1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27
28 //===----------------------------------------------------------------------===//
29 // Statement Emission
30 //===----------------------------------------------------------------------===//
31
EmitStopPoint(const Stmt * S)32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33 if (CGDebugInfo *DI = getDebugInfo()) {
34 SourceLocation Loc;
35 if (isa<DeclStmt>(S))
36 Loc = S->getLocEnd();
37 else
38 Loc = S->getLocStart();
39 DI->EmitLocation(Builder, Loc);
40 }
41 }
42
EmitStmt(const Stmt * S)43 void CodeGenFunction::EmitStmt(const Stmt *S) {
44 assert(S && "Null statement?");
45
46 // These statements have their own debug info handling.
47 if (EmitSimpleStmt(S))
48 return;
49
50 // Check if we are generating unreachable code.
51 if (!HaveInsertPoint()) {
52 // If so, and the statement doesn't contain a label, then we do not need to
53 // generate actual code. This is safe because (1) the current point is
54 // unreachable, so we don't need to execute the code, and (2) we've already
55 // handled the statements which update internal data structures (like the
56 // local variable map) which could be used by subsequent statements.
57 if (!ContainsLabel(S)) {
58 // Verify that any decl statements were handled as simple, they may be in
59 // scope of subsequent reachable statements.
60 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61 return;
62 }
63
64 // Otherwise, make a new block to hold the code.
65 EnsureInsertPoint();
66 }
67
68 // Generate a stoppoint if we are emitting debug info.
69 EmitStopPoint(S);
70
71 switch (S->getStmtClass()) {
72 case Stmt::NoStmtClass:
73 case Stmt::CXXCatchStmtClass:
74 case Stmt::SEHExceptStmtClass:
75 case Stmt::SEHFinallyStmtClass:
76 case Stmt::MSDependentExistsStmtClass:
77 llvm_unreachable("invalid statement class to emit generically");
78 case Stmt::NullStmtClass:
79 case Stmt::CompoundStmtClass:
80 case Stmt::DeclStmtClass:
81 case Stmt::LabelStmtClass:
82 case Stmt::AttributedStmtClass:
83 case Stmt::GotoStmtClass:
84 case Stmt::BreakStmtClass:
85 case Stmt::ContinueStmtClass:
86 case Stmt::DefaultStmtClass:
87 case Stmt::CaseStmtClass:
88 llvm_unreachable("should have emitted these statements as simple");
89
90 #define STMT(Type, Base)
91 #define ABSTRACT_STMT(Op)
92 #define EXPR(Type, Base) \
93 case Stmt::Type##Class:
94 #include "clang/AST/StmtNodes.inc"
95 {
96 // Remember the block we came in on.
97 llvm::BasicBlock *incoming = Builder.GetInsertBlock();
98 assert(incoming && "expression emission must have an insertion point");
99
100 EmitIgnoredExpr(cast<Expr>(S));
101
102 llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
103 assert(outgoing && "expression emission cleared block!");
104
105 // The expression emitters assume (reasonably!) that the insertion
106 // point is always set. To maintain that, the call-emission code
107 // for noreturn functions has to enter a new block with no
108 // predecessors. We want to kill that block and mark the current
109 // insertion point unreachable in the common case of a call like
110 // "exit();". Since expression emission doesn't otherwise create
111 // blocks with no predecessors, we can just test for that.
112 // However, we must be careful not to do this to our incoming
113 // block, because *statement* emission does sometimes create
114 // reachable blocks which will have no predecessors until later in
115 // the function. This occurs with, e.g., labels that are not
116 // reachable by fallthrough.
117 if (incoming != outgoing && outgoing->use_empty()) {
118 outgoing->eraseFromParent();
119 Builder.ClearInsertionPoint();
120 }
121 break;
122 }
123
124 case Stmt::IndirectGotoStmtClass:
125 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
126
127 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
128 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break;
129 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break;
130 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break;
131
132 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
133
134 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
135 case Stmt::GCCAsmStmtClass: // Intentional fall-through.
136 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
137
138 case Stmt::ObjCAtTryStmtClass:
139 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
140 break;
141 case Stmt::ObjCAtCatchStmtClass:
142 llvm_unreachable(
143 "@catch statements should be handled by EmitObjCAtTryStmt");
144 case Stmt::ObjCAtFinallyStmtClass:
145 llvm_unreachable(
146 "@finally statements should be handled by EmitObjCAtTryStmt");
147 case Stmt::ObjCAtThrowStmtClass:
148 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
149 break;
150 case Stmt::ObjCAtSynchronizedStmtClass:
151 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
152 break;
153 case Stmt::ObjCForCollectionStmtClass:
154 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
155 break;
156 case Stmt::ObjCAutoreleasePoolStmtClass:
157 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
158 break;
159
160 case Stmt::CXXTryStmtClass:
161 EmitCXXTryStmt(cast<CXXTryStmt>(*S));
162 break;
163 case Stmt::CXXForRangeStmtClass:
164 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
165 case Stmt::SEHTryStmtClass:
166 // FIXME Not yet implemented
167 break;
168 }
169 }
170
EmitSimpleStmt(const Stmt * S)171 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
172 switch (S->getStmtClass()) {
173 default: return false;
174 case Stmt::NullStmtClass: break;
175 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
176 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
177 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
178 case Stmt::AttributedStmtClass:
179 EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
180 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
181 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break;
182 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
183 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break;
184 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break;
185 }
186
187 return true;
188 }
189
190 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
191 /// this captures the expression result of the last sub-statement and returns it
192 /// (for use by the statement expression extension).
EmitCompoundStmt(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)193 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
194 AggValueSlot AggSlot) {
195 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
196 "LLVM IR generation of compound statement ('{}')");
197
198 // Keep track of the current cleanup stack depth, including debug scopes.
199 LexicalScope Scope(*this, S.getSourceRange());
200
201 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
202 }
203
EmitCompoundStmtWithoutScope(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)204 RValue CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast,
205 AggValueSlot AggSlot) {
206
207 for (CompoundStmt::const_body_iterator I = S.body_begin(),
208 E = S.body_end()-GetLast; I != E; ++I)
209 EmitStmt(*I);
210
211 RValue RV;
212 if (!GetLast)
213 RV = RValue::get(0);
214 else {
215 // We have to special case labels here. They are statements, but when put
216 // at the end of a statement expression, they yield the value of their
217 // subexpression. Handle this by walking through all labels we encounter,
218 // emitting them before we evaluate the subexpr.
219 const Stmt *LastStmt = S.body_back();
220 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
221 EmitLabel(LS->getDecl());
222 LastStmt = LS->getSubStmt();
223 }
224
225 EnsureInsertPoint();
226
227 RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
228 }
229
230 return RV;
231 }
232
SimplifyForwardingBlocks(llvm::BasicBlock * BB)233 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
234 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
235
236 // If there is a cleanup stack, then we it isn't worth trying to
237 // simplify this block (we would need to remove it from the scope map
238 // and cleanup entry).
239 if (!EHStack.empty())
240 return;
241
242 // Can only simplify direct branches.
