // reference, in which case the result will be a gl-value.  We should
737   // treat this as a non-trivial operation.
738   if (getter->isGLValue())
739     return false;
740 
741   // If we selected a trivial copy-constructor, we're okay.
742   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
743     return (construct->getConstructor()->isTrivial());
744 
745   // The constructor might require cleanups (in which case it's never
746   // trivial).
747   assert(isa<ExprWithCleanups>(getter));
748   return false;
749 }
750 
751 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
752 /// copy the ivar into the resturn slot.
emitCPPObjectAtomicGetterCall(CodeGenFunction & CGF,llvm::Value * returnAddr,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)753 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
754                                           llvm::Value *returnAddr,
755                                           ObjCIvarDecl *ivar,
756                                           llvm::Constant *AtomicHelperFn) {
757   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
758   //                           AtomicHelperFn);
759   CallArgList args;
760 
761   // The 1st argument is the return Slot.
762   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
763 
764   // The 2nd argument is the address of the ivar.
765   llvm::Value *ivarAddr =
766   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
767                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
768   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
769   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
770 
771   // Third argument is the helper function.
772   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
773 
774   llvm::Value *copyCppAtomicObjectFn =
775     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
776   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
777                                                       args,
778                                                       FunctionType::ExtInfo(),
779                                                       RequiredArgs::All),
780                copyCppAtomicObjectFn, ReturnValueSlot(), args);
781 }
782 
783 void
generateObjCGetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,const ObjCMethodDecl * GetterMethodDecl,llvm::Constant * AtomicHelperFn)784 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
785                                         const ObjCPropertyImplDecl *propImpl,
786                                         const ObjCMethodDecl *GetterMethodDecl,
787                                         llvm::Constant *AtomicHelperFn) {
788   // If there's a non-trivial 'get' expression, we just have to emit that.
789   if (!hasTrivialGetExpr(propImpl)) {
790     if (!AtomicHelperFn) {
791       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
792                      /*nrvo*/ 0);
793       EmitReturnStmt(ret);
794     }
795     else {
796       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
797       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
798                                     ivar, AtomicHelperFn);
799     }
800     return;
801   }
802 
803   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
804   QualType propType = prop->getType();
805   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
806 
807   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
808 
809   // Pick an implementation strategy.
810   PropertyImplStrategy strategy(CGM, propImpl);
811   switch (strategy.getKind()) {
812   case PropertyImplStrategy::Native: {
813     // We don't need to do anything for a zero-size struct.
814     if (strategy.getIvarSize().isZero())
815       return;
816 
817     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
818 
819     // Currently, all atomic accesses have to be through integer
820     // types, so there's no point in trying to pick a prettier type.
821     llvm::Type *bitcastType =
822       llvm::Type::getIntNTy(getLLVMContext(),
823                             getContext().toBits(strategy.getIvarSize()));
824     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
825 
826     // Perform an atomic load.  This does not impose ordering constraints.
827     llvm::Value *ivarAddr = LV.getAddress();
828     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
829     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
830     load->setAlignment(strategy.getIvarAlignment().getQuantity());
831     load->setAtomic(llvm::Unordered);
832 
833     // Store that value into the return address.  Doing this with a
834     // bitcast is likely to produce some pretty ugly IR, but it's not
835     // the *most* terrible thing in the world.
836     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
837 
838     // Make sure we don't do an autorelease.
839     AutoreleaseResult = false;
840     return;
841   }
842 
843   case PropertyImplStrategy::GetSetProperty: {
844     llvm::Value *getPropertyFn =
845       CGM.getObjCRuntime().GetPropertyGetFunction();
846     if (!getPropertyFn) {
847       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
848       return;
849     }
850 
851     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
852     // FIXME: Can't this be simpler? This might even be worse than the
853     // corresponding gcc code.
854     llvm::Value *cmd =
855       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
856     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
857     llvm::Value *ivarOffset =
858       EmitIvarOffset(classImpl->getClassInterface(), ivar);
859 
860     CallArgList args;
861     args.add(RValue::get(self), getContext().getObjCIdType());
862     args.add(RValue::get(cmd), getContext().getObjCSelType());
863     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
864     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
865              getContext().BoolTy);
866 
867     // FIXME: We shouldn't need to get the function info here, the
868     // runtime already should have computed it to build the function.
869     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
870                                                        FunctionType::ExtInfo(),
871                                                             RequiredArgs::All),
872                          getPropertyFn, ReturnValueSlot(), args);
873 
874     // We need to fix the type here. Ivars with copy & retain are
875     // always objects so we don't need to worry about complex or
876     // aggregates.
877     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
878            getTypes().ConvertType(getterMethod->getResultType())));
879 
880     EmitReturnOfRValue(RV, propType);
881 
882     // objc_getProperty does an autorelease, so we should suppress ours.
883     AutoreleaseResult = false;
884 
885     return;
886   }
887 
888   case PropertyImplStrategy::CopyStruct:
889     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
890                          strategy.hasStrongMember());
891     return;
892 
893   case PropertyImplStrategy::Expression:
894   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
895     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
896 
897     QualType ivarType = ivar->getType();
898     switch (getEvaluationKind(ivarType)) {
899     case TEK_Complex: {
900       ComplexPairTy pair = EmitLoadOfComplex(LV);
901       EmitStoreOfComplex(pair,
902                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
903                          /*init*/ true);
904       return;
905     }
906     case TEK_Aggregate:
907       // The return value slot is guaranteed to not be aliased, but
908       // that's not necessarily the same as "on the stack", so
909       // we still potentially need objc_memmove_collectable.
910       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
911       return;
912     case TEK_Scalar: {
913       llvm::Value *value;
914       if (propType->isReferenceType()) {
915         value = LV.getAddress();
916       } else {
917         // We want to load and autoreleaseReturnValue ARC __weak ivars.
918         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
919           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
920 
921         // Otherwise we want to do a simple load, suppressing the
922         // final autorelease.
923         } else {
924           value = EmitLoadOfLValue(LV).getScalarVal();
925           AutoreleaseResult = false;
926         }
927 
928         value = Builder.CreateBitCast(value, ConvertType(propType));
929         value = Builder.CreateBitCast(value,
930                   ConvertType(GetterMethodDecl->getResultType()));
931       }
932 
933       EmitReturnOfRValue(RValue::get(value), propType);
934       return;
935     }
936     }
937     llvm_unreachable("bad evaluation kind");
938   }
939 
940   }
941   llvm_unreachable("bad @property implementation strategy!");
942 }
943 
944 /// emitStructSetterCall - Call the runtime function to store the value
945 /// from the first formal parameter into the given ivar.
emitStructSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar)946 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
947                                  ObjCIvarDecl *ivar) {
948   // objc_copyStruct (&structIvar, &Arg,
949   //                  sizeof (struct something), true, false);
950   CallArgList args;
951 
952   // The first argument is the address of the ivar.
953   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
954                                                 CGF.LoadObjCSelf(), ivar, 0)
955     .getAddress();
956   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
957   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
958 
959   // The second argument is the address of the parameter variable.
960   ParmVarDecl *argVar = *OMD->param_begin();
961   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
962                      VK_LValue, SourceLocation());
963   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
964   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
965   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
966 
967   // The third argument is the sizeof the type.
968   llvm::Value *size =
969     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
970   args.add(RValue::get(size), CGF.getContext().getSizeType());
971 
972   // The fourth argument is the 'isAtomic' flag.
973   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
974 
975   // The fifth argument is the 'hasStrong' flag.
976   // FIXME: should this really always be false?
977   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
978 
979   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
980   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
981                                                       args,
982                                                       FunctionType::ExtInfo(),
983                                                       RequiredArgs::All),
984                copyStructFn, ReturnValueSlot(), args);
985 }
986 
987 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
988 /// the value from the first formal parameter into the given ivar, using
989 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
emitCPPObjectAtomicSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)990 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
991                                           ObjCMethodDecl *OMD,
992                                           ObjCIvarDecl *ivar,
993                                           llvm::Constant *AtomicHelperFn) {
994   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
995   //                           AtomicHelperFn);
996   CallArgList args;
997 
998   // The first argument is the address of the ivar.
999   llvm::Value *ivarAddr =
1000     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1001                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
1002   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1003   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1004 
1005   // The second argument is the address of the parameter variable.
1006   ParmVarDecl *argVar = *OMD->param_begin();
1007   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1008                      VK_LValue, SourceLocation());
1009   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1010   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1011   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1012 
1013   // Third argument is the helper function.
1014   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1015 
1016   llvm::Value *copyCppAtomicObjectFn =
1017     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1018   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1019                                                       args,
1020                                                       FunctionType::ExtInfo(),
1021                                                       RequiredArgs::All),
1022                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1023 
1024 
1025 }
1026 
1027 
hasTrivialSetExpr(const ObjCPropertyImplDecl * PID)1028 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1029   Expr *setter = PID->getSetterCXXAssignment();
1030   if (!setter) return true;
1031 
1032   // Sema only makes only of these when the ivar has a C++ class type,
1033   // so the form is pretty constrained.
1034 
1035   // An operator call is trivial if the function it calls is trivial.
1036   // This also implies that there's nothing non-trivial going on with
1037   // the arguments, because operator= can only be trivial if it's a
1038   // synthesized assignment operator and therefore both parameters are
1039   // references.
