1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
28 using namespace clang;
29 using namespace CodeGen;
30
CodeGenTypes(CodeGenModule & CGM)31 CodeGenTypes::CodeGenTypes(CodeGenModule &CGM)
32 : Context(CGM.getContext()), Target(Context.getTargetInfo()),
33 TheModule(CGM.getModule()), TheDataLayout(CGM.getDataLayout()),
34 TheABIInfo(CGM.getTargetCodeGenInfo().getABIInfo()),
35 TheCXXABI(CGM.getCXXABI()),
36 CodeGenOpts(CGM.getCodeGenOpts()), CGM(CGM) {
37 SkippedLayout = false;
38 }
39
~CodeGenTypes()40 CodeGenTypes::~CodeGenTypes() {
41 for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
42 I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
43 I != E; ++I)
44 delete I->second;
45
46 for (llvm::FoldingSet<CGFunctionInfo>::iterator
47 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
48 delete &*I++;
49 }
50
addRecordTypeName(const RecordDecl * RD,llvm::StructType * Ty,StringRef suffix)51 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
52 llvm::StructType *Ty,
53 StringRef suffix) {
54 SmallString<256> TypeName;
55 llvm::raw_svector_ostream OS(TypeName);
56 OS << RD->getKindName() << '.';
57
58 // Name the codegen type after the typedef name
59 // if there is no tag type name available
60 if (RD->getIdentifier()) {
61 // FIXME: We should not have to check for a null decl context here.
62 // Right now we do it because the implicit Obj-C decls don't have one.
63 if (RD->getDeclContext())
64 RD->printQualifiedName(OS);
65 else
66 RD->printName(OS);
67 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
68 // FIXME: We should not have to check for a null decl context here.
69 // Right now we do it because the implicit Obj-C decls don't have one.
70 if (TDD->getDeclContext())
71 TDD->printQualifiedName(OS);
72 else
73 TDD->printName(OS);
74 } else
75 OS << "anon";
76
77 if (!suffix.empty())
78 OS << suffix;
79
80 Ty->setName(OS.str());
81 }
82
83 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
84 /// ConvertType in that it is used to convert to the memory representation for
85 /// a type. For example, the scalar representation for _Bool is i1, but the
86 /// memory representation is usually i8 or i32, depending on the target.
ConvertTypeForMem(QualType T)87 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
88 llvm::Type *R = ConvertType(T);
89
90 // If this is a non-bool type, don't map it.
91 if (!R->isIntegerTy(1))
92 return R;
93
94 // Otherwise, return an integer of the target-specified size.
95 return llvm::IntegerType::get(getLLVMContext(),
96 (unsigned)Context.getTypeSize(T));
97 }
98
99
100 /// isRecordLayoutComplete - Return true if the specified type is already
101 /// completely laid out.
isRecordLayoutComplete(const Type * Ty) const102 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
103 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
104 RecordDeclTypes.find(Ty);
105 return I != RecordDeclTypes.end() && !I->second->isOpaque();
106 }
107
108 static bool
109 isSafeToConvert(QualType T, CodeGenTypes &CGT,
110 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
111
112
113 /// isSafeToConvert - Return true if it is safe to convert the specified record
114 /// decl to IR and lay it out, false if doing so would cause us to get into a
115 /// recursive compilation mess.
116 static bool
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)117 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
118 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
119 // If we have already checked this type (maybe the same type is used by-value
120 // multiple times in multiple structure fields, don't check again.
121 if (!AlreadyChecked.insert(RD)) return true;
122
123 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
124
125 // If this type is already laid out, converting it is a noop.
126 if (CGT.isRecordLayoutComplete(Key)) return true;
127
128 // If this type is currently being laid out, we can't recursively compile it.
129 if (CGT.isRecordBeingLaidOut(Key))
130 return false;
131
132 // If this type would require laying out bases that are currently being laid
133 // out, don't do it. This includes virtual base classes which get laid out
134 // when a class is translated, even though they aren't embedded by-value into
135 // the class.