243 if (!BI || !BI->isUnconditional())
244 return;
245
246 // Can only simplify empty blocks.
247 if (BI != BB->begin())
248 return;
249
250 BB->replaceAllUsesWith(BI->getSuccessor(0));
251 BI->eraseFromParent();
252 BB->eraseFromParent();
253 }
254
EmitBlock(llvm::BasicBlock * BB,bool IsFinished)255 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
256 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
257
258 // Fall out of the current block (if necessary).
259 EmitBranch(BB);
260
261 if (IsFinished && BB->use_empty()) {
262 delete BB;
263 return;
264 }
265
266 // Place the block after the current block, if possible, or else at
267 // the end of the function.
268 if (CurBB && CurBB->getParent())
269 CurFn->getBasicBlockList().insertAfter(CurBB, BB);
270 else
271 CurFn->getBasicBlockList().push_back(BB);
272 Builder.SetInsertPoint(BB);
273 }
274
EmitBranch(llvm::BasicBlock * Target)275 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
276 // Emit a branch from the current block to the target one if this
277 // was a real block. If this was just a fall-through block after a
278 // terminator, don't emit it.
279 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
280
281 if (!CurBB || CurBB->getTerminator()) {
282 // If there is no insert point or the previous block is already
283 // terminated, don't touch it.
284 } else {
285 // Otherwise, create a fall-through branch.
286 Builder.CreateBr(Target);
287 }
288
289 Builder.ClearInsertionPoint();
290 }
291
EmitBlockAfterUses(llvm::BasicBlock * block)292 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
293 bool inserted = false;
294 for (llvm::BasicBlock::use_iterator
295 i = block->use_begin(), e = block->use_end(); i != e; ++i) {
296 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
297 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
298 inserted = true;
299 break;
300 }
301 }
302
303 if (!inserted)
304 CurFn->getBasicBlockList().push_back(block);
305
306 Builder.SetInsertPoint(block);
307 }
308
309 CodeGenFunction::JumpDest
getJumpDestForLabel(const LabelDecl * D)310 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
311 JumpDest &Dest = LabelMap[D];
312 if (Dest.isValid()) return Dest;
313
314 // Create, but don't insert, the new block.
315 Dest = JumpDest(createBasicBlock(D->getName()),
316 EHScopeStack::stable_iterator::invalid(),
317 NextCleanupDestIndex++);
318 return Dest;
319 }
320
EmitLabel(const LabelDecl * D)321 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
322 JumpDest &Dest = LabelMap[D];
323
324 // If we didn't need a forward reference to this label, just go
325 // ahead and create a destination at the current scope.
326 if (!Dest.isValid()) {
327 Dest = getJumpDestInCurrentScope(D->getName());
328
329 // Otherwise, we need to give this label a target depth and remove
330 // it from the branch-fixups list.
331 } else {
332 assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
333 Dest = JumpDest(Dest.getBlock(),
334 EHStack.stable_begin(),
335 Dest.getDestIndex());
336
337 ResolveBranchFixups(Dest.getBlock());
338 }
339
340 EmitBlock(Dest.getBlock());
341 }
342
343
EmitLabelStmt(const LabelStmt & S)344 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
345 EmitLabel(S.getDecl());
346 EmitStmt(S.getSubStmt());
347 }
348
EmitAttributedStmt(const AttributedStmt & S)349 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
350 EmitStmt(S.getSubStmt());
351 }
352
EmitGotoStmt(const GotoStmt & S)353 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
354 // If this code is reachable then emit a stop point (if generating
355 // debug info). We have to do this ourselves because we are on the
356 // "simple" statement path.
357 if (HaveInsertPoint())
358 EmitStopPoint(&S);
359
360 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
361 }
362
363
EmitIndirectGotoStmt(const IndirectGotoStmt & S)364 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
365 if (const LabelDecl *Target = S.getConstantTarget()) {
366 EmitBranchThroughCleanup(getJumpDestForLabel(Target));
367 return;
368 }
369
370 // Ensure that we have an i8* for our PHI node.
371 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
372 Int8PtrTy, "addr");
373 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
374
375 // Get the basic block for the indirect goto.
376 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
377
378 // The first instruction in the block has to be the PHI for the switch dest,
379 // add an entry for this branch.
380 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
381
382 EmitBranch(IndGotoBB);
383 }
384
EmitIfStmt(const IfStmt & S)385 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
386 // C99 6.8.4.1: The first substatement is executed if the expression compares
387 // unequal to 0. The condition must be a scalar type.
388 RunCleanupsScope ConditionScope(*this);
389
390 if (S.getConditionVariable())
391 EmitAutoVarDecl(*S.getConditionVariable());
392
393 // If the condition constant folds and can be elided, try to avoid emitting
394 // the condition and the dead arm of the if/else.
395 bool CondConstant;
396 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
397 // Figure out which block (then or else) is executed.
398 const Stmt *Executed = S.getThen();
399 const Stmt *Skipped = S.getElse();
400 if (!CondConstant) // Condition false?
401 std::swap(Executed, Skipped);
402
403 // If the skipped block has no labels in it, just emit the executed block.
404 // This avoids emitting dead code and simplifies the CFG substantially.
405 if (!ContainsLabel(Skipped)) {
406 if (Executed) {
407 RunCleanupsScope ExecutedScope(*this);
408 EmitStmt(Executed);
409 }
410 return;
411 }
412 }
413
414 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
415 // the conditional branch.
416 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
417 llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
418 llvm::BasicBlock *ElseBlock = ContBlock;
419 if (S.getElse())
420 ElseBlock = createBasicBlock("if.else");
421 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
422
423 // Emit the 'then' code.
424 EmitBlock(ThenBlock);
425 {
426 RunCleanupsScope ThenScope(*this);
427 EmitStmt(S.getThen());
428 }
429 EmitBranch(ContBlock);
430
431 // Emit the 'else' code if present.
432 if (const Stmt *Else = S.getElse()) {
433 // There is no need to emit line number for unconditional branch.
434 if (getDebugInfo())
435 Builder.SetCurrentDebugLocation(llvm::DebugLoc());
436 EmitBlock(ElseBlock);
437 {
438 RunCleanupsScope ElseScope(*this);
439 EmitStmt(Else);
440 }
441 // There is no need to emit line number for unconditional branch.
442 if (getDebugInfo())
443 Builder.SetCurrentDebugLocation(llvm::DebugLoc());
444 EmitBranch(ContBlock);
445 }
446
447 // Emit the continuation block for code after the if.
448 EmitBlock(ContBlock, true);
449 }
450
EmitWhileStmt(const WhileStmt & S)451 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
452 // Emit the header for the loop, which will also become
453 // the continue target.
454 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
455 EmitBlock(LoopHeader.getBlock());
456
457 // Create an exit block for when the condition fails, which will
458 // also become the break target.
459 JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
460
461 // Store the blocks to use for break and continue.
462 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
463
464 // C++ [stmt.while]p2:
465 // When the condition of a while statement is a declaration, the
466 // scope of the variable that is declared extends from its point
467 // of declaration (3.3.2) to the end of the while statement.