1040   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1041     if (const FunctionDecl *callee
1042           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1043       if (callee->isTrivial())
1044         return true;
1045     return false;
1046   }
1047 
1048   assert(isa<ExprWithCleanups>(setter));
1049   return false;
1050 }
1051 
UseOptimizedSetter(CodeGenModule & CGM)1052 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1053   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1054     return false;
1055   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1056 }
1057 
1058 void
generateObjCSetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)1059 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1060                                         const ObjCPropertyImplDecl *propImpl,
1061                                         llvm::Constant *AtomicHelperFn) {
1062   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1063   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1064   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1065 
1066   // Just use the setter expression if Sema gave us one and it's
1067   // non-trivial.
1068   if (!hasTrivialSetExpr(propImpl)) {
1069     if (!AtomicHelperFn)
1070       // If non-atomic, assignment is called directly.
1071       EmitStmt(propImpl->getSetterCXXAssignment());
1072     else
1073       // If atomic, assignment is called via a locking api.
1074       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1075                                     AtomicHelperFn);
1076     return;
1077   }
1078 
1079   PropertyImplStrategy strategy(CGM, propImpl);
1080   switch (strategy.getKind()) {
1081   case PropertyImplStrategy::Native: {
1082     // We don't need to do anything for a zero-size struct.
1083     if (strategy.getIvarSize().isZero())
1084       return;
1085 
1086     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1087 
1088     LValue ivarLValue =
1089       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1090     llvm::Value *ivarAddr = ivarLValue.getAddress();
1091 
1092     // Currently, all atomic accesses have to be through integer
1093     // types, so there's no point in trying to pick a prettier type.
1094     llvm::Type *bitcastType =
1095       llvm::Type::getIntNTy(getLLVMContext(),
1096                             getContext().toBits(strategy.getIvarSize()));
1097     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1098 
1099     // Cast both arguments to the chosen operation type.
1100     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1101     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1102 
1103     // This bitcast load is likely to cause some nasty IR.
1104     llvm::Value *load = Builder.CreateLoad(argAddr);
1105 
1106     // Perform an atomic store.  There are no memory ordering requirements.
1107     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1108     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1109     store->setAtomic(llvm::Unordered);
1110     return;
1111   }
1112 
1113   case PropertyImplStrategy::GetSetProperty:
1114   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1115 
1116     llvm::Value *setOptimizedPropertyFn = 0;
1117     llvm::Value *setPropertyFn = 0;
1118     if (UseOptimizedSetter(CGM)) {
1119       // 10.8 and iOS 6.0 code and GC is off
1120       setOptimizedPropertyFn =
1121         CGM.getObjCRuntime()
1122            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1123                                             strategy.isCopy());
1124       if (!setOptimizedPropertyFn) {
1125         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1126         return;
1127       }
1128     }
1129     else {
1130       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1131       if (!setPropertyFn) {
1132         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1133         return;
1134       }
1135     }
1136 
1137     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1138     //                       <is-atomic>, <is-copy>).
1139     llvm::Value *cmd =
1140       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1141     llvm::Value *self =
1142       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1143     llvm::Value *ivarOffset =
1144       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1145     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1146     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1147 
1148     CallArgList args;
1149     args.add(RValue::get(self), getContext().getObjCIdType());
1150     args.add(RValue::get(cmd), getContext().getObjCSelType());
1151     if (setOptimizedPropertyFn) {
1152       args.add(RValue::get(arg), getContext().getObjCIdType());
1153       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1154       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1155                                                   FunctionType::ExtInfo(),
1156                                                   RequiredArgs::All),
1157                setOptimizedPropertyFn, ReturnValueSlot(), args);
1158     } else {
1159       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1160       args.add(RValue::get(arg), getContext().getObjCIdType());
1161       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1162                getContext().BoolTy);
1163       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1164                getContext().BoolTy);
1165       // FIXME: We shouldn't need to get the function info here, the runtime
1166       // already should have computed it to build the function.
1167       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1168                                                   FunctionType::ExtInfo(),
1169                                                   RequiredArgs::All),
1170                setPropertyFn, ReturnValueSlot(), args);
1171     }
1172 
1173     return;
1174   }
1175 
1176   case PropertyImplStrategy::CopyStruct:
1177     emitStructSetterCall(*this, setterMethod, ivar);
1178     return;
1179 
1180   case PropertyImplStrategy::Expression:
1181     break;
1182   }
1183 
1184   // Otherwise, fake up some ASTs and emit a normal assignment.
1185   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1186   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1187                    VK_LValue, SourceLocation());
1188   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1189                             selfDecl->getType(), CK_LValueToRValue, &self,
1190                             VK_RValue);
1191   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1192                           SourceLocation(), &selfLoad, true, true);
1193 
1194   ParmVarDecl *argDecl = *setterMethod->param_begin();
1195   QualType argType = argDecl->getType().getNonReferenceType();
1196   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1197   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1198                            argType.getUnqualifiedType(), CK_LValueToRValue,
1199                            &arg, VK_RValue);
1200 
1201   // The property type can differ from the ivar type in some situations with
1202   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1203   // The following absurdity is just to ensure well-formed IR.
1204   CastKind argCK = CK_NoOp;
1205   if (ivarRef.getType()->isObjCObjectPointerType()) {
1206     if (argLoad.getType()->isObjCObjectPointerType())
1207       argCK = CK_BitCast;
1208     else if (argLoad.getType()->isBlockPointerType())
1209       argCK = CK_BlockPointerToObjCPointerCast;
1210     else
1211       argCK = CK_CPointerToObjCPointerCast;
1212   } else if (ivarRef.getType()->isBlockPointerType()) {
1213      if (argLoad.getType()->isBlockPointerType())
1214       argCK = CK_BitCast;
1215     else
1216       argCK = CK_AnyPointerToBlockPointerCast;
1217   } else if (ivarRef.getType()->isPointerType()) {
1218     argCK = CK_BitCast;
1219   }
1220   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1221                            ivarRef.getType(), argCK, &argLoad,
1222                            VK_RValue);
1223   Expr *finalArg = &argLoad;
1224   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1225                                            argLoad.getType()))
1226     finalArg = &argCast;
1227 
1228 
1229   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1230                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1231                         SourceLocation(), false);
1232   EmitStmt(&assign);
1233 }
1234 
1235 /// \brief Generate an Objective-C property setter function.
1236 ///
1237 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1238 /// is illegal within a category.
GenerateObjCSetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1239 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1240                                          const ObjCPropertyImplDecl *PID) {
1241   llvm::Constant *AtomicHelperFn =
1242     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1243   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1244   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1245   assert(OMD && "Invalid call to generate setter (empty method)");
1246   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1247 
1248   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1249 
1250   FinishFunction();
1251 }
1252 
1253 namespace {
1254   struct DestroyIvar : EHScopeStack::Cleanup {
1255   private:
1256     llvm::Value *addr;
1257     const ObjCIvarDecl *ivar;
1258     CodeGenFunction::Destroyer *destroyer;
1259     bool useEHCleanupForArray;
1260   public:
DestroyIvar__anon87cd100e0311::DestroyIvar1261     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1262                 CodeGenFunction::Destroyer *destroyer,
1263                 bool useEHCleanupForArray)
1264       : addr(addr), ivar(ivar), destroyer(destroyer),
1265         useEHCleanupForArray(useEHCleanupForArray) {}
1266 
Emit__anon87cd100e0311::DestroyIvar1267     void Emit(CodeGenFunction &CGF, Flags flags) {
1268       LValue lvalue
1269         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1270       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1271                       flags.isForNormalCleanup() && useEHCleanupForArray);
1272     }
1273   };
1274 }
1275 
1276 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
destroyARCStrongWithStore(CodeGenFunction & CGF,llvm::Value * addr,QualType type)1277 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1278                                       llvm::Value *addr,
1279                                       QualType type) {
1280   llvm::Value *null = getNullForVariable(addr);
1281   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1282 }
1283 
emitCXXDestructMethod(CodeGenFunction & CGF,ObjCImplementationDecl * impl)1284 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1285                                   ObjCImplementationDecl *impl) {
1286   CodeGenFunction::RunCleanupsScope scope(CGF);
1287 
1288   llvm::Value *self = CGF.LoadObjCSelf();
1289 
1290   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1291   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1292        ivar; ivar = ivar->getNextIvar()) {
1293     QualType type = ivar->getType();
1294 
1295     // Check whether the ivar is a destructible type.
1296     QualType::DestructionKind dtorKind = type.isDestructedType();
1297     if (!dtorKind) continue;
1298 
1299     CodeGenFunction::Destroyer *destroyer = 0;
1300 
1301     // Use a call to objc_storeStrong to destroy strong ivars, for the
1302     // general benefit of the tools.
1303     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1304       destroyer = destroyARCStrongWithStore;
1305 
1306     // Otherwise use the default for the destruction kind.
1307     } else {
1308       destroyer = CGF.getDestroyer(dtorKind);
1309     }
1310 
1311     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1312 
1313     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1314                                          cleanupKind & EHCleanup);
1315   }
1316 
1317   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1318 }
1319 
GenerateObjCCtorDtorMethod(ObjCImplementationDecl * IMP,ObjCMethodDecl * MD,bool ctor)1320 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1321                                                  ObjCMethodDecl *MD,
1322                                                  bool ctor) {
1323   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1324   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1325 
1326   // Emit .cxx_construct.
