1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_REDUX_H 12 #define EIGEN_REDUX_H 13 14 namespace Eigen { 15 16 namespace internal { 17 18 // TODO 19 // * implement other kind of vectorization 20 // * factorize code 21 22 /*************************************************************************** 23 * Part 1 : the logic deciding a strategy for vectorization and unrolling 24 ***************************************************************************/ 25 26 template<typename Func, typename Derived> 27 struct redux_traits 28 { 29 public: 30 enum { 31 PacketSize = packet_traits<typename Derived::Scalar>::size, 32 InnerMaxSize = int(Derived::IsRowMajor) 33 ? Derived::MaxColsAtCompileTime 34 : Derived::MaxRowsAtCompileTime 35 }; 36 37 enum { 38 MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit) 39 && (functor_traits<Func>::PacketAccess), 40 MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit), 41 MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize 42 }; 43 44 public: 45 enum { 46 Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) 47 : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) 48 : int(DefaultTraversal) 49 }; 50 51 public: 52 enum { 53 Cost = ( Derived::SizeAtCompileTime == Dynamic 54 || Derived::CoeffReadCost == Dynamic 55 || (Derived::SizeAtCompileTime!=1 && functor_traits<Func>::Cost == Dynamic) 56 ) ? Dynamic 57 : Derived::SizeAtCompileTime * Derived::CoeffReadCost 58 + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost, 59 UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) 60 }; 61 62 public: 63 enum { 64 Unrolling = Cost != Dynamic && Cost <= UnrollingLimit 65 ? CompleteUnrolling 66 : NoUnrolling 67 }; 68 }; 69 70 /*************************************************************************** 71 * Part 2 : unrollers 72 ***************************************************************************/ 73 74 /*** no vectorization ***/ 75 76 template<typename Func, typename Derived, int Start, int Length> 77 struct redux_novec_unroller 78 { 79 enum { 80 HalfLength = Length/2 81 }; 82 83 typedef typename Derived::Scalar Scalar; 84 runredux_novec_unroller85 static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) 86 { 87 return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), 88 redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func)); 89 } 90 }; 91 92 template<typename Func, typename Derived, int Start> 93 struct redux_novec_unroller<Func, Derived, Start, 1> 94 { 95 enum { 96 outer = Start / Derived::InnerSizeAtCompileTime, 97 inner = Start % Derived::InnerSizeAtCompileTime 98 }; 99 100 typedef typename Derived::Scalar Scalar; 101 102 static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&) 103 { 104 return mat.coeffByOuterInner(outer, inner); 105 } 106 }; 107 108 // This is actually dead code and will never be called. It is required 109 // to prevent false warnings regarding failed inlining though 110 // for 0 length run() will never be called at all. 111 template<typename Func, typename Derived, int Start> 112 struct redux_novec_unroller<Func, Derived, Start, 0> 113 { 114 typedef typename Derived::Scalar Scalar; 115 static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); } 116 }; 117 118 /*** vectorization ***/ 119 120 template<typename Func, typename Derived, int Start, int Length> 121 struct redux_vec_unroller 122 { 123 enum { 124 PacketSize = packet_traits<typename Derived::Scalar>::size, 125 HalfLength = Length/2 126 }; 127 128 typedef typename Derived::Scalar Scalar; 129 typedef typename packet_traits<Scalar>::type PacketScalar; 130 131 static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func) 132 { 133 return func.packetOp( 134 redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), 135 redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) ); 136 } 137 }; 138 139 template<typename Func, typename Derived, int Start> 140 struct redux_vec_unroller<Func, Derived, Start, 1> 141 { 142 enum { 143 index = Start * packet_traits<typename Derived::Scalar>::size, 144 outer = index / int(Derived::InnerSizeAtCompileTime), 145 inner = index % int(Derived::InnerSizeAtCompileTime), 146 alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned 147 }; 148 149 typedef typename Derived::Scalar Scalar; 150 typedef typename packet_traits<Scalar>::type PacketScalar; 151 152 static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&) 153 { 154 return mat.template packetByOuterInner<alignment>(outer, inner); 155 } 156 }; 157 158 /*************************************************************************** 159 * Part 3 : implementation