468 // [...]
469 // The object created in a condition is destroyed and created
470 // with each iteration of the loop.
471 RunCleanupsScope ConditionScope(*this);
472
473 if (S.getConditionVariable())
474 EmitAutoVarDecl(*S.getConditionVariable());
475
476 // Evaluate the conditional in the while header. C99 6.8.5.1: The
477 // evaluation of the controlling expression takes place before each
478 // execution of the loop body.
479 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
480
481 // while(1) is common, avoid extra exit blocks. Be sure
482 // to correctly handle break/continue though.
483 bool EmitBoolCondBranch = true;
484 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
485 if (C->isOne())
486 EmitBoolCondBranch = false;
487
488 // As long as the condition is true, go to the loop body.
489 llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
490 if (EmitBoolCondBranch) {
491 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
492 if (ConditionScope.requiresCleanups())
493 ExitBlock = createBasicBlock("while.exit");
494
495 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
496
497 if (ExitBlock != LoopExit.getBlock()) {
498 EmitBlock(ExitBlock);
499 EmitBranchThroughCleanup(LoopExit);
500 }
501 }
502
503 // Emit the loop body. We have to emit this in a cleanup scope
504 // because it might be a singleton DeclStmt.
505 {
506 RunCleanupsScope BodyScope(*this);
507 EmitBlock(LoopBody);
508 EmitStmt(S.getBody());
509 }
510
511 BreakContinueStack.pop_back();
512
513 // Immediately force cleanup.
514 ConditionScope.ForceCleanup();
515
516 // Branch to the loop header again.
517 EmitBranch(LoopHeader.getBlock());
518
519 // Emit the exit block.
520 EmitBlock(LoopExit.getBlock(), true);
521
522 // The LoopHeader typically is just a branch if we skipped emitting
523 // a branch, try to erase it.
524 if (!EmitBoolCondBranch)
525 SimplifyForwardingBlocks(LoopHeader.getBlock());
526 }
527
EmitDoStmt(const DoStmt & S)528 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
529 JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
530 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
531
532 // Store the blocks to use for break and continue.
533 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
534
535 // Emit the body of the loop.
536 llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
537 EmitBlock(LoopBody);
538 {
539 RunCleanupsScope BodyScope(*this);
540 EmitStmt(S.getBody());
541 }
542
543 BreakContinueStack.pop_back();
544
545 EmitBlock(LoopCond.getBlock());
546
547 // C99 6.8.5.2: "The evaluation of the controlling expression takes place
548 // after each execution of the loop body."
549
550 // Evaluate the conditional in the while header.
551 // C99 6.8.5p2/p4: The first substatement is executed if the expression
552 // compares unequal to 0. The condition must be a scalar type.
553 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
554
555 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
556 // to correctly handle break/continue though.
557 bool EmitBoolCondBranch = true;
558 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
559 if (C->isZero())
560 EmitBoolCondBranch = false;
561
562 // As long as the condition is true, iterate the loop.
563 if (EmitBoolCondBranch)
564 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
565
566 // Emit the exit block.
567 EmitBlock(LoopExit.getBlock());
568
569 // The DoCond block typically is just a branch if we skipped
570 // emitting a branch, try to erase it.
571 if (!EmitBoolCondBranch)
572 SimplifyForwardingBlocks(LoopCond.getBlock());
573 }
574
EmitForStmt(const ForStmt & S)575 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
576 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
577
578 RunCleanupsScope ForScope(*this);
579
580 CGDebugInfo *DI = getDebugInfo();
581 if (DI)
582 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
583
584 // Evaluate the first part before the loop.
585 if (S.getInit())
586 EmitStmt(S.getInit());
587
588 // Start the loop with a block that tests the condition.
589 // If there's an increment, the continue scope will be overwritten
590 // later.
591 JumpDest Continue = getJumpDestInCurrentScope("for.cond");
592 llvm::BasicBlock *CondBlock = Continue.getBlock();
593 EmitBlock(CondBlock);
594
595 // Create a cleanup scope for the condition variable cleanups.
596 RunCleanupsScope ConditionScope(*this);
597
598 llvm::Value *BoolCondVal = 0;
599 if (S.getCond()) {
600 // If the for statement has a condition scope, emit the local variable
601 // declaration.
602 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
603 if (S.getConditionVariable()) {
604 EmitAutoVarDecl(*S.getConditionVariable());
605 }
606
607 // If there are any cleanups between here and the loop-exit scope,
608 // create a block to stage a loop exit along.
609 if (ForScope.requiresCleanups())
610 ExitBlock = createBasicBlock("for.cond.cleanup");
611
612 // As long as the condition is true, iterate the loop.
613 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
614
615 // C99 6.8.5p2/p4: The first substatement is executed if the expression
616 // compares unequal to 0. The condition must be a scalar type.
617 BoolCondVal = EvaluateExprAsBool(S.getCond());
618 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
619
620 if (ExitBlock != LoopExit.getBlock()) {
621 EmitBlock(ExitBlock);
622 EmitBranchThroughCleanup(LoopExit);
623 }
624
625 EmitBlock(ForBody);
626 } else {
627 // Treat it as a non-zero constant. Don't even create a new block for the
628 // body, just fall into it.
629 }
630
631 // If the for loop doesn't have an increment we can just use the
632 // condition as the continue block. Otherwise we'll need to create
633 // a block for it (in the current scope, i.e. in the scope of the
634 // condition), and that we will become our continue block.
635 if (S.getInc())
636 Continue = getJumpDestInCurrentScope("for.inc");
637
638 // Store the blocks to use for break and continue.
639 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
640
641 {
642 // Create a separate cleanup scope for the body, in case it is not
643 // a compound statement.
644 RunCleanupsScope BodyScope(*this);
645 EmitStmt(S.getBody());
646 }
647
648 // If there is an increment, emit it next.
649 if (S.getInc()) {
650 EmitBlock(Continue.getBlock());
651 EmitStmt(S.getInc());
652 }
653
654 BreakContinueStack.pop_back();
655
656 ConditionScope.ForceCleanup();
657 EmitBranch(CondBlock);
658
659 ForScope.ForceCleanup();
660
661 if (DI)
662 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
663
664 // Emit the fall-through block.
665 EmitBlock(LoopExit.getBlock(), true);
666 }
667
EmitCXXForRangeStmt(const CXXForRangeStmt & S)668 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
669 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
670
671 RunCleanupsScope ForScope(*this);
672
673 CGDebugInfo *DI = getDebugInfo();
674 if (DI)
675 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
676
677 // Evaluate the first pieces before the loop.
678 EmitStmt(S.getRangeStmt());
679 EmitStmt(S.getBeginEndStmt());
680
681 // Start the loop with a block that tests the condition.
682 // If there's an increment, the continue scope will be overwritten
683 // later.
684 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
685 EmitBlock(CondBlock);
686
687 // If there are any cleanups between here and the loop-exit scope,
688 // create a block to stage a loop exit along.
689 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
690 if (ForScope.requiresCleanups())
691 ExitBlock = createBasicBlock("for.cond.cleanup");
692
693 // The loop body, consisting of the specified body and the loop variable.