136 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
137 for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
138 E = CRD->bases_end(); I != E; ++I)
139 if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
140 CGT, AlreadyChecked))
141 return false;
142 }
143
144 // If this type would require laying out members that are currently being laid
145 // out, don't do it.
146 for (RecordDecl::field_iterator I = RD->field_begin(),
147 E = RD->field_end(); I != E; ++I)
148 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
149 return false;
150
151 // If there are no problems, lets do it.
152 return true;
153 }
154
155 /// isSafeToConvert - Return true if it is safe to convert this field type,
156 /// which requires the structure elements contained by-value to all be
157 /// recursively safe to convert.
158 static bool
isSafeToConvert(QualType T,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)159 isSafeToConvert(QualType T, CodeGenTypes &CGT,
160 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
161 T = T.getCanonicalType();
162
163 // If this is a record, check it.
164 if (const RecordType *RT = dyn_cast<RecordType>(T))
165 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
166
167 // If this is an array, check the elements, which are embedded inline.
168 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
169 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
170
171 // Otherwise, there is no concern about transforming this. We only care about
172 // things that are contained by-value in a structure that can have another
173 // structure as a member.
174 return true;
175 }
176
177
178 /// isSafeToConvert - Return true if it is safe to convert the specified record
179 /// decl to IR and lay it out, false if doing so would cause us to get into a
180 /// recursive compilation mess.
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT)181 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
182 // If no structs are being laid out, we can certainly do this one.
183 if (CGT.noRecordsBeingLaidOut()) return true;
184
185 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
186 return isSafeToConvert(RD, CGT, AlreadyChecked);
187 }
188
189
190 /// isFuncTypeArgumentConvertible - Return true if the specified type in a
191 /// function argument or result position can be converted to an IR type at this
192 /// point. This boils down to being whether it is complete, as well as whether
193 /// we've temporarily deferred expanding the type because we're in a recursive
194 /// context.
isFuncTypeArgumentConvertible(QualType Ty)195 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
196 // If this isn't a tagged type, we can convert it!
197 const TagType *TT = Ty->getAs<TagType>();
198 if (TT == 0) return true;
199
200 // Incomplete types cannot be converted.
201 if (TT->isIncompleteType())
202 return false;
203
204 // If this is an enum, then it is always safe to convert.
205 const RecordType *RT = dyn_cast<RecordType>(TT);
206 if (RT == 0) return true;
207
208 // Otherwise, we have to be careful. If it is a struct that we're in the
209 // process of expanding, then we can't convert the function type. That's ok
210 // though because we must be in a pointer context under the struct, so we can
211 // just convert it to a dummy type.
212 //
213 // We decide this by checking whether ConvertRecordDeclType returns us an
214 // opaque type for a struct that we know is defined.
215 return isSafeToConvert(RT->getDecl(), *this);
216 }
217
218
219 /// Code to verify a given function type is complete, i.e. the return type
220 /// and all of the argument types are complete. Also check to see if we are in
221 /// a RS_StructPointer context, and if so whether any struct types have been
222 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
223 /// that cannot be converted to an IR type.
isFuncTypeConvertible(const FunctionType * FT)224 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
225 if (!isFuncTypeArgumentConvertible(FT->getResultType()))
226 return false;
227
228 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
229 for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
230 if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
231 return false;
232
233 return true;
234 }
235
236 /// UpdateCompletedType - When we find the full definition for a TagDecl,
237 /// replace the 'opaque' type we previously made for it if applicable.
UpdateCompletedType(const TagDecl * TD)238 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
239 // If this is an enum being completed, then we flush all non-struct types from
240 // the cache. This allows function types and other things that may be derived
241 // from the enum to be recomputed.
242 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
243 // Only flush the cache if we've actually already converted this type.
244 if (TypeCache.count(ED->getTypeForDecl())) {
245 // Okay, we formed some types based on this. We speculated that the enum
246 // would be lowered to i32, so we only need to flush the cache if this
247 // didn't happen.
248 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
249 TypeCache.clear();
250 }
251 return;
252 }
253
254 // If we completed a RecordDecl that we previously used and converted to an
255 // anonymous type, then go ahead and complete it now.