1327   if (ctor) {
1328     // Suppress the final autorelease in ARC.
1329     AutoreleaseResult = false;
1330 
1331     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1332     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1333            E = IMP->init_end(); B != E; ++B) {
1334       CXXCtorInitializer *IvarInit = (*B);
1335       FieldDecl *Field = IvarInit->getAnyMember();
1336       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1337       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1338                                     LoadObjCSelf(), Ivar, 0);
1339       EmitAggExpr(IvarInit->getInit(),
1340                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1341                                           AggValueSlot::DoesNotNeedGCBarriers,
1342                                           AggValueSlot::IsNotAliased));
1343     }
1344     // constructor returns 'self'.
1345     CodeGenTypes &Types = CGM.getTypes();
1346     QualType IdTy(CGM.getContext().getObjCIdType());
1347     llvm::Value *SelfAsId =
1348       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1349     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1350 
1351   // Emit .cxx_destruct.
1352   } else {
1353     emitCXXDestructMethod(*this, IMP);
1354   }
1355   FinishFunction();
1356 }
1357 
IndirectObjCSetterArg(const CGFunctionInfo & FI)1358 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1359   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1360   it++; it++;
1361   const ABIArgInfo &AI = it->info;
1362   // FIXME. Is this sufficient check?
1363   return (AI.getKind() == ABIArgInfo::Indirect);
1364 }
1365 
IvarTypeWithAggrGCObjects(QualType Ty)1366 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1367   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1368     return false;
1369   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1370     return FDTTy->getDecl()->hasObjectMember();
1371   return false;
1372 }
1373 
LoadObjCSelf()1374 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1375   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1376   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1377 }
1378 
TypeOfSelfObject()1379 QualType CodeGenFunction::TypeOfSelfObject() {
1380   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1381   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1382   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1383     getContext().getCanonicalType(selfDecl->getType()));
1384   return PTy->getPointeeType();
1385 }
1386 
EmitObjCForCollectionStmt(const ObjCForCollectionStmt & S)1387 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1388   llvm::Constant *EnumerationMutationFn =
1389     CGM.getObjCRuntime().EnumerationMutationFunction();
1390 
1391   if (!EnumerationMutationFn) {
1392     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1393     return;
1394   }
1395 
1396   CGDebugInfo *DI = getDebugInfo();
1397   if (DI)
1398     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1399 
1400   // The local variable comes into scope immediately.
1401   AutoVarEmission variable = AutoVarEmission::invalid();
1402   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1403     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1404 
1405   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1406 
1407   // Fast enumeration state.
1408   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1409   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1410   EmitNullInitialization(StatePtr, StateTy);
1411 
1412   // Number of elements in the items array.
1413   static const unsigned NumItems = 16;
1414 
1415   // Fetch the countByEnumeratingWithState:objects:count: selector.
1416   IdentifierInfo *II[] = {
1417     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1418     &CGM.getContext().Idents.get("objects"),
1419     &CGM.getContext().Idents.get("count")
1420   };
1421   Selector FastEnumSel =
1422     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1423 
1424   QualType ItemsTy =
1425     getContext().getConstantArrayType(getContext().getObjCIdType(),
1426                                       llvm::APInt(32, NumItems),
1427                                       ArrayType::Normal, 0);
1428   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1429 
1430   // Emit the collection pointer.  In ARC, we do a retain.
1431   llvm::Value *Collection;
1432   if (getLangOpts().ObjCAutoRefCount) {
1433     Collection = EmitARCRetainScalarExpr(S.getCollection());
1434 
1435     // Enter a cleanup to do the release.
1436     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1437   } else {
1438     Collection = EmitScalarExpr(S.getCollection());
1439   }
1440 
1441   // The 'continue' label needs to appear within the cleanup for the
1442   // collection object.
1443   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1444 
1445   // Send it our message:
1446   CallArgList Args;
1447 
1448   // The first argument is a temporary of the enumeration-state type.
1449   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1450 
1451   // The second argument is a temporary array with space for NumItems
1452   // pointers.  We'll actually be loading elements from the array
1453   // pointer written into the control state; this buffer is so that
1454   // collections that *aren't* backed by arrays can still queue up
1455   // batches of elements.
1456   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1457 
1458   // The third argument is the capacity of that temporary array.
1459   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1460   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1461   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1462 
1463   // Start the enumeration.
1464   RValue CountRV =
1465     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1466                                              getContext().UnsignedLongTy,
1467                                              FastEnumSel,
1468                                              Collection, Args);
1469 
1470   // The initial number of objects that were returned in the buffer.
1471   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1472 
1473   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1474   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1475 
1476   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1477 
1478   // If the limit pointer was zero to begin with, the collection is
1479   // empty; skip all this.
1480   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1481                        EmptyBB, LoopInitBB);
1482 
1483   // Otherwise, initialize the loop.
1484   EmitBlock(LoopInitBB);
1485 
1486   // Save the initial mutations value.  This is the value at an
1487   // address that was written into the state object by
1488   // countByEnumeratingWithState:objects:count:.
1489   llvm::Value *StateMutationsPtrPtr =
1490     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1491   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1492                                                       "mutationsptr");
1493 
1494   llvm::Value *initialMutations =
1495     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1496 
1497   // Start looping.  This is the point we return to whenever we have a
1498   // fresh, non-empty batch of objects.
1499   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1500   EmitBlock(LoopBodyBB);
1501 
1502   // The current index into the buffer.
1503   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1504   index->addIncoming(zero, LoopInitBB);
1505 
1506   // The current buffer size.
1507   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1508   count->addIncoming(initialBufferLimit, LoopInitBB);
1509 
1510   // Check whether the mutations value has changed from where it was
1511   // at start.  StateMutationsPtr should actually be invariant between
1512   // refreshes.
1513   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1514   llvm::Value *currentMutations
1515     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1516 
1517   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1518   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1519 
1520   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1521                        WasNotMutatedBB, WasMutatedBB);
1522 
1523   // If so, call the enumeration-mutation function.
1524   EmitBlock(WasMutatedBB);
1525   llvm::Value *V =
1526     Builder.CreateBitCast(Collection,
1527                           ConvertType(getContext().getObjCIdType()));
1528   CallArgList Args2;
1529   Args2.add(RValue::get(V), getContext().getObjCIdType());
1530   // FIXME: We shouldn't need to get the function info here, the runtime already
1531   // should have computed it to build the function.
1532   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1533                                                   FunctionType::ExtInfo(),
1534                                                   RequiredArgs::All),
1535            EnumerationMutationFn, ReturnValueSlot(), Args2);
1536 
1537   // Otherwise, or if the mutation function returns, just continue.
1538   EmitBlock(WasNotMutatedBB);
1539 
1540   // Initialize the element variable.
1541   RunCleanupsScope elementVariableScope(*this);
1542   bool elementIsVariable;
1543   LValue elementLValue;
1544   QualType elementType;
1545   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1546     // Initialize the variable, in case it's a __block variable or something.
1547     EmitAutoVarInit(variable);
1548 
1549     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1550     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1551                         VK_LValue, SourceLocation());
1552     elementLValue = EmitLValue(&tempDRE);
1553     elementType = D->getType();
1554     elementIsVariable = true;
1555 
1556     if (D->isARCPseudoStrong())
1557       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1558   } else {
1559     elementLValue = LValue(); // suppress warning
1560     elementType = cast<Expr>(S.getElement())->getType();
1561     elementIsVariable = false;
1562   }
1563   llvm::Type *convertedElementType = ConvertType(elementType);
1564 
1565   // Fetch the buffer out of the enumeration state.
1566   // TODO: this pointer should actually be invariant between
1567   // refreshes, which would help us do certain loop optimizations.
1568   llvm::Value *StateItemsPtr =
1569     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1570   llvm::Value *EnumStateItems =
1571     Builder.CreateLoad(StateItemsPtr, "stateitems");
1572 
1573   // Fetch the value at the current index from the buffer.
1574   llvm::Value *CurrentItemPtr =
1575     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1576   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1577 
1578   // Cast that value to the right type.
1579   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1580                                       "currentitem");
1581 
1582   // Make sure we have an l-value.  Yes, this gets evaluated every
1583   // time through the loop.
1584   if (!elementIsVariable) {
1585     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1586     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1587   } else {
1588     EmitScalarInit(CurrentItem, elementLValue);
1589   }
1590 
1591   // If we do have an element variable, this assignment is the end of
1592   // its initialization.
1593   if (elementIsVariable)
1594     EmitAutoVarCleanups(variable);
1595 
1596   // Perform the loop body, setting up break and continue labels.
1597   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1598   {
1599     RunCleanupsScope Scope(*this);
1600     EmitStmt(S.getBody());
1601   }
1602   BreakContinueStack.pop_back();
1603 
1604   // Destroy the element variable now.
1605   elementVariableScope.ForceCleanup();
1606 
1607   // Check whether there are more elements.
1608   EmitBlock(AfterBody.getBlock());
1609 
1610   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1611 
1612   // First we check in the local buffer.