694 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
695
696 // The body is executed if the expression, contextually converted
697 // to bool, is true.
698 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
699 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
700
701 if (ExitBlock != LoopExit.getBlock()) {
702 EmitBlock(ExitBlock);
703 EmitBranchThroughCleanup(LoopExit);
704 }
705
706 EmitBlock(ForBody);
707
708 // Create a block for the increment. In case of a 'continue', we jump there.
709 JumpDest Continue = getJumpDestInCurrentScope("for.inc");
710
711 // Store the blocks to use for break and continue.
712 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
713
714 {
715 // Create a separate cleanup scope for the loop variable and body.
716 RunCleanupsScope BodyScope(*this);
717 EmitStmt(S.getLoopVarStmt());
718 EmitStmt(S.getBody());
719 }
720
721 // If there is an increment, emit it next.
722 EmitBlock(Continue.getBlock());
723 EmitStmt(S.getInc());
724
725 BreakContinueStack.pop_back();
726
727 EmitBranch(CondBlock);
728
729 ForScope.ForceCleanup();
730
731 if (DI)
732 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
733
734 // Emit the fall-through block.
735 EmitBlock(LoopExit.getBlock(), true);
736 }
737
EmitReturnOfRValue(RValue RV,QualType Ty)738 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
739 if (RV.isScalar()) {
740 Builder.CreateStore(RV.getScalarVal(), ReturnValue);
741 } else if (RV.isAggregate()) {
742 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
743 } else {
744 EmitStoreOfComplex(RV.getComplexVal(),
745 MakeNaturalAlignAddrLValue(ReturnValue, Ty),
746 /*init*/ true);
747 }
748 EmitBranchThroughCleanup(ReturnBlock);
749 }
750
751 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
752 /// if the function returns void, or may be missing one if the function returns
753 /// non-void. Fun stuff :).
EmitReturnStmt(const ReturnStmt & S)754 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
755 // Emit the result value, even if unused, to evalute the side effects.
756 const Expr *RV = S.getRetValue();
757
758 // Treat block literals in a return expression as if they appeared
759 // in their own scope. This permits a small, easily-implemented
760 // exception to our over-conservative rules about not jumping to
761 // statements following block literals with non-trivial cleanups.
762 RunCleanupsScope cleanupScope(*this);
763 if (const ExprWithCleanups *cleanups =
764 dyn_cast_or_null<ExprWithCleanups>(RV)) {
765 enterFullExpression(cleanups);
766 RV = cleanups->getSubExpr();
767 }
768
769 // FIXME: Clean this up by using an LValue for ReturnTemp,
770 // EmitStoreThroughLValue, and EmitAnyExpr.
771 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
772 !Target.useGlobalsForAutomaticVariables()) {
773 // Apply the named return value optimization for this return statement,
774 // which means doing nothing: the appropriate result has already been
775 // constructed into the NRVO variable.
776
777 // If there is an NRVO flag for this variable, set it to 1 into indicate
778 // that the cleanup code should not destroy the variable.
779 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
780 Builder.CreateStore(Builder.getTrue(), NRVOFlag);
781 } else if (!ReturnValue) {
782 // Make sure not to return anything, but evaluate the expression
783 // for side effects.
784 if (RV)
785 EmitAnyExpr(RV);
786 } else if (RV == 0) {
787 // Do nothing (return value is left uninitialized)
788 } else if (FnRetTy->isReferenceType()) {
789 // If this function returns a reference, take the address of the expression
790 // rather than the value.
791 RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
792 Builder.CreateStore(Result.getScalarVal(), ReturnValue);
793 } else {
794 switch (getEvaluationKind(RV->getType())) {
795 case TEK_Scalar:
796 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
797 break;
798 case TEK_Complex:
799 EmitComplexExprIntoLValue(RV,
800 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
801 /*isInit*/ true);
802 break;
803 case TEK_Aggregate: {
804 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
805 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
806 Qualifiers(),
807 AggValueSlot::IsDestructed,
808 AggValueSlot::DoesNotNeedGCBarriers,
809 AggValueSlot::IsNotAliased));
810 break;
811 }
812 }
813 }
814
815 cleanupScope.ForceCleanup();
816 EmitBranchThroughCleanup(ReturnBlock);
817 }
818
EmitDeclStmt(const DeclStmt & S)819 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
820 // As long as debug info is modeled with instructions, we have to ensure we
821 // have a place to insert here and write the stop point here.
822 if (HaveInsertPoint())
823 EmitStopPoint(&S);
824
825 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
826 I != E; ++I)
827 EmitDecl(**I);
828 }
829
EmitBreakStmt(const BreakStmt & S)830 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
831 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
832
833 // If this code is reachable then emit a stop point (if generating
834 // debug info). We have to do this ourselves because we are on the
835 // "simple" statement path.
836 if (HaveInsertPoint())
837 EmitStopPoint(&S);
838
839 JumpDest Block = BreakContinueStack.back().BreakBlock;
840 EmitBranchThroughCleanup(Block);
841 }
842
EmitContinueStmt(const ContinueStmt & S)843 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
844 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
845
846 // If this code is reachable then emit a stop point (if generating
847 // debug info). We have to do this ourselves because we are on the
848 // "simple" statement path.
849 if (HaveInsertPoint())
850 EmitStopPoint(&S);
851
852 JumpDest Block = BreakContinueStack.back().ContinueBlock;
853 EmitBranchThroughCleanup(Block);
854 }
855
856 /// EmitCaseStmtRange - If case statement range is not too big then
857 /// add multiple cases to switch instruction, one for each value within
858 /// the range. If range is too big then emit "if" condition check.
EmitCaseStmtRange(const CaseStmt & S)859 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
860 assert(S.getRHS() && "Expected RHS value in CaseStmt");
861
862 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
863 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
864
865 // Emit the code for this case. We do this first to make sure it is
866 // properly chained from our predecessor before generating the
867 // switch machinery to enter this block.
868 EmitBlock(createBasicBlock("sw.bb"));
869 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
870 EmitStmt(S.getSubStmt());
871
872 // If range is empty, do nothing.
873 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
874 return;
875
876 llvm::APInt Range = RHS - LHS;
877 // FIXME: parameters such as this should not be hardcoded.
878 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
879 // Range is small enough to add multiple switch instruction cases.
880 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
881 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
882 LHS++;
883 }
884 return;
885 }
886
887 // The range is too big. Emit "if" condition into a new block,
888 // making sure to save and restore the current insertion point.
889 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
890
891 // Push this test onto the chain of range checks (which terminates
892 // in the default basic block). The switch's default will be changed
893 // to the top of this chain after switch emission is complete.
894 llvm::BasicBlock *FalseDest = CaseRangeBlock;
895 CaseRangeBlock = createBasicBlock("sw.caserange");
896
897 CurFn->getBasicBlockList().push_back(CaseRangeBlock);
898 Builder.SetInsertPoint(CaseRangeBlock);
899
900 // Emit range check.