256 const RecordDecl *RD = cast<RecordDecl>(TD);
257 if (RD->isDependentType()) return;
258
259 // Only complete it if we converted it already. If we haven't converted it
260 // yet, we'll just do it lazily.
261 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
262 ConvertRecordDeclType(RD);
263 }
264
getTypeForFormat(llvm::LLVMContext & VMContext,const llvm::fltSemantics & format,bool UseNativeHalf=false)265 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
266 const llvm::fltSemantics &format,
267 bool UseNativeHalf = false) {
268 if (&format == &llvm::APFloat::IEEEhalf) {
269 if (UseNativeHalf)
270 return llvm::Type::getHalfTy(VMContext);
271 else
272 return llvm::Type::getInt16Ty(VMContext);
273 }
274 if (&format == &llvm::APFloat::IEEEsingle)
275 return llvm::Type::getFloatTy(VMContext);
276 if (&format == &llvm::APFloat::IEEEdouble)
277 return llvm::Type::getDoubleTy(VMContext);
278 if (&format == &llvm::APFloat::IEEEquad)
279 return llvm::Type::getFP128Ty(VMContext);
280 if (&format == &llvm::APFloat::PPCDoubleDouble)
281 return llvm::Type::getPPC_FP128Ty(VMContext);
282 if (&format == &llvm::APFloat::x87DoubleExtended)
283 return llvm::Type::getX86_FP80Ty(VMContext);
284 llvm_unreachable("Unknown float format!");
285 }
286
287 /// ConvertType - Convert the specified type to its LLVM form.
ConvertType(QualType T)288 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
289 T = Context.getCanonicalType(T);
290
291 const Type *Ty = T.getTypePtr();
292
293 // RecordTypes are cached and processed specially.
294 if (const RecordType *RT = dyn_cast<RecordType>(Ty))
295 return ConvertRecordDeclType(RT->getDecl());
296
297 // See if type is already cached.
298 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
299 // If type is found in map then use it. Otherwise, convert type T.
300 if (TCI != TypeCache.end())
301 return TCI->second;
302
303 // If we don't have it in the cache, convert it now.
304 llvm::Type *ResultType = 0;
305 switch (Ty->getTypeClass()) {
306 case Type::Record: // Handled above.
307 #define TYPE(Class, Base)
308 #define ABSTRACT_TYPE(Class, Base)
309 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
310 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
311 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
312 #include "clang/AST/TypeNodes.def"
313 llvm_unreachable("Non-canonical or dependent types aren't possible.");
314
315 case Type::Builtin: {
316 switch (cast<BuiltinType>(Ty)->getKind()) {
317 case BuiltinType::Void:
318 case BuiltinType::ObjCId:
319 case BuiltinType::ObjCClass:
320 case BuiltinType::ObjCSel:
321 // LLVM void type can only be used as the result of a function call. Just
322 // map to the same as char.
323 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
324 break;
325
326 case BuiltinType::Bool:
327 // Note that we always return bool as i1 for use as a scalar type.
328 ResultType = llvm::Type::getInt1Ty(getLLVMContext());
329 break;
330
331 case BuiltinType::Char_S:
332 case BuiltinType::Char_U:
333 case BuiltinType::SChar:
334 case BuiltinType::UChar:
335 case BuiltinType::Short:
336 case BuiltinType::UShort:
337 case BuiltinType::Int:
338 case BuiltinType::UInt:
339 case BuiltinType::Long:
340 case BuiltinType::ULong:
341 case BuiltinType::LongLong:
342 case BuiltinType::ULongLong:
343 case BuiltinType::WChar_S:
344 case BuiltinType::WChar_U:
345 case BuiltinType::Char16:
346 case BuiltinType::Char32:
347 ResultType = llvm::IntegerType::get(getLLVMContext(),
348 static_cast<unsigned>(Context.getTypeSize(T)));
349 break;
350
351 case BuiltinType::Half:
352 // Half FP can either be storage-only (lowered to i16) or native.