1613   llvm::Value *indexPlusOne
1614     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1615 
1616   // If we haven't overrun the buffer yet, we can continue.
1617   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1618                        LoopBodyBB, FetchMoreBB);
1619 
1620   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1621   count->addIncoming(count, AfterBody.getBlock());
1622 
1623   // Otherwise, we have to fetch more elements.
1624   EmitBlock(FetchMoreBB);
1625 
1626   CountRV =
1627     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1628                                              getContext().UnsignedLongTy,
1629                                              FastEnumSel,
1630                                              Collection, Args);
1631 
1632   // If we got a zero count, we're done.
1633   llvm::Value *refetchCount = CountRV.getScalarVal();
1634 
1635   // (note that the message send might split FetchMoreBB)
1636   index->addIncoming(zero, Builder.GetInsertBlock());
1637   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1638 
1639   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1640                        EmptyBB, LoopBodyBB);
1641 
1642   // No more elements.
1643   EmitBlock(EmptyBB);
1644 
1645   if (!elementIsVariable) {
1646     // If the element was not a declaration, set it to be null.
1647 
1648     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1649     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1650     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1651   }
1652 
1653   if (DI)
1654     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1655 
1656   // Leave the cleanup we entered in ARC.
1657   if (getLangOpts().ObjCAutoRefCount)
1658     PopCleanupBlock();
1659 
1660   EmitBlock(LoopEnd.getBlock());
1661 }
1662 
EmitObjCAtTryStmt(const ObjCAtTryStmt & S)1663 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1664   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1665 }
1666 
EmitObjCAtThrowStmt(const ObjCAtThrowStmt & S)1667 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1668   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1669 }
1670 
EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt & S)1671 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1672                                               const ObjCAtSynchronizedStmt &S) {
1673   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1674 }
1675 
1676 /// Produce the code for a CK_ARCProduceObject.  Just does a
1677 /// primitive retain.
EmitObjCProduceObject(QualType type,llvm::Value * value)1678 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1679                                                     llvm::Value *value) {
1680   return EmitARCRetain(type, value);
1681 }
1682 
1683 namespace {
1684   struct CallObjCRelease : EHScopeStack::Cleanup {
CallObjCRelease__anon87cd100e0411::CallObjCRelease1685     CallObjCRelease(llvm::Value *object) : object(object) {}
1686     llvm::Value *object;
1687 
Emit__anon87cd100e0411::CallObjCRelease1688     void Emit(CodeGenFunction &CGF, Flags flags) {
1689       // Releases at the end of the full-expression are imprecise.
1690       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1691     }
1692   };
1693 }
1694 
1695 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1696 /// release at the end of the full-expression.
EmitObjCConsumeObject(QualType type,llvm::Value * object)1697 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1698                                                     llvm::Value *object) {
1699   // If we're in a conditional branch, we need to make the cleanup
1700   // conditional.
1701   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1702   return object;
1703 }
1704 
EmitObjCExtendObjectLifetime(QualType type,llvm::Value * value)1705 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1706                                                            llvm::Value *value) {
1707   return EmitARCRetainAutorelease(type, value);
1708 }
1709 
1710 
createARCRuntimeFunction(CodeGenModule & CGM,llvm::FunctionType * type,StringRef fnName)1711 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1712                                                 llvm::FunctionType *type,
1713                                                 StringRef fnName) {
1714   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1715 
1716   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1717     // If the target runtime doesn't naturally support ARC, emit weak
1718     // references to the runtime support library.  We don't really
1719     // permit this to fail, but we need a particular relocation style.
1720     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1721       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1722     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1723       // If we have Native ARC, set nonlazybind attribute for these APIs for
1724       // performance.
1725       f->addFnAttr(llvm::Attribute::NonLazyBind);
1726     }
1727   }
1728 
1729   return fn;
1730 }
1731 
1732 /// Perform an operation having the signature
1733 ///   i8* (i8*)
1734 /// where a null input causes a no-op and returns null.
emitARCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool isTailCall=false)1735 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1736                                           llvm::Value *value,
1737                                           llvm::Constant *&fn,
1738                                           StringRef fnName,
1739                                           bool isTailCall = false) {
1740   if (isa<llvm::ConstantPointerNull>(value)) return value;
1741 
1742   if (!fn) {
1743     llvm::FunctionType *fnType =
1744       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1745     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1746   }
1747 
1748   // Cast the argument to 'id'.
1749   llvm::Type *origType = value->getType();
1750   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1751 
1752   // Call the function.
1753   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1754   if (isTailCall)
1755     call->setTailCall();
1756 
1757   // Cast the result back to the original type.
1758   return CGF.Builder.CreateBitCast(call, origType);
1759 }
1760 
1761 /// Perform an operation having the following signature:
1762 ///   i8* (i8**)
emitARCLoadOperation(CodeGenFunction & CGF,llvm::Value * addr,llvm::Constant * & fn,StringRef fnName)1763 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1764                                          llvm::Value *addr,
1765                                          llvm::Constant *&fn,
1766                                          StringRef fnName) {
1767   if (!fn) {
1768     llvm::FunctionType *fnType =
1769       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1770     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1771   }
1772 
1773   // Cast the argument to 'id*'.
1774   llvm::Type *origType = addr->getType();
1775   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1776 
1777   // Call the function.
1778   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1779 
1780   // Cast the result back to a dereference of the original type.
1781   if (origType != CGF.Int8PtrPtrTy)
1782     result = CGF.Builder.CreateBitCast(result,
1783                         cast<llvm::PointerType>(origType)->getElementType());
1784 
1785   return result;
1786 }
1787 
1788 /// Perform an operation having the following signature:
1789 ///   i8* (i8**, i8*)
emitARCStoreOperation(CodeGenFunction & CGF,llvm::Value * addr,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool ignored)1790 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1791                                           llvm::Value *addr,
1792                                           llvm::Value *value,
1793                                           llvm::Constant *&fn,
1794                                           StringRef fnName,
1795                                           bool ignored) {
1796   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1797            == value->getType());
1798 
1799   if (!fn) {
1800     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1801 
1802     llvm::FunctionType *fnType
1803       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1804     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1805   }
1806 
1807   llvm::Type *origType = value->getType();
1808 
1809   llvm::Value *args[] = {
1810     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1811     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1812   };
1813   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1814 
1815   if (ignored) return 0;
1816 
1817   return CGF.Builder.CreateBitCast(result, origType);
1818 }
1819 
1820 /// Perform an operation having the following signature:
1821 ///   void (i8**, i8**)
emitARCCopyOperation(CodeGenFunction & CGF,llvm::Value * dst,llvm::Value * src,llvm::Constant * & fn,StringRef fnName)1822 static void emitARCCopyOperation(CodeGenFunction &CGF,
1823                                  llvm::Value *dst,
1824                                  llvm::Value *src,
1825                                  llvm::Constant *&fn,
1826                                  StringRef fnName) {
1827   assert(dst->getType() == src->getType());
1828 
1829   if (!fn) {
1830     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1831 
1832     llvm::FunctionType *fnType
1833       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1834     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1835   }
1836 
1837   llvm::Value *args[] = {
1838     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1839     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1840   };
1841   CGF.EmitNounwindRuntimeCall(fn, args);
1842 }
1843 
1844 /// Produce the code to do a retain.  Based on the type, calls one of:
1845 ///   call i8* \@objc_retain(i8* %value)
1846 ///   call i8* \@objc_retainBlock(i8* %value)
EmitARCRetain(QualType type,llvm::Value * value)1847 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1848   if (type->isBlockPointerType())
1849     return EmitARCRetainBlock(value, /*mandatory*/ false);
1850   else
1851     return EmitARCRetainNonBlock(value);
1852 }
1853 
1854 /// Retain the given object, with normal retain semantics.
1855 ///   call i8* \@objc_retain(i8* %value)
EmitARCRetainNonBlock(llvm::Value * value)1856 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1857   return emitARCValueOperation(*this, value,
1858                                CGM.getARCEntrypoints().objc_retain,
1859                                "objc_retain");
1860 }
1861 
1862 /// Retain the given block, with _Block_copy semantics.
1863 ///   call i8* \@objc_retainBlock(i8* %value)
1864 ///
1865 /// \param mandatory - If false, emit the call with metadata
1866 /// indicating that it's okay for the optimizer to eliminate this call
1867 /// if it can prove that the block never escapes except down the stack.
EmitARCRetainBlock(llvm::Value * value,bool mandatory)1868 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1869                                                  bool mandatory) {
1870   llvm::Value *result
1871     = emitARCValueOperation(*this, value,
1872                             CGM.getARCEntrypoints().objc_retainBlock,
1873                             "objc_retainBlock");
1874 
1875   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1876   // tell the optimizer that it doesn't need to do this copy if the
1877   // block doesn't escape, where being passed as an argument doesn't
1878   // count as escaping.
1879   if (!mandatory && isa<llvm::Instruction>(result)) {
1880     llvm::CallInst *call
1881       = cast<llvm::CallInst>(result->stripPointerCasts());
1882     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1883 
1884     SmallVector<llvm::Value*,1> args;
1885     call->setMetadata("clang.arc.copy_on_escape",
1886                       llvm::MDNode::get(Builder.getContext(), args));
1887   }
1888 
1889   return result;
1890 }
1891 
1892 /// Retain the given object which is the result of a function call.