901 llvm::Value *Diff =
902 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
903 llvm::Value *Cond =
904 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
905 Builder.CreateCondBr(Cond, CaseDest, FalseDest);
906
907 // Restore the appropriate insertion point.
908 if (RestoreBB)
909 Builder.SetInsertPoint(RestoreBB);
910 else
911 Builder.ClearInsertionPoint();
912 }
913
EmitCaseStmt(const CaseStmt & S)914 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
915 // If there is no enclosing switch instance that we're aware of, then this
916 // case statement and its block can be elided. This situation only happens
917 // when we've constant-folded the switch, are emitting the constant case,
918 // and part of the constant case includes another case statement. For
919 // instance: switch (4) { case 4: do { case 5: } while (1); }
920 if (!SwitchInsn) {
921 EmitStmt(S.getSubStmt());
922 return;
923 }
924
925 // Handle case ranges.
926 if (S.getRHS()) {
927 EmitCaseStmtRange(S);
928 return;
929 }
930
931 llvm::ConstantInt *CaseVal =
932 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
933
934 // If the body of the case is just a 'break', and if there was no fallthrough,
935 // try to not emit an empty block.
936 if ((CGM.getCodeGenOpts().OptimizationLevel > 0) &&
937 isa<BreakStmt>(S.getSubStmt())) {
938 JumpDest Block = BreakContinueStack.back().BreakBlock;
939
940 // Only do this optimization if there are no cleanups that need emitting.
941 if (isObviouslyBranchWithoutCleanups(Block)) {
942 SwitchInsn->addCase(CaseVal, Block.getBlock());
943
944 // If there was a fallthrough into this case, make sure to redirect it to
945 // the end of the switch as well.
946 if (Builder.GetInsertBlock()) {
947 Builder.CreateBr(Block.getBlock());
948 Builder.ClearInsertionPoint();
949 }
950 return;
951 }
952 }
953
954 EmitBlock(createBasicBlock("sw.bb"));
955 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
956 SwitchInsn->addCase(CaseVal, CaseDest);
957
958 // Recursively emitting the statement is acceptable, but is not wonderful for
959 // code where we have many case statements nested together, i.e.:
960 // case 1:
961 // case 2:
962 // case 3: etc.
963 // Handling this recursively will create a new block for each case statement
964 // that falls through to the next case which is IR intensive. It also causes
965 // deep recursion which can run into stack depth limitations. Handle
966 // sequential non-range case statements specially.
967 const CaseStmt *CurCase = &S;
968 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
969
970 // Otherwise, iteratively add consecutive cases to this switch stmt.
971 while (NextCase && NextCase->getRHS() == 0) {
972 CurCase = NextCase;
973 llvm::ConstantInt *CaseVal =
974 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
975 SwitchInsn->addCase(CaseVal, CaseDest);
976 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
977 }
978
979 // Normal default recursion for non-cases.
980 EmitStmt(CurCase->getSubStmt());
981 }
982
EmitDefaultStmt(const DefaultStmt & S)983 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
984 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
985 assert(DefaultBlock->empty() &&
986 "EmitDefaultStmt: Default block already defined?");
987 EmitBlock(DefaultBlock);
988 EmitStmt(S.getSubStmt());
989 }
990
991 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
992 /// constant value that is being switched on, see if we can dead code eliminate
993 /// the body of the switch to a simple series of statements to emit. Basically,
994 /// on a switch (5) we want to find these statements:
995 /// case 5:
996 /// printf(...); <--
997 /// ++i; <--
998 /// break;
999 ///
1000 /// and add them to the ResultStmts vector. If it is unsafe to do this
1001 /// transformation (for example, one of the elided statements contains a label
1002 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S'
1003 /// should include statements after it (e.g. the printf() line is a substmt of
1004 /// the case) then return CSFC_FallThrough. If we handled it and found a break
1005 /// statement, then return CSFC_Success.
1006 ///
1007 /// If Case is non-null, then we are looking for the specified case, checking
1008 /// that nothing we jump over contains labels. If Case is null, then we found
1009 /// the case and are looking for the break.
1010 ///
1011 /// If the recursive walk actually finds our Case, then we set FoundCase to
1012 /// true.
1013 ///
1014 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
CollectStatementsForCase(const Stmt * S,const SwitchCase * Case,bool & FoundCase,SmallVectorImpl<const Stmt * > & ResultStmts)1015 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1016 const SwitchCase *Case,
1017 bool &FoundCase,
1018 SmallVectorImpl<const Stmt*> &ResultStmts) {
1019 // If this is a null statement, just succeed.
1020 if (S == 0)
1021 return Case ? CSFC_Success : CSFC_FallThrough;
1022
1023 // If this is the switchcase (case 4: or default) that we're looking for, then
1024 // we're in business. Just add the substatement.
1025 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1026 if (S == Case) {
1027 FoundCase = true;
1028 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
1029 ResultStmts);
1030 }
1031
1032 // Otherwise, this is some other case or default statement, just ignore it.
1033 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1034 ResultStmts);
1035 }
1036
1037 // If we are in the live part of the code and we found our break statement,
1038 // return a success!
1039 if (Case == 0 && isa<BreakStmt>(S))
1040 return CSFC_Success;
1041
1042 // If this is a switch statement, then it might contain the SwitchCase, the
1043 // break, or neither.
1044 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1045 // Handle this as two cases: we might be looking for the SwitchCase (if so
1046 // the skipped statements must be skippable) or we might already have it.
1047 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1048 if (Case) {
1049 // Keep track of whether we see a skipped declaration. The code could be
1050 // using the declaration even if it is skipped, so we can't optimize out
1051 // the decl if the kept statements might refer to it.
1052 bool HadSkippedDecl = false;
1053
1054 // If we're looking for the case, just see if we can skip each of the
1055 // substatements.
1056 for (; Case && I != E; ++I) {
1057 HadSkippedDecl |= isa<DeclStmt>(*I);
1058
1059 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1060 case CSFC_Failure: return CSFC_Failure;
1061 case CSFC_Success:
1062 // A successful result means that either 1) that the statement doesn't
1063 // have the case and is skippable, or 2) does contain the case value
1064 // and also contains the break to exit the switch. In the later case,
1065 // we just verify the rest of the statements are elidable.
1066 if (FoundCase) {
1067 // If we found the case and skipped declarations, we can't do the
1068 // optimization.
1069 if (HadSkippedDecl)
1070 return CSFC_Failure;
1071
1072 for (++I; I != E; ++I)
1073 if (CodeGenFunction::ContainsLabel(*I, true))
1074 return CSFC_Failure;
1075 return CSFC_Success;
1076 }
1077 break;
1078 case CSFC_FallThrough:
1079 // If we have a fallthrough condition, then we must have found the
1080 // case started to include statements. Consider the rest of the
1081 // statements in the compound statement as candidates for inclusion.
1082 assert(FoundCase && "Didn't find case but returned fallthrough?");
1083 // We recursively found Case, so we're not looking for it anymore.
1084 Case = 0;
1085
1086 // If we found the case and skipped declarations, we can't do the
1087 // optimization.