353 ResultType = getTypeForFormat(getLLVMContext(),
354 Context.getFloatTypeSemantics(T),
355 Context.getLangOpts().NativeHalfType);
356 break;
357 case BuiltinType::Float:
358 case BuiltinType::Double:
359 case BuiltinType::LongDouble:
360 ResultType = getTypeForFormat(getLLVMContext(),
361 Context.getFloatTypeSemantics(T),
362 /* UseNativeHalf = */ false);
363 break;
364
365 case BuiltinType::NullPtr:
366 // Model std::nullptr_t as i8*
367 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
368 break;
369
370 case BuiltinType::UInt128:
371 case BuiltinType::Int128:
372 ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
373 break;
374
375 case BuiltinType::OCLImage1d:
376 case BuiltinType::OCLImage1dArray:
377 case BuiltinType::OCLImage1dBuffer:
378 case BuiltinType::OCLImage2d:
379 case BuiltinType::OCLImage2dArray:
380 case BuiltinType::OCLImage3d:
381 case BuiltinType::OCLSampler:
382 case BuiltinType::OCLEvent:
383 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
384 break;
385
386 case BuiltinType::Dependent:
387 #define BUILTIN_TYPE(Id, SingletonId)
388 #define PLACEHOLDER_TYPE(Id, SingletonId) \
389 case BuiltinType::Id:
390 #include "clang/AST/BuiltinTypes.def"
391 llvm_unreachable("Unexpected placeholder builtin type!");
392 }
393 break;
394 }
395 case Type::Complex: {
396 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
397 ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
398 break;
399 }
400 case Type::LValueReference:
401 case Type::RValueReference: {
402 const ReferenceType *RTy = cast<ReferenceType>(Ty);
403 QualType ETy = RTy->getPointeeType();
404 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
405 unsigned AS = Context.getTargetAddressSpace(ETy);
406 ResultType = llvm::PointerType::get(PointeeType, AS);
407 break;
408 }
409 case Type::Pointer: {
410 const PointerType *PTy = cast<PointerType>(Ty);
411 QualType ETy = PTy->getPointeeType();
412 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
413 if (PointeeType->isVoidTy())
414 PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
415 unsigned AS = Context.getTargetAddressSpace(ETy);
416 ResultType = llvm::PointerType::get(PointeeType, AS);
417 break;
418 }
419
420 case Type::VariableArray: {
421 const VariableArrayType *A = cast<VariableArrayType>(Ty);
422 assert(A->getIndexTypeCVRQualifiers() == 0 &&
423 "FIXME: We only handle trivial array types so far!");
424 // VLAs resolve to the innermost element type; this matches
425 // the return of alloca, and there isn't any obviously better choice.
426 ResultType = ConvertTypeForMem(A->getElementType());
427 break;
428 }
429 case Type::IncompleteArray: {
430 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
431 assert(A->getIndexTypeCVRQualifiers() == 0 &&
432 "FIXME: We only handle trivial array types so far!");
433 // int X[] -> [0 x int], unless the element type is not sized. If it is
434 // unsized (e.g. an incomplete struct) just use [0 x i8].
435 ResultType = ConvertTypeForMem(A->getElementType());
436 if (!ResultType->isSized()) {
437 SkippedLayout = true;
438 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
439 }
440 ResultType = llvm::ArrayType::get(ResultType, 0);
441 break;
442 }
443 case Type::ConstantArray: {
444 const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
445 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
446
447 // Lower arrays of undefined struct type to arrays of i8 just to have a
448 // concrete type.
449 if (!EltTy->isSized()) {
450 SkippedLayout = true;
451 EltTy = llvm::Type::getInt8Ty(getLLVMContext());
452 }
453
454 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
455 break;
456 }
457 case Type::ExtVector:
458 case Type::Vector: {
459 const VectorType *VT = cast<VectorType>(Ty);
460 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
461 VT->getNumElements());
462 break;
463 }
464 case Type::FunctionNoProto:
465 case Type::FunctionProto: {
466 const FunctionType *FT = cast<FunctionType>(Ty);
467 // First, check whether we can build the full function type. If the
468 // function type depends on an incomplete type (e.g. a struct or enum), we
469 // cannot lower the function type.