1893 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1894 ///
1895 /// Yes, this function name is one character away from a different
1896 /// call with completely different semantics.
1897 llvm::Value *
EmitARCRetainAutoreleasedReturnValue(llvm::Value * value)1898 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1899   // Fetch the void(void) inline asm which marks that we're going to
1900   // retain the autoreleased return value.
1901   llvm::InlineAsm *&marker
1902     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1903   if (!marker) {
1904     StringRef assembly
1905       = CGM.getTargetCodeGenInfo()
1906            .getARCRetainAutoreleasedReturnValueMarker();
1907 
1908     // If we have an empty assembly string, there's nothing to do.
1909     if (assembly.empty()) {
1910 
1911     // Otherwise, at -O0, build an inline asm that we're going to call
1912     // in a moment.
1913     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1914       llvm::FunctionType *type =
1915         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1916 
1917       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1918 
1919     // If we're at -O1 and above, we don't want to litter the code
1920     // with this marker yet, so leave a breadcrumb for the ARC
1921     // optimizer to pick up.
1922     } else {
1923       llvm::NamedMDNode *metadata =
1924         CGM.getModule().getOrInsertNamedMetadata(
1925                             "clang.arc.retainAutoreleasedReturnValueMarker");
1926       assert(metadata->getNumOperands() <= 1);
1927       if (metadata->getNumOperands() == 0) {
1928         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1929         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1930       }
1931     }
1932   }
1933 
1934   // Call the marker asm if we made one, which we do only at -O0.
1935   if (marker) Builder.CreateCall(marker);
1936 
1937   return emitARCValueOperation(*this, value,
1938                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1939                                "objc_retainAutoreleasedReturnValue");
1940 }
1941 
1942 /// Release the given object.
1943 ///   call void \@objc_release(i8* %value)
EmitARCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)1944 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
1945                                      ARCPreciseLifetime_t precise) {
1946   if (isa<llvm::ConstantPointerNull>(value)) return;
1947 
1948   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1949   if (!fn) {
1950     llvm::FunctionType *fnType =
1951       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
1952     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1953   }
1954 
1955   // Cast the argument to 'id'.
1956   value = Builder.CreateBitCast(value, Int8PtrTy);
1957 
1958   // Call objc_release.
1959   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
1960 
1961   if (precise == ARCImpreciseLifetime) {
1962     SmallVector<llvm::Value*,1> args;
1963     call->setMetadata("clang.imprecise_release",
1964                       llvm::MDNode::get(Builder.getContext(), args));
1965   }
1966 }
1967 
1968 /// Destroy a __strong variable.
1969 ///
1970 /// At -O0, emit a call to store 'null' into the address;
1971 /// instrumenting tools prefer this because the address is exposed,
1972 /// but it's relatively cumbersome to optimize.
1973 ///
1974 /// At -O1 and above, just load and call objc_release.
1975 ///
1976 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
EmitARCDestroyStrong(llvm::Value * addr,ARCPreciseLifetime_t precise)1977 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
1978                                            ARCPreciseLifetime_t precise) {
1979   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1980     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
1981     llvm::Value *null = llvm::ConstantPointerNull::get(
1982                           cast<llvm::PointerType>(addrTy->getElementType()));
1983     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1984     return;
1985   }
1986 
1987   llvm::Value *value = Builder.CreateLoad(addr);
1988   EmitARCRelease(value, precise);
1989 }
1990 
1991 /// Store into a strong object.  Always calls this:
1992 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
EmitARCStoreStrongCall(llvm::Value * addr,llvm::Value * value,bool ignored)1993 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1994                                                      llvm::Value *value,
1995                                                      bool ignored) {
1996   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1997            == value->getType());
1998 
1999   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2000   if (!fn) {
2001     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2002     llvm::FunctionType *fnType
2003       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2004     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2005   }
2006 
2007   llvm::Value *args[] = {
2008     Builder.CreateBitCast(addr, Int8PtrPtrTy),
2009     Builder.CreateBitCast(value, Int8PtrTy)
2010   };
2011   EmitNounwindRuntimeCall(fn, args);
2012 
2013   if (ignored) return 0;
2014   return value;
2015 }
2016 
2017 /// Store into a strong object.  Sometimes calls this:
2018 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2019 /// Other times, breaks it down into components.
EmitARCStoreStrong(LValue dst,llvm::Value * newValue,bool ignored)2020 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2021                                                  llvm::Value *newValue,
2022                                                  bool ignored) {
2023   QualType type = dst.getType();
2024   bool isBlock = type->isBlockPointerType();
2025 
2026   // Use a store barrier at -O0 unless this is a block type or the
2027   // lvalue is inadequately aligned.
2028   if (shouldUseFusedARCCalls() &&
2029       !isBlock &&
2030       (dst.getAlignment().isZero() ||
2031        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2032     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2033   }
2034 
2035   // Otherwise, split it out.
2036 
2037   // Retain the new value.
2038   newValue = EmitARCRetain(type, newValue);
2039 
2040   // Read the old value.
2041   llvm::Value *oldValue = EmitLoadOfScalar(dst);
2042 
2043   // Store.  We do this before the release so that any deallocs won't
2044   // see the old value.
2045   EmitStoreOfScalar(newValue, dst);
2046 
2047   // Finally, release the old value.
2048   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2049 
2050   return newValue;
2051 }
2052 
2053 /// Autorelease the given object.
2054 ///   call i8* \@objc_autorelease(i8* %value)
EmitARCAutorelease(llvm::Value * value)2055 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2056   return emitARCValueOperation(*this, value,
2057                                CGM.getARCEntrypoints().objc_autorelease,
2058                                "objc_autorelease");
2059 }
2060 
2061 /// Autorelease the given object.
2062 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2063 llvm::Value *
EmitARCAutoreleaseReturnValue(llvm::Value * value)2064 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2065   return emitARCValueOperation(*this, value,
2066                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2067                                "objc_autoreleaseReturnValue",
2068                                /*isTailCall*/ true);
2069 }
2070 
2071 /// Do a fused retain/autorelease of the given object.
2072 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2073 llvm::Value *
EmitARCRetainAutoreleaseReturnValue(llvm::Value * value)2074 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2075   return emitARCValueOperation(*this, value,
2076                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2077                                "objc_retainAutoreleaseReturnValue",
2078                                /*isTailCall*/ true);
2079 }
2080 
2081 /// Do a fused retain/autorelease of the given object.
2082 ///   call i8* \@objc_retainAutorelease(i8* %value)
2083 /// or
2084 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2085 ///   call i8* \@objc_autorelease(i8* %retain)
EmitARCRetainAutorelease(QualType type,llvm::Value * value)2086 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2087                                                        llvm::Value *value) {
2088   if (!type->isBlockPointerType())
2089     return EmitARCRetainAutoreleaseNonBlock(value);
2090 
2091   if (isa<llvm::ConstantPointerNull>(value)) return value;
2092 
2093   llvm::Type *origType = value->getType();
2094   value = Builder.CreateBitCast(value, Int8PtrTy);
2095   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2096   value = EmitARCAutorelease(value);
2097   return Builder.CreateBitCast(value, origType);
2098 }
2099 
2100 /// Do a fused retain/autorelease of the given object.
2101 ///   call i8* \@objc_retainAutorelease(i8* %value)
2102 llvm::Value *
EmitARCRetainAutoreleaseNonBlock(llvm::Value * value)2103 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2104   return emitARCValueOperation(*this, value,
2105                                CGM.getARCEntrypoints().objc_retainAutorelease,
2106                                "objc_retainAutorelease");
2107 }
2108 
2109 /// i8* \@objc_loadWeak(i8** %addr)
2110 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
EmitARCLoadWeak(llvm::Value * addr)2111 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2112   return emitARCLoadOperation(*this, addr,
2113                               CGM.getARCEntrypoints().objc_loadWeak,
2114                               "objc_loadWeak");
2115 }
2116 
2117 /// i8* \@objc_loadWeakRetained(i8** %addr)
EmitARCLoadWeakRetained(llvm::Value * addr)2118 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2119   return emitARCLoadOperation(*this, addr,
2120                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2121                               "objc_loadWeakRetained");
2122 }
2123 
2124 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2125 /// Returns %value.
EmitARCStoreWeak(llvm::Value * addr,llvm::Value * value,bool ignored)2126 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2127                                                llvm::Value *value,
2128                                                bool ignored) {
2129   return emitARCStoreOperation(*this, addr, value,
2130                                CGM.getARCEntrypoints().objc_storeWeak,
2131                                "objc_storeWeak", ignored);
2132 }
2133 
2134 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2135 /// Returns %value.  %addr is known to not have a current weak entry.
2136 /// Essentially equivalent to:
2137 ///   *addr = nil; objc_storeWeak(addr, value);
EmitARCInitWeak(llvm::Value * addr,llvm::Value * value)2138 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2139   // If we're initializing to null, just write null to memory; no need
2140   // to get the runtime involved.  But don't do this if optimization
2141   // is enabled, because accounting for this would make the optimizer
2142   // much more complicated.