1088 if (HadSkippedDecl)
1089 return CSFC_Failure;
1090 break;
1091 }
1092 }
1093 }
1094
1095 // If we have statements in our range, then we know that the statements are
1096 // live and need to be added to the set of statements we're tracking.
1097 for (; I != E; ++I) {
1098 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1099 case CSFC_Failure: return CSFC_Failure;
1100 case CSFC_FallThrough:
1101 // A fallthrough result means that the statement was simple and just
1102 // included in ResultStmt, keep adding them afterwards.
1103 break;
1104 case CSFC_Success:
1105 // A successful result means that we found the break statement and
1106 // stopped statement inclusion. We just ensure that any leftover stmts
1107 // are skippable and return success ourselves.
1108 for (++I; I != E; ++I)
1109 if (CodeGenFunction::ContainsLabel(*I, true))
1110 return CSFC_Failure;
1111 return CSFC_Success;
1112 }
1113 }
1114
1115 return Case ? CSFC_Success : CSFC_FallThrough;
1116 }
1117
1118 // Okay, this is some other statement that we don't handle explicitly, like a
1119 // for statement or increment etc. If we are skipping over this statement,
1120 // just verify it doesn't have labels, which would make it invalid to elide.
1121 if (Case) {
1122 if (CodeGenFunction::ContainsLabel(S, true))
1123 return CSFC_Failure;
1124 return CSFC_Success;
1125 }
1126
1127 // Otherwise, we want to include this statement. Everything is cool with that
1128 // so long as it doesn't contain a break out of the switch we're in.
1129 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1130
1131 // Otherwise, everything is great. Include the statement and tell the caller
1132 // that we fall through and include the next statement as well.
1133 ResultStmts.push_back(S);
1134 return CSFC_FallThrough;
1135 }
1136
1137 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1138 /// then invoke CollectStatementsForCase to find the list of statements to emit
1139 /// for a switch on constant. See the comment above CollectStatementsForCase
1140 /// for more details.
FindCaseStatementsForValue(const SwitchStmt & S,const llvm::APSInt & ConstantCondValue,SmallVectorImpl<const Stmt * > & ResultStmts,ASTContext & C)1141 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1142 const llvm::APSInt &ConstantCondValue,
1143 SmallVectorImpl<const Stmt*> &ResultStmts,
1144 ASTContext &C) {
1145 // First step, find the switch case that is being branched to. We can do this
1146 // efficiently by scanning the SwitchCase list.
1147 const SwitchCase *Case = S.getSwitchCaseList();
1148 const DefaultStmt *DefaultCase = 0;
1149
1150 for (; Case; Case = Case->getNextSwitchCase()) {
1151 // It's either a default or case. Just remember the default statement in
1152 // case we're not jumping to any numbered cases.
1153 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1154 DefaultCase = DS;
1155 continue;
1156 }
1157
1158 // Check to see if this case is the one we're looking for.
1159 const CaseStmt *CS = cast<CaseStmt>(Case);
1160 // Don't handle case ranges yet.
1161 if (CS->getRHS()) return false;
1162
1163 // If we found our case, remember it as 'case'.
1164 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1165 break;
1166 }
1167
1168 // If we didn't find a matching case, we use a default if it exists, or we
1169 // elide the whole switch body!
1170 if (Case == 0) {
1171 // It is safe to elide the body of the switch if it doesn't contain labels
1172 // etc. If it is safe, return successfully with an empty ResultStmts list.
1173 if (DefaultCase == 0)
1174 return !CodeGenFunction::ContainsLabel(&S);
1175 Case = DefaultCase;
1176 }
1177
1178 // Ok, we know which case is being jumped to, try to collect all the
1179 // statements that follow it. This can fail for a variety of reasons. Also,
1180 // check to see that the recursive walk actually found our case statement.
1181 // Insane cases like this can fail to find it in the recursive walk since we
1182 // don't handle every stmt kind:
1183 // switch (4) {
1184 // while (1) {
1185 // case 4: ...
1186 bool FoundCase = false;
1187 return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1188 ResultStmts) != CSFC_Failure &&
1189 FoundCase;
1190 }
1191
EmitSwitchStmt(const SwitchStmt & S)1192 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1193 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1194
1195 RunCleanupsScope ConditionScope(*this);
1196
1197 if (S.getConditionVariable())
1198 EmitAutoVarDecl(*S.getConditionVariable());
1199
1200 // Handle nested switch statements.
1201 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1202 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1203
1204 // See if we can constant fold the condition of the switch and therefore only
1205 // emit the live case statement (if any) of the switch.
1206 llvm::APSInt ConstantCondValue;
1207 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1208 SmallVector<const Stmt*, 4> CaseStmts;
1209 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1210 getContext())) {
1211 RunCleanupsScope ExecutedScope(*this);
1212
1213 // At this point, we are no longer "within" a switch instance, so
1214 // we can temporarily enforce this to ensure that any embedded case
1215 // statements are not emitted.
1216 SwitchInsn = 0;
1217
1218 // Okay, we can dead code eliminate everything except this case. Emit the
1219 // specified series of statements and we're good.
1220 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1221 EmitStmt(CaseStmts[i]);
1222
1223 // Now we want to restore the saved switch instance so that nested
1224 // switches continue to function properly
1225 SwitchInsn = SavedSwitchInsn;
1226
1227 return;
1228 }
1229 }
1230
1231 llvm::Value *CondV = EmitScalarExpr(S.getCond());
1232
1233 // Create basic block to hold stuff that comes after switch
1234 // statement. We also need to create a default block now so that
1235 // explicit case ranges tests can have a place to jump to on
1236 // failure.
1237 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1238 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1239 CaseRangeBlock = DefaultBlock;
1240
1241 // Clear the insertion point to indicate we are in unreachable code.
1242 Builder.ClearInsertionPoint();
1243
1244 // All break statements jump to NextBlock. If BreakContinueStack is non empty
1245 // then reuse last ContinueBlock.
1246 JumpDest OuterContinue;
1247 if (!BreakContinueStack.empty())
1248 OuterContinue = BreakContinueStack.back().ContinueBlock;
1249
1250 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1251
1252 // Emit switch body.
1253 EmitStmt(S.getBody());
1254
1255 BreakContinueStack.pop_back();
1256
1257 // Update the default block in case explicit case range tests have
1258 // been chained on top.
1259 SwitchInsn->setDefaultDest(CaseRangeBlock);
1260
1261 // If a default was never emitted:
1262 if (!DefaultBlock->getParent()) {
1263 // If we have cleanups, emit the default block so that there's a
1264 // place to jump through the cleanups from.
1265 if (ConditionScope.requiresCleanups()) {
1266 EmitBlock(DefaultBlock);
1267
1268 // Otherwise, just forward the default block to the switch end.
1269 } else {
1270 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1271 delete DefaultBlock;
1272 }
1273 }
1274
1275 ConditionScope.ForceCleanup();
1276
1277 // Emit continuation.