470 if (!isFuncTypeConvertible(FT)) {
471 // This function's type depends on an incomplete tag type.
472
473 // Force conversion of all the relevant record types, to make sure
474 // we re-convert the FunctionType when appropriate.
475 if (const RecordType *RT = FT->getResultType()->getAs<RecordType>())
476 ConvertRecordDeclType(RT->getDecl());
477 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
478 for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
479 if (const RecordType *RT = FPT->getArgType(i)->getAs<RecordType>())
480 ConvertRecordDeclType(RT->getDecl());
481
482 // Return a placeholder type.
483 ResultType = llvm::StructType::get(getLLVMContext());
484
485 SkippedLayout = true;
486 break;
487 }
488
489 // While we're converting the argument types for a function, we don't want
490 // to recursively convert any pointed-to structs. Converting directly-used
491 // structs is ok though.
492 if (!RecordsBeingLaidOut.insert(Ty)) {
493 ResultType = llvm::StructType::get(getLLVMContext());
494
495 SkippedLayout = true;
496 break;
497 }
498
499 // The function type can be built; call the appropriate routines to
500 // build it.
501 const CGFunctionInfo *FI;
502 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
503 FI = &arrangeFreeFunctionType(
504 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
505 } else {
506 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
507 FI = &arrangeFreeFunctionType(
508 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
509 }
510
511 // If there is something higher level prodding our CGFunctionInfo, then
512 // don't recurse into it again.
513 if (FunctionsBeingProcessed.count(FI)) {
514
515 ResultType = llvm::StructType::get(getLLVMContext());
516 SkippedLayout = true;
517 } else {
518
519 // Otherwise, we're good to go, go ahead and convert it.
520 ResultType = GetFunctionType(*FI);
521 }
522
523 RecordsBeingLaidOut.erase(Ty);
524
525 if (SkippedLayout)
526 TypeCache.clear();
527
528 if (RecordsBeingLaidOut.empty())
529 while (!DeferredRecords.empty())
530 ConvertRecordDeclType(DeferredRecords.pop_back_val());
531 break;
532 }
533
534 case Type::ObjCObject:
535 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
536 break;
537
538 case Type::ObjCInterface: {
539 // Objective-C interfaces are always opaque (outside of the
540 // runtime, which can do whatever it likes); we never refine
541 // these.
542 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
543 if (!T)
544 T = llvm::StructType::create(getLLVMContext());
545 ResultType = T;
546 break;
547 }
548
549 case Type::ObjCObjectPointer: {
550 // Protocol qualifications do not influence the LLVM type, we just return a
551 // pointer to the underlying interface type. We don't need to worry about
552 // recursive conversion.
553 llvm::Type *T =
554 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
555 ResultType = T->getPointerTo();
556 break;
557 }
558
559 case Type::Enum: {
560 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
561 if (ED->isCompleteDefinition() || ED->isFixed())
562 return ConvertType(ED->getIntegerType());
563 // Return a placeholder 'i32' type. This can be changed later when the
564 // type is defined (see UpdateCompletedType), but is likely to be the
565 // "right" answer.
566 ResultType = llvm::Type::getInt32Ty(getLLVMContext());
567 break;
568 }
569
570 case Type::BlockPointer: {
571 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
572 llvm::Type *PointeeType = ConvertTypeForMem(FTy);
573 unsigned AS = Context.getTargetAddressSpace(FTy);
574 ResultType = llvm::PointerType::get(PointeeType, AS);
575 break;
576 }
577
578 case Type::MemberPointer: {
579 ResultType =
580 getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
581 break;
582 }
583
584 case Type::Atomic: {
585 QualType valueType = cast<AtomicType>(Ty)->getValueType();
586 ResultType = ConvertTypeForMem(valueType);
587
588 // Pad out to the inflated size if necessary.