2143   if (isa<llvm::ConstantPointerNull>(value) &&
2144       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2145     Builder.CreateStore(value, addr);
2146     return;
2147   }
2148 
2149   emitARCStoreOperation(*this, addr, value,
2150                         CGM.getARCEntrypoints().objc_initWeak,
2151                         "objc_initWeak", /*ignored*/ true);
2152 }
2153 
2154 /// void \@objc_destroyWeak(i8** %addr)
2155 /// Essentially objc_storeWeak(addr, nil).
EmitARCDestroyWeak(llvm::Value * addr)2156 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2157   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2158   if (!fn) {
2159     llvm::FunctionType *fnType =
2160       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2161     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2162   }
2163 
2164   // Cast the argument to 'id*'.
2165   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2166 
2167   EmitNounwindRuntimeCall(fn, addr);
2168 }
2169 
2170 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2171 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2172 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
EmitARCMoveWeak(llvm::Value * dst,llvm::Value * src)2173 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2174   emitARCCopyOperation(*this, dst, src,
2175                        CGM.getARCEntrypoints().objc_moveWeak,
2176                        "objc_moveWeak");
2177 }
2178 
2179 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2180 /// Disregards the current value in %dest.  Essentially
2181 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
EmitARCCopyWeak(llvm::Value * dst,llvm::Value * src)2182 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2183   emitARCCopyOperation(*this, dst, src,
2184                        CGM.getARCEntrypoints().objc_copyWeak,
2185                        "objc_copyWeak");
2186 }
2187 
2188 /// Produce the code to do a objc_autoreleasepool_push.
2189 ///   call i8* \@objc_autoreleasePoolPush(void)
EmitObjCAutoreleasePoolPush()2190 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2191   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2192   if (!fn) {
2193     llvm::FunctionType *fnType =
2194       llvm::FunctionType::get(Int8PtrTy, false);
2195     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2196   }
2197 
2198   return EmitNounwindRuntimeCall(fn);
2199 }
2200 
2201 /// Produce the code to do a primitive release.
2202 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
EmitObjCAutoreleasePoolPop(llvm::Value * value)2203 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2204   assert(value->getType() == Int8PtrTy);
2205 
2206   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2207   if (!fn) {
2208     llvm::FunctionType *fnType =
2209       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2210 
2211     // We don't want to use a weak import here; instead we should not
2212     // fall into this path.
2213     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2214   }
2215 
2216   EmitNounwindRuntimeCall(fn, value);
2217 }
2218 
2219 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2220 /// Which is: [[NSAutoreleasePool alloc] init];
2221 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2222 /// init is declared as: - (id) init; in its NSObject super class.
2223 ///
EmitObjCMRRAutoreleasePoolPush()2224 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2225   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2226   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2227   // [NSAutoreleasePool alloc]
2228   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2229   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2230   CallArgList Args;
2231   RValue AllocRV =
2232     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2233                                 getContext().getObjCIdType(),
2234                                 AllocSel, Receiver, Args);
2235 
2236   // [Receiver init]
2237   Receiver = AllocRV.getScalarVal();
2238   II = &CGM.getContext().Idents.get("init");
2239   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2240   RValue InitRV =
2241     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2242                                 getContext().getObjCIdType(),
2243                                 InitSel, Receiver, Args);
2244   return InitRV.getScalarVal();
2245 }
2246 
2247 /// Produce the code to do a primitive release.
2248 /// [tmp drain];
EmitObjCMRRAutoreleasePoolPop(llvm::Value * Arg)2249 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2250   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2251   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2252   CallArgList Args;
2253   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2254                               getContext().VoidTy, DrainSel, Arg, Args);
2255 }
2256 
destroyARCStrongPrecise(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2257 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2258                                               llvm::Value *addr,
2259                                               QualType type) {
2260   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2261 }
2262 
destroyARCStrongImprecise(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2263 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2264                                                 llvm::Value *addr,
2265                                                 QualType type) {
2266   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2267 }
2268 
destroyARCWeak(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2269 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2270                                      llvm::Value *addr,
2271                                      QualType type) {
2272   CGF.EmitARCDestroyWeak(addr);
2273 }
2274 
2275 namespace {
2276   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2277     llvm::Value *Token;
2278 
CallObjCAutoreleasePoolObject__anon87cd100e0511::CallObjCAutoreleasePoolObject2279     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2280 
Emit__anon87cd100e0511::CallObjCAutoreleasePoolObject2281     void Emit(CodeGenFunction &CGF, Flags flags) {
2282       CGF.EmitObjCAutoreleasePoolPop(Token);
2283     }
2284   };
2285   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2286     llvm::Value *Token;
2287 
CallObjCMRRAutoreleasePoolObject__anon87cd100e0511::CallObjCMRRAutoreleasePoolObject2288     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2289 
Emit__anon87cd100e0511::CallObjCMRRAutoreleasePoolObject2290     void Emit(CodeGenFunction &CGF, Flags flags) {
2291       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2292     }
2293   };
2294 }
2295 
EmitObjCAutoreleasePoolCleanup(llvm::Value * Ptr)2296 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2297   if (CGM.getLangOpts().ObjCAutoRefCount)
2298     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2299   else
2300     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2301 }
2302 
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2303 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2304                                                   LValue lvalue,
2305                                                   QualType type) {
2306   switch (type.getObjCLifetime()) {
2307   case Qualifiers::OCL_None:
2308   case Qualifiers::OCL_ExplicitNone:
2309   case Qualifiers::OCL_Strong:
2310   case Qualifiers::OCL_Autoreleasing:
2311     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2312                          false);
2313 
2314   case Qualifiers::OCL_Weak:
2315     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2316                          true);
2317   }
2318 
2319   llvm_unreachable("impossible lifetime!");
2320 }
2321 
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,const Expr * e)2322 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2323                                                   const Expr *e) {
2324   e = e->IgnoreParens();
2325   QualType type = e->getType();
2326 
2327   // If we're loading retained from a __strong xvalue, we can avoid
2328   // an extra retain/release pair by zeroing out the source of this
2329   // "move" operation.
2330   if (e->isXValue() &&
2331       !type.isConstQualified() &&
2332       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2333     // Emit the lvalue.
2334     LValue lv = CGF.EmitLValue(e);
2335 
2336     // Load the object pointer.
2337     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2338 
2339     // Set the source pointer to NULL.
2340     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2341 
2342     return TryEmitResult(result, true);
2343   }
2344 
2345   // As a very special optimization, in ARC++, if the l-value is the
2346   // result of a non-volatile assignment, do a simple retain of the
2347   // result of the call to objc_storeWeak instead of reloading.
2348   if (CGF.getLangOpts().CPlusPlus &&
2349       !type.isVolatileQualified() &&
2350       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2351       isa<BinaryOperator>(e) &&
2352       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2353     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2354 
2355   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2356 }
2357 
2358 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2359                                            llvm::Value *value);
2360 
2361 /// Given that the given expression is some sort of call (which does
2362 /// not return retained), emit a retain following it.
emitARCRetainCall(CodeGenFunction & CGF,const Expr * e)2363 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2364   llvm::Value *value = CGF.EmitScalarExpr(e);
2365   return emitARCRetainAfterCall(CGF, value);
2366 }
2367 
emitARCRetainAfterCall(CodeGenFunction & CGF,llvm::Value * value)2368 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2369                                            llvm::Value *value) {
2370   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2371     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2372 
2373     // Place the retain immediately following the call.
2374     CGF.Builder.SetInsertPoint(call->getParent(),
2375                                ++llvm::BasicBlock::iterator(call));
2376     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2377 
2378     CGF.Builder.restoreIP(ip);
2379     return value;
2380   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2381     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2382 
2383     // Place the retain at the beginning of the normal destination block.
2384     llvm::BasicBlock *BB = invoke->getNormalDest();
2385     CGF.Builder.SetInsertPoint(BB, BB->begin());
2386     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2387 
2388     CGF.Builder.restoreIP(ip);
2389     return value;
2390 
2391   // Bitcasts can arise because of related-result returns.  Rewrite
2392   // the operand.
2393   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2394     llvm::Value *operand = bitcast->getOperand(0);
2395     operand = emitARCRetainAfterCall(CGF, operand);
2396     bitcast->setOperand(0, operand);
2397     return bitcast;
2398 
2399   // Generic fall-back case.
2400   } else {
2401     // Retain using the non-block variant: we never need to do a copy
2402     // of a block that's been returned to us.
2403     return CGF.EmitARCRetainNonBlock(value);
2404   }
2405 }
2406 
2407 /// Determine whether it might be important to emit a separate
2408 /// objc_retain_block on the result of the given expression, or
2409 /// whether it's okay to just emit it in a +1 context.
shouldEmitSeparateBlockRetain(const Expr * e)2410 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2411   assert(e->getType()->isBlockPointerType());
2412   e = e->IgnoreParens();
2413 
2414   // For future goodness, emit block expressions directly in +1
2415   // contexts if we can.
2416   if (isa<BlockExpr>(e))
2417     return false;
2418 
2419   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2420     switch (cast->getCastKind()) {
2421     // Emitting these operations in +1 contexts is goodness.
2422     case CK_LValueToRValue:
2423     case CK_ARCReclaimReturnedObject:
2424     case CK_ARCConsumeObject:
2425     case CK_ARCProduceObject:
2426       return false;
2427 
2428     // These operations preserve a block type.