1278 EmitBlock(SwitchExit.getBlock(), true);
1279
1280 SwitchInsn = SavedSwitchInsn;
1281 CaseRangeBlock = SavedCRBlock;
1282 }
1283
1284 static std::string
SimplifyConstraint(const char * Constraint,const TargetInfo & Target,SmallVectorImpl<TargetInfo::ConstraintInfo> * OutCons=0)1285 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1286 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1287 std::string Result;
1288
1289 while (*Constraint) {
1290 switch (*Constraint) {
1291 default:
1292 Result += Target.convertConstraint(Constraint);
1293 break;
1294 // Ignore these
1295 case '*':
1296 case '?':
1297 case '!':
1298 case '=': // Will see this and the following in mult-alt constraints.
1299 case '+':
1300 break;
1301 case '#': // Ignore the rest of the constraint alternative.
1302 while (Constraint[1] && Constraint[1] != ',')
1303 Constraint++;
1304 break;
1305 case ',':
1306 Result += "|";
1307 break;
1308 case 'g':
1309 Result += "imr";
1310 break;
1311 case '[': {
1312 assert(OutCons &&
1313 "Must pass output names to constraints with a symbolic name");
1314 unsigned Index;
1315 bool result = Target.resolveSymbolicName(Constraint,
1316 &(*OutCons)[0],
1317 OutCons->size(), Index);
1318 assert(result && "Could not resolve symbolic name"); (void)result;
1319 Result += llvm::utostr(Index);
1320 break;
1321 }
1322 }
1323
1324 Constraint++;
1325 }
1326
1327 return Result;
1328 }
1329
1330 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1331 /// as using a particular register add that as a constraint that will be used
1332 /// in this asm stmt.
1333 static std::string
AddVariableConstraints(const std::string & Constraint,const Expr & AsmExpr,const TargetInfo & Target,CodeGenModule & CGM,const AsmStmt & Stmt)1334 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1335 const TargetInfo &Target, CodeGenModule &CGM,
1336 const AsmStmt &Stmt) {
1337 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1338 if (!AsmDeclRef)
1339 return Constraint;
1340 const ValueDecl &Value = *AsmDeclRef->getDecl();
1341 const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1342 if (!Variable)
1343 return Constraint;
1344 if (Variable->getStorageClass() != SC_Register)
1345 return Constraint;
1346 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1347 if (!Attr)
1348 return Constraint;
1349 StringRef Register = Attr->getLabel();
1350 assert(Target.isValidGCCRegisterName(Register));
1351 // We're using validateOutputConstraint here because we only care if
1352 // this is a register constraint.
1353 TargetInfo::ConstraintInfo Info(Constraint, "");
1354 if (Target.validateOutputConstraint(Info) &&
1355 !Info.allowsRegister()) {
1356 CGM.ErrorUnsupported(&Stmt, "__asm__");
1357 return Constraint;
1358 }
1359 // Canonicalize the register here before returning it.
1360 Register = Target.getNormalizedGCCRegisterName(Register);
1361 return "{" + Register.str() + "}";
1362 }
1363
1364 llvm::Value*
EmitAsmInputLValue(const TargetInfo::ConstraintInfo & Info,LValue InputValue,QualType InputType,std::string & ConstraintStr)1365 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1366 LValue InputValue, QualType InputType,
1367 std::string &ConstraintStr) {
1368 llvm::Value *Arg;
1369 if (Info.allowsRegister() || !Info.allowsMemory()) {
1370 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1371 Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1372 } else {
1373 llvm::Type *Ty = ConvertType(InputType);
1374 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1375 if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1376 Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1377 Ty = llvm::PointerType::getUnqual(Ty);
1378
1379 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1380 Ty));
1381 } else {
1382 Arg = InputValue.getAddress();
1383 ConstraintStr += '*';
1384 }
1385 }
1386 } else {
1387 Arg = InputValue.getAddress();
1388 ConstraintStr += '*';
1389 }
1390
1391 return Arg;
1392 }
1393
EmitAsmInput(const TargetInfo::ConstraintInfo & Info,const Expr * InputExpr,std::string & ConstraintStr)1394 llvm::Value* CodeGenFunction::EmitAsmInput(
1395 const TargetInfo::ConstraintInfo &Info,
1396 const Expr *InputExpr,
1397 std::string &ConstraintStr) {
1398 if (Info.allowsRegister() || !Info.allowsMemory())
1399 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1400 return EmitScalarExpr(InputExpr);
1401
1402 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1403 LValue Dest = EmitLValue(InputExpr);
1404 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr);
1405 }
1406
1407 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1408 /// asm call instruction. The !srcloc MDNode contains a list of constant
1409 /// integers which are the source locations of the start of each line in the
1410 /// asm.
getAsmSrcLocInfo(const StringLiteral * Str,CodeGenFunction & CGF)1411 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1412 CodeGenFunction &CGF) {
1413 SmallVector<llvm::Value *, 8> Locs;
1414 // Add the location of the first line to the MDNode.
1415 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1416 Str->getLocStart().getRawEncoding()));
1417 StringRef StrVal = Str->getString();
1418 if (!StrVal.empty()) {
1419 const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1420 const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1421
1422 // Add the location of the start of each subsequent line of the asm to the
1423 // MDNode.
1424 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1425 if (StrVal[i] != '\n') continue;
1426 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1427 CGF.Target);
1428 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1429 LineLoc.getRawEncoding()));
1430 }
1431 }
1432
1433 return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1434 }
1435
EmitAsmStmt(const AsmStmt & S)1436 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1437 // Assemble the final asm string.
1438 std::string AsmString = S.generateAsmString(getContext());
1439
1440 // Get all the output and input constraints together.
1441 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1442 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1443
1444 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1445 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1446 S.getOutputName(i));
1447 bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1448 assert(IsValid && "Failed to parse output constraint");
1449 OutputConstraintInfos.push_back(Info);
1450 }
1451
1452 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1453 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1454 S.getInputName(i));
1455 bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1456 S.getNumOutputs(), Info);
1457 assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1458 InputConstraintInfos.push_back(Info);
1459 }
1460
1461 std::string Constraints;
1462
1463 std::vector<LValue> ResultRegDests;
1464 std::vector<QualType> ResultRegQualTys;
1465 std::vector<llvm::Type *> ResultRegTypes;
1466 std::vector<llvm::Type *> ResultTruncRegTypes;
1467 std::vector<llvm::Type *> ArgTypes;
1468 std::vector<llvm::Value*> Args;
1469
1470 // Keep track of inout constraints.
1471 std::string InOutConstraints;
1472 std::vector<llvm::Value*> InOutArgs;
1473 std::vector<llvm::Type*> InOutArgTypes;
1474
1475 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1476 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1477
1478 // Simplify the output constraint.
1479 std::string OutputConstraint(S.getOutputConstraint(i));
1480 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1481
1482 const Expr *OutExpr = S.getOutputExpr(i);
1483 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1484
1485 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1486 Target, CGM, S);
1487
1488 LValue Dest = EmitLValue(OutExpr);
1489 if (!Constraints.empty())
1490 Constraints += ',';
1491
1492 // If this is a register output, then make the inline asm return it
1493 // by-value. If this is a memory result, return the value by-reference.