589 uint64_t valueSize = Context.getTypeSize(valueType);
590 uint64_t atomicSize = Context.getTypeSize(Ty);
591 if (valueSize != atomicSize) {
592 assert(valueSize < atomicSize);
593 llvm::Type *elts[] = {
594 ResultType,
595 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
596 };
597 ResultType = llvm::StructType::get(getLLVMContext(),
598 llvm::makeArrayRef(elts));
599 }
600 break;
601 }
602 }
603
604 assert(ResultType && "Didn't convert a type?");
605
606 TypeCache[Ty] = ResultType;
607 return ResultType;
608 }
609
isPaddedAtomicType(QualType type)610 bool CodeGenModule::isPaddedAtomicType(QualType type) {
611 return isPaddedAtomicType(type->castAs<AtomicType>());
612 }
613
isPaddedAtomicType(const AtomicType * type)614 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
615 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
616 }
617
618 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
ConvertRecordDeclType(const RecordDecl * RD)619 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
620 // TagDecl's are not necessarily unique, instead use the (clang)
621 // type connected to the decl.
622 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
623
624 llvm::StructType *&Entry = RecordDeclTypes[Key];
625
626 // If we don't have a StructType at all yet, create the forward declaration.
627 if (Entry == 0) {
628 Entry = llvm::StructType::create(getLLVMContext());
629 addRecordTypeName(RD, Entry, "");
630 }
631 llvm::StructType *Ty = Entry;
632
633 // If this is still a forward declaration, or the LLVM type is already
634 // complete, there's nothing more to do.
635 RD = RD->getDefinition();
636 if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
637 return Ty;
638
639 // If converting this type would cause us to infinitely loop, don't do it!
640 if (!isSafeToConvert(RD, *this)) {
641 DeferredRecords.push_back(RD);
642 return Ty;
643 }
644
645 // Okay, this is a definition of a type. Compile the implementation now.
646 bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
647 assert(InsertResult && "Recursively compiling a struct?");
648
649 // Force conversion of non-virtual base classes recursively.
650 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
651 for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
652 e = CRD->bases_end(); i != e; ++i) {
653 if (i->isVirtual()) continue;
654
655 ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
656 }
657 }
658
659 // Layout fields.
660 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
661 CGRecordLayouts[Key] = Layout;
662
663 // We're done laying out this struct.
664 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
665 assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
666
667 // If this struct blocked a FunctionType conversion, then recompute whatever
668 // was derived from that.
669 // FIXME: This is hugely overconservative.
670 if (SkippedLayout)
671 TypeCache.clear();
672
673 // If we're done converting the outer-most record, then convert any deferred
674 // structs as well.
675 if (RecordsBeingLaidOut.empty())
676 while (!DeferredRecords.empty())
677 ConvertRecordDeclType(DeferredRecords.pop_back_val());
678
679 return Ty;
680 }
681
682 /// getCGRecordLayout - Return record layout info for the given record decl.
683 const CGRecordLayout &
getCGRecordLayout(const RecordDecl * RD)684 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
685 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
686
687 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
688 if (!Layout) {
689 // Compute the type information.
690 ConvertRecordDeclType(RD);
691
692 // Now try again.
693 Layout = CGRecordLayouts.lookup(Key);
694 }
695
696 assert(Layout && "Unable to find record layout information for type");
697 return *Layout;
698 }
699
isZeroInitializable(QualType T)700 bool CodeGenTypes::isZeroInitializable(QualType T) {
701 // No need to check for member pointers when not compiling C++.
702 if (!Context.getLangOpts().CPlusPlus)
703 return true;
704
705 T = Context.getBaseElementType(T);
706
707 // Records are non-zero-initializable if they contain any
708 // non-zero-initializable subobjects.
709 if (const RecordType *RT = T->getAs<RecordType>()) {
710 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
711 return isZeroInitializable(RD);
712 }
713
714 // We have to ask the ABI about member pointers.
715 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
716 return getCXXABI().isZeroInitializable(MPT);
717
718 // Everything else is okay.
719 return true;
720 }
721
isZeroInitializable(const CXXRecordDecl * RD)722 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
723 return getCGRecordLayout(RD).isZeroInitializable();
724 }
725