2429     case CK_NoOp:
2430     case CK_BitCast:
2431       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2432 
2433     // These operations are known to be bad (or haven't been considered).
2434     case CK_AnyPointerToBlockPointerCast:
2435     default:
2436       return true;
2437     }
2438   }
2439 
2440   return true;
2441 }
2442 
2443 /// Try to emit a PseudoObjectExpr at +1.
2444 ///
2445 /// This massively duplicates emitPseudoObjectRValue.
tryEmitARCRetainPseudoObject(CodeGenFunction & CGF,const PseudoObjectExpr * E)2446 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2447                                                   const PseudoObjectExpr *E) {
2448   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2449 
2450   // Find the result expression.
2451   const Expr *resultExpr = E->getResultExpr();
2452   assert(resultExpr);
2453   TryEmitResult result;
2454 
2455   for (PseudoObjectExpr::const_semantics_iterator
2456          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2457     const Expr *semantic = *i;
2458 
2459     // If this semantic expression is an opaque value, bind it
2460     // to the result of its source expression.
2461     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2462       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2463       OVMA opaqueData;
2464 
2465       // If this semantic is the result of the pseudo-object
2466       // expression, try to evaluate the source as +1.
2467       if (ov == resultExpr) {
2468         assert(!OVMA::shouldBindAsLValue(ov));
2469         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2470         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2471 
2472       // Otherwise, just bind it.
2473       } else {
2474         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2475       }
2476       opaques.push_back(opaqueData);
2477 
2478     // Otherwise, if the expression is the result, evaluate it
2479     // and remember the result.
2480     } else if (semantic == resultExpr) {
2481       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2482 
2483     // Otherwise, evaluate the expression in an ignored context.
2484     } else {
2485       CGF.EmitIgnoredExpr(semantic);
2486     }
2487   }
2488 
2489   // Unbind all the opaques now.
2490   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2491     opaques[i].unbind(CGF);
2492 
2493   return result;
2494 }
2495 
2496 static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction & CGF,const Expr * e)2497 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2498   // We should *never* see a nested full-expression here, because if
2499   // we fail to emit at +1, our caller must not retain after we close
2500   // out the full-expression.
2501   assert(!isa<ExprWithCleanups>(e));
2502 
2503   // The desired result type, if it differs from the type of the
2504   // ultimate opaque expression.
2505   llvm::Type *resultType = 0;
2506 
2507   while (true) {
2508     e = e->IgnoreParens();
2509 
2510     // There's a break at the end of this if-chain;  anything
2511     // that wants to keep looping has to explicitly continue.
2512     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2513       switch (ce->getCastKind()) {
2514       // No-op casts don't change the type, so we just ignore them.
2515       case CK_NoOp:
2516         e = ce->getSubExpr();
2517         continue;
2518 
2519       case CK_LValueToRValue: {
2520         TryEmitResult loadResult
2521           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2522         if (resultType) {
2523           llvm::Value *value = loadResult.getPointer();
2524           value = CGF.Builder.CreateBitCast(value, resultType);
2525           loadResult.setPointer(value);
2526         }
2527         return loadResult;
2528       }
2529 
2530       // These casts can change the type, so remember that and
2531       // soldier on.  We only need to remember the outermost such
2532       // cast, though.
2533       case CK_CPointerToObjCPointerCast:
2534       case CK_BlockPointerToObjCPointerCast:
2535       case CK_AnyPointerToBlockPointerCast:
2536       case CK_BitCast:
2537         if (!resultType)
2538           resultType = CGF.ConvertType(ce->getType());
2539         e = ce->getSubExpr();
2540         assert(e->getType()->hasPointerRepresentation());
2541         continue;
2542 
2543       // For consumptions, just emit the subexpression and thus elide
2544       // the retain/release pair.
2545       case CK_ARCConsumeObject: {
2546         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2547         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2548         return TryEmitResult(result, true);
2549       }
2550 
2551       // Block extends are net +0.  Naively, we could just recurse on
2552       // the subexpression, but actually we need to ensure that the
2553       // value is copied as a block, so there's a little filter here.
2554       case CK_ARCExtendBlockObject: {
2555         llvm::Value *result; // will be a +0 value
2556 
2557         // If we can't safely assume the sub-expression will produce a
2558         // block-copied value, emit the sub-expression at +0.
2559         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2560           result = CGF.EmitScalarExpr(ce->getSubExpr());
2561 
2562         // Otherwise, try to emit the sub-expression at +1 recursively.
2563         } else {
2564           TryEmitResult subresult
2565             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2566           result = subresult.getPointer();
2567 
2568           // If that produced a retained value, just use that,
2569           // possibly casting down.
2570           if (subresult.getInt()) {
2571             if (resultType)
2572               result = CGF.Builder.CreateBitCast(result, resultType);
2573             return TryEmitResult(result, true);
2574           }
2575 
2576           // Otherwise it's +0.
2577         }
2578 
2579         // Retain the object as a block, then cast down.
2580         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2581         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2582         return TryEmitResult(result, true);
2583       }
2584 
2585       // For reclaims, emit the subexpression as a retained call and
2586       // skip the consumption.
2587       case CK_ARCReclaimReturnedObject: {
2588         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2589         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2590         return TryEmitResult(result, true);
2591       }
2592 
2593       default:
2594         break;
2595       }
2596 
2597     // Skip __extension__.
2598     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2599       if (op->getOpcode() == UO_Extension) {
2600         e = op->getSubExpr();
2601         continue;
2602       }
2603 
2604     // For calls and message sends, use the retained-call logic.
2605     // Delegate inits are a special case in that they're the only
2606     // returns-retained expression that *isn't* surrounded by
2607     // a consume.
2608     } else if (isa<CallExpr>(e) ||
2609                (isa<ObjCMessageExpr>(e) &&
2610                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2611       llvm::Value *result = emitARCRetainCall(CGF, e);
2612       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2613       return TryEmitResult(result, true);
2614 
2615     // Look through pseudo-object expressions.
2616     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2617       TryEmitResult result
2618         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2619       if (resultType) {
2620         llvm::Value *value = result.getPointer();
2621         value = CGF.Builder.CreateBitCast(value, resultType);
2622         result.setPointer(value);
2623       }
2624       return result;
2625     }
2626 
2627     // Conservatively halt the search at any other expression kind.
2628     break;
2629   }
2630 
2631   // We didn't find an obvious production, so emit what we've got and
2632   // tell the caller that we didn't manage to retain.
2633   llvm::Value *result = CGF.EmitScalarExpr(e);
2634   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2635   return TryEmitResult(result, false);
2636 }
2637 
emitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2638 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2639                                                 LValue lvalue,
2640                                                 QualType type) {
2641   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2642   llvm::Value *value = result.getPointer();
2643   if (!result.getInt())
2644     value = CGF.EmitARCRetain(type, value);
2645   return value;
2646 }
2647 
2648 /// EmitARCRetainScalarExpr - Semantically equivalent to
2649 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2650 /// best-effort attempt to peephole expressions that naturally produce
2651 /// retained objects.
EmitARCRetainScalarExpr(const Expr * e)2652 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2653   // The retain needs to happen within the full-expression.
2654   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2655     enterFullExpression(cleanups);
2656     RunCleanupsScope scope(*this);
2657     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2658   }
2659 
2660   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2661   llvm::Value *value = result.getPointer();
2662   if (!result.getInt())
2663     value = EmitARCRetain(e->getType(), value);
2664   return value;
2665 }
2666 
2667 llvm::Value *
EmitARCRetainAutoreleaseScalarExpr(const Expr * e)2668 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2669   // The retain needs to happen within the full-expression.
2670   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2671     enterFullExpression(cleanups);
2672     RunCleanupsScope scope(*this);
2673     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2674   }
2675 
2676   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2677   llvm::Value *value = result.getPointer();
2678   if (result.getInt())
2679     value = EmitARCAutorelease(value);
2680   else
2681     value = EmitARCRetainAutorelease(e->getType(), value);
2682   return value;
2683 }
2684 
EmitARCExtendBlockObject(const Expr * e)2685 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2686   llvm::Value *result;
2687   bool doRetain;
2688 
2689   if (shouldEmitSeparateBlockRetain(e)) {
2690     result = EmitScalarExpr(e);
2691     doRetain = true;
2692   } else {
2693     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2694     result = subresult.getPointer();
2695     doRetain = !subresult.getInt();
2696   }
2697 
2698   if (doRetain)
2699     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2700   return EmitObjCConsumeObject(e->getType(), result);
2701 }
2702 
EmitObjCThrowOperand(const Expr * expr)2703 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2704   // In ARC, retain and autorelease the expression.
2705   if (getLangOpts().ObjCAutoRefCount) {
2706     // Do so before running any cleanups for the full-expression.
2707     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2708     return EmitARCRetainAutoreleaseScalarExpr(expr);
2709   }
2710 
2711   // Otherwise, use the normal scalar-expression emission.  The
2712   // exception machinery doesn't do anything special with the
2713   // exception like retaining it, so there's no safety associated with
2714   // only running cleanups after the throw has started, and when it
2715   // matters it tends to be substantially inferior code.
2716   return EmitScalarExpr(expr);
2717 }
2718 
2719 std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator * e,bool ignored)2720 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2721                                     bool ignored) {
2722   // Evaluate the RHS first.