1494 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1495 Constraints += "=" + OutputConstraint;
1496 ResultRegQualTys.push_back(OutExpr->getType());
1497 ResultRegDests.push_back(Dest);
1498 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1499 ResultTruncRegTypes.push_back(ResultRegTypes.back());
1500
1501 // If this output is tied to an input, and if the input is larger, then
1502 // we need to set the actual result type of the inline asm node to be the
1503 // same as the input type.
1504 if (Info.hasMatchingInput()) {
1505 unsigned InputNo;
1506 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1507 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1508 if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1509 break;
1510 }
1511 assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1512
1513 QualType InputTy = S.getInputExpr(InputNo)->getType();
1514 QualType OutputType = OutExpr->getType();
1515
1516 uint64_t InputSize = getContext().getTypeSize(InputTy);
1517 if (getContext().getTypeSize(OutputType) < InputSize) {
1518 // Form the asm to return the value as a larger integer or fp type.
1519 ResultRegTypes.back() = ConvertType(InputTy);
1520 }
1521 }
1522 if (llvm::Type* AdjTy =
1523 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1524 ResultRegTypes.back()))
1525 ResultRegTypes.back() = AdjTy;
1526 } else {
1527 ArgTypes.push_back(Dest.getAddress()->getType());
1528 Args.push_back(Dest.getAddress());
1529 Constraints += "=*";
1530 Constraints += OutputConstraint;
1531 }
1532
1533 if (Info.isReadWrite()) {
1534 InOutConstraints += ',';
1535
1536 const Expr *InputExpr = S.getOutputExpr(i);
1537 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1538 InOutConstraints);
1539
1540 if (llvm::Type* AdjTy =
1541 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1542 Arg->getType()))
1543 Arg = Builder.CreateBitCast(Arg, AdjTy);
1544
1545 if (Info.allowsRegister())
1546 InOutConstraints += llvm::utostr(i);
1547 else
1548 InOutConstraints += OutputConstraint;
1549
1550 InOutArgTypes.push_back(Arg->getType());
1551 InOutArgs.push_back(Arg);
1552 }
1553 }
1554
1555 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1556
1557 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1558 const Expr *InputExpr = S.getInputExpr(i);
1559
1560 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1561
1562 if (!Constraints.empty())
1563 Constraints += ',';
1564
1565 // Simplify the input constraint.
1566 std::string InputConstraint(S.getInputConstraint(i));
1567 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1568 &OutputConstraintInfos);
1569
1570 InputConstraint =
1571 AddVariableConstraints(InputConstraint,
1572 *InputExpr->IgnoreParenNoopCasts(getContext()),
1573 Target, CGM, S);
1574
1575 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1576
1577 // If this input argument is tied to a larger output result, extend the
1578 // input to be the same size as the output. The LLVM backend wants to see
1579 // the input and output of a matching constraint be the same size. Note
1580 // that GCC does not define what the top bits are here. We use zext because
1581 // that is usually cheaper, but LLVM IR should really get an anyext someday.
1582 if (Info.hasTiedOperand()) {
1583 unsigned Output = Info.getTiedOperand();
1584 QualType OutputType = S.getOutputExpr(Output)->getType();
1585 QualType InputTy = InputExpr->getType();
1586
1587 if (getContext().getTypeSize(OutputType) >
1588 getContext().getTypeSize(InputTy)) {
1589 // Use ptrtoint as appropriate so that we can do our extension.
1590 if (isa<llvm::PointerType>(Arg->getType()))
1591 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1592 llvm::Type *OutputTy = ConvertType(OutputType);
1593 if (isa<llvm::IntegerType>(OutputTy))
1594 Arg = Builder.CreateZExt(Arg, OutputTy);
1595 else if (isa<llvm::PointerType>(OutputTy))
1596 Arg = Builder.CreateZExt(Arg, IntPtrTy);
1597 else {
1598 assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1599 Arg = Builder.CreateFPExt(Arg, OutputTy);
1600 }
1601 }
1602 }
1603 if (llvm::Type* AdjTy =
1604 getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1605 Arg->getType()))
1606 Arg = Builder.CreateBitCast(Arg, AdjTy);
1607
1608 ArgTypes.push_back(Arg->getType());
1609 Args.push_back(Arg);
1610 Constraints += InputConstraint;
1611 }
1612
1613 // Append the "input" part of inout constraints last.
1614 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1615 ArgTypes.push_back(InOutArgTypes[i]);
1616 Args.push_back(InOutArgs[i]);
1617 }
1618 Constraints += InOutConstraints;
1619
1620 // Clobbers
1621 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1622 StringRef Clobber = S.getClobber(i);
1623
1624 if (Clobber != "memory" && Clobber != "cc")
1625 Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1626
1627 if (i != 0 || NumConstraints != 0)
1628 Constraints += ',';
1629
1630 Constraints += "~{";
1631 Constraints += Clobber;
1632 Constraints += '}';
1633 }
1634
1635 // Add machine specific clobbers
1636 std::string MachineClobbers = Target.getClobbers();
1637 if (!MachineClobbers.empty()) {
1638 if (!Constraints.empty())
1639 Constraints += ',';
1640 Constraints += MachineClobbers;
1641 }
1642
1643 llvm::Type *ResultType;
1644 if (ResultRegTypes.empty())
1645 ResultType = VoidTy;
1646 else if (ResultRegTypes.size() == 1)
1647 ResultType = ResultRegTypes[0];
1648 else
1649 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1650
1651 llvm::FunctionType *FTy =
1652 llvm::FunctionType::get(ResultType, ArgTypes, false);
1653
1654 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1655 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1656 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1657 llvm::InlineAsm *IA =
1658 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1659 /* IsAlignStack */ false, AsmDialect);
1660 llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1661 Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1662 llvm::Attribute::NoUnwind);
1663
1664 // Slap the source location of the inline asm into a !srcloc metadata on the
1665 // call. FIXME: Handle metadata for MS-style inline asms.
1666 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1667 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1668 *this));
1669
1670 // Extract all of the register value results from the asm.
1671 std::vector<llvm::Value*> RegResults;
1672 if (ResultRegTypes.size() == 1) {
1673 RegResults.push_back(Result);
1674 } else {
1675 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1676 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1677 RegResults.push_back(Tmp);
1678 }
1679 }
1680
1681 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1682 llvm::Value *Tmp = RegResults[i];
1683
1684 // If the result type of the LLVM IR asm doesn't match the result type of
1685 // the expression, do the conversion.
1686 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1687 llvm::Type *TruncTy = ResultTruncRegTypes[i];
1688
1689 // Truncate the integer result to the right size, note that TruncTy can be
1690 // a pointer.
1691 if (TruncTy->isFloatingPointTy())
1692 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1693 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1694 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
1695 Tmp = Builder.CreateTrunc(Tmp,
1696 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1697 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1698 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1699 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
1700 Tmp = Builder.CreatePtrToInt(Tmp,
1701 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1702 Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1703 } else if (TruncTy->isIntegerTy()) {
1704 Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1705 } else if (TruncTy->isVectorTy()) {
1706 Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1707 }
1708 }
1709
1710 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1711 }
1712 }
1713