2723   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2724   llvm::Value *value = result.getPointer();
2725 
2726   bool hasImmediateRetain = result.getInt();
2727 
2728   // If we didn't emit a retained object, and the l-value is of block
2729   // type, then we need to emit the block-retain immediately in case
2730   // it invalidates the l-value.
2731   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2732     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2733     hasImmediateRetain = true;
2734   }
2735 
2736   LValue lvalue = EmitLValue(e->getLHS());
2737 
2738   // If the RHS was emitted retained, expand this.
2739   if (hasImmediateRetain) {
2740     llvm::Value *oldValue =
2741       EmitLoadOfScalar(lvalue);
2742     EmitStoreOfScalar(value, lvalue);
2743     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2744   } else {
2745     value = EmitARCStoreStrong(lvalue, value, ignored);
2746   }
2747 
2748   return std::pair<LValue,llvm::Value*>(lvalue, value);
2749 }
2750 
2751 std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator * e)2752 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2753   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2754   LValue lvalue = EmitLValue(e->getLHS());
2755 
2756   EmitStoreOfScalar(value, lvalue);
2757 
2758   return std::pair<LValue,llvm::Value*>(lvalue, value);
2759 }
2760 
EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt & ARPS)2761 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2762                                           const ObjCAutoreleasePoolStmt &ARPS) {
2763   const Stmt *subStmt = ARPS.getSubStmt();
2764   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2765 
2766   CGDebugInfo *DI = getDebugInfo();
2767   if (DI)
2768     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2769 
2770   // Keep track of the current cleanup stack depth.
2771   RunCleanupsScope Scope(*this);
2772   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2773     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2774     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2775   } else {
2776     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2777     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2778   }
2779 
2780   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2781        E = S.body_end(); I != E; ++I)
2782     EmitStmt(*I);
2783 
2784   if (DI)
2785     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2786 }
2787 
2788 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2789 /// make sure it survives garbage collection until this point.
EmitExtendGCLifetime(llvm::Value * object)2790 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2791   // We just use an inline assembly.
2792   llvm::FunctionType *extenderType
2793     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2794   llvm::Value *extender
2795     = llvm::InlineAsm::get(extenderType,
2796                            /* assembly */ "",
2797                            /* constraints */ "r",
2798                            /* side effects */ true);
2799 
2800   object = Builder.CreateBitCast(object, VoidPtrTy);
2801   EmitNounwindRuntimeCall(extender, object);
2802 }
2803 
2804 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2805 /// non-trivial copy assignment function, produce following helper function.
2806 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2807 ///
2808 llvm::Constant *
GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)2809 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2810                                         const ObjCPropertyImplDecl *PID) {
2811   if (!getLangOpts().CPlusPlus ||
2812       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2813     return 0;
2814   QualType Ty = PID->getPropertyIvarDecl()->getType();
2815   if (!Ty->isRecordType())
2816     return 0;
2817   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2818   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2819     return 0;
2820   llvm::Constant * HelperFn = 0;
2821   if (hasTrivialSetExpr(PID))
2822     return 0;
2823   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2824   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2825     return HelperFn;
2826 
2827   ASTContext &C = getContext();
2828   IdentifierInfo *II
2829     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2830   FunctionDecl *FD = FunctionDecl::Create(C,
2831                                           C.getTranslationUnitDecl(),
2832                                           SourceLocation(),
2833                                           SourceLocation(), II, C.VoidTy, 0,
2834                                           SC_Static,
2835                                           SC_None,
2836                                           false,
2837                                           false);
2838 
2839   QualType DestTy = C.getPointerType(Ty);
2840   QualType SrcTy = Ty;
2841   SrcTy.addConst();
2842   SrcTy = C.getPointerType(SrcTy);
2843 
2844   FunctionArgList args;
2845   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2846   args.push_back(&dstDecl);
2847   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2848   args.push_back(&srcDecl);
2849 
2850   const CGFunctionInfo &FI =
2851     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2852                                               FunctionType::ExtInfo(),
2853                                               RequiredArgs::All);
2854 
2855   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2856 
2857   llvm::Function *Fn =
2858     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2859                            "__assign_helper_atomic_property_",
2860                            &CGM.getModule());
2861 
2862   // Initialize debug info if needed.
2863   maybeInitializeDebugInfo();
2864 
2865   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2866 
2867   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2868                       VK_RValue, SourceLocation());
2869   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2870                     VK_LValue, OK_Ordinary, SourceLocation());
2871 
2872   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2873                       VK_RValue, SourceLocation());
2874   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2875                     VK_LValue, OK_Ordinary, SourceLocation());
2876 
2877   Expr *Args[2] = { &DST, &SRC };
2878   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2879   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2880                               Args, DestTy->getPointeeType(),
2881                               VK_LValue, SourceLocation(), false);
2882 
2883   EmitStmt(&TheCall);
2884 
2885   FinishFunction();
2886   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2887   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2888   return HelperFn;
2889 }
2890 
2891 llvm::Constant *
GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)2892 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2893                                             const ObjCPropertyImplDecl *PID) {
2894   if (!getLangOpts().CPlusPlus ||
2895       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2896     return 0;
2897   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2898   QualType Ty = PD->getType();
2899   if (!Ty->isRecordType())
2900     return 0;
2901   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2902     return 0;
2903   llvm::Constant * HelperFn = 0;
2904 
2905   if (hasTrivialGetExpr(PID))
2906     return 0;
2907   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2908   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2909     return HelperFn;
2910 
2911 
2912   ASTContext &C = getContext();
2913   IdentifierInfo *II
2914   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2915   FunctionDecl *FD = FunctionDecl::Create(C,
2916                                           C.getTranslationUnitDecl(),
2917                                           SourceLocation(),
2918                                           SourceLocation(), II, C.VoidTy, 0,
2919                                           SC_Static,
2920                                           SC_None,
2921                                           false,
2922                                           false);
2923 
2924   QualType DestTy = C.getPointerType(Ty);
2925   QualType SrcTy = Ty;
2926   SrcTy.addConst();
2927   SrcTy = C.getPointerType(SrcTy);
2928 
2929   FunctionArgList args;
2930   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2931   args.push_back(&dstDecl);
2932   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2933   args.push_back(&srcDecl);
2934 
2935   const CGFunctionInfo &FI =
2936   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2937                                             FunctionType::ExtInfo(),
2938                                             RequiredArgs::All);
2939 
2940   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2941 
2942   llvm::Function *Fn =
2943   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2944                          "__copy_helper_atomic_property_", &CGM.getModule());
2945 
2946   // Initialize debug info if needed.
2947   maybeInitializeDebugInfo();
2948 
2949   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2950 
2951   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2952                       VK_RValue, SourceLocation());
2953 
2954   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2955                     VK_LValue, OK_Ordinary, SourceLocation());
2956 
2957   CXXConstructExpr *CXXConstExpr =
2958     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2959 
2960   SmallVector<Expr*, 4> ConstructorArgs;
2961   ConstructorArgs.push_back(&SRC);
2962   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
2963   ++A;
2964 
2965   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
2966        A != AEnd; ++A)
2967     ConstructorArgs.push_back(*A);
2968 
2969   CXXConstructExpr *TheCXXConstructExpr =
2970     CXXConstructExpr::Create(C, Ty, SourceLocation(),
2971                              CXXConstExpr->getConstructor(),
2972                              CXXConstExpr->isElidable(),
2973                              ConstructorArgs,
2974                              CXXConstExpr->hadMultipleCandidates(),
2975                              CXXConstExpr->isListInitialization(),
2976                              CXXConstExpr->requiresZeroInitialization(),
2977                              CXXConstExpr->getConstructionKind(),
2978                              SourceRange());
2979 
2980   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2981                       VK_RValue, SourceLocation());
2982 
2983   RValue DV = EmitAnyExpr(&DstExpr);
2984   CharUnits Alignment
2985     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
2986   EmitAggExpr(TheCXXConstructExpr,
2987               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
2988                                     AggValueSlot::IsDestructed,
2989                                     AggValueSlot::DoesNotNeedGCBarriers,
2990                                     AggValueSlot::IsNotAliased));
2991 
2992   FinishFunction();
2993   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2994   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
2995   return HelperFn;
2996 }
2997 
2998 llvm::Value *
EmitBlockCopyAndAutorelease(llvm::Value * Block,QualType Ty)2999 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3000   // Get selectors for retain/autorelease.
3001   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3002   Selector CopySelector =
3003       getContext().Selectors.getNullarySelector(CopyID);
3004   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3005   Selector AutoreleaseSelector =
3006       getContext().Selectors.getNullarySelector(AutoreleaseID);
3007 
3008   // Emit calls to retain/autorelease.
3009   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3010   llvm::Value *Val = Block;
3011   RValue Result;
3012   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3013                                        Ty, CopySelector,
3014                                        Val, CallArgList(), 0, 0);
3015   Val = Result.getScalarVal();
3016   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3017                                        Ty, AutoreleaseSelector,
3018                                        Val, CallArgList(), 0, 0);
3019   Val = Result.getScalarVal();
3020   return Val;
3021 }
3022 
3023 
~CGObjCRuntime()3024 CGObjCRuntime::~CGObjCRuntime() {}
3025