of all cases 160 ***************************************************************************/ 161 162 template<typename Func, typename Derived, 163 int Traversal = redux_traits<Func, Derived>::Traversal, 164 int Unrolling = redux_traits<Func, Derived>::Unrolling 165 > 166 struct redux_impl; 167 168 template<typename Func, typename Derived> 169 struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling> 170 { 171 typedef typename Derived::Scalar Scalar; 172 typedef typename Derived::Index Index; 173 static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func) 174 { 175 eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); 176 Scalar res; 177 res = mat.coeffByOuterInner(0, 0); 178 for(Index i = 1; i < mat.innerSize(); ++i) 179 res = func(res, mat.coeffByOuterInner(0, i)); 180 for(Index i = 1; i < mat.outerSize(); ++i) 181 for(Index j = 0; j < mat.innerSize(); ++j) 182 res = func(res, mat.coeffByOuterInner(i, j)); 183 return res; 184 } 185 }; 186 187 template<typename Func, typename Derived> 188 struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling> 189 : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime> 190 {}; 191 192 template<typename Func, typename Derived> 193 struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling> 194 { 195 typedef typename Derived::Scalar Scalar; 196 typedef typename packet_traits<Scalar>::type PacketScalar; 197 typedef typename Derived::Index Index; 198 199 static Scalar run(const Derived& mat, const Func& func) 200 { 201 const Index size = mat.size(); 202 eigen_assert(size && "you are using an empty matrix"); 203 const Index packetSize = packet_traits<Scalar>::size; 204 const Index alignedStart = internal::first_aligned(mat); 205 enum { 206 alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit) 207 ? Aligned : Unaligned 208 }; 209 const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize); 210 const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize); 211 const Index alignedEnd2 = alignedStart + alignedSize2; 212 const Index alignedEnd = alignedStart + alignedSize; 213 Scalar res; 214 if(alignedSize) 215 { 216 PacketScalar packet_res0 = mat.template packet<alignment>(alignedStart); 217 if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop 218 { 219 PacketScalar packet_res1 = mat.template packet<alignment>(alignedStart+packetSize); 220 for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize) 221 { 222 packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(index)); 223 packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment>(index+packetSize)); 224 } 225 226 packet_res0 = func.packetOp(packet_res0,packet_res1); 227 if(alignedEnd>alignedEnd2) 228 packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(alignedEnd2)); 229 } 230 res = func.predux(packet_res0); 231 232 for(Index index = 0; index < alignedStart; ++index) 233 res = func(res,mat.coeff(index)); 234 235 for(Index index = alignedEnd; index < size; ++index) 236 res = func(res,mat.coeff(index)); 237 } 238 else // too small to vectorize anything. 239 // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. 240 { 241 res = mat.coeff(0); 242 for(Index index = 1; index < size; ++index) 243 res = func(res,mat.coeff(index)); 244 } 245 246 return res; 247 } 248 }; 249 250 template<typename Func, typename Derived> 251 struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling> 252 { 253 typedef typename Derived::Scalar Scalar; 254 typedef typename packet_traits<Scalar>::type PacketScalar; 255 typedef typename Derived::Index Index; 256 257 static Scalar run(const Derived& mat, const Func& func) 258 { 259 eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); 260 const Index innerSize = mat.innerSize(); 261 const Index outerSize = mat.outerSize(); 262 enum { 263 packetSize = packet_traits<Scalar>::size 264 }; 265 const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; 266 Scalar res; 267 if(packetedInnerSize) 268 { 269 PacketScalar packet_res = mat.template packet<Unaligned>(0,0); 270 for(Index j=0; j<outerSize; ++j) 271 for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize)) 272 packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i)); 273 274 res = func.predux(packet_res); 275 for(Index j=0; j<outerSize; ++j) 276 for(Index i=packetedInnerSize; i<innerSize; ++i) 277 res = func(res, mat.coeffByOuterInner(j,i)); 278 } 279 else // too small to vectorize anything. 280 // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. 281 { 282 res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func); 283 } 284 285 return res; 286 } 287 }; 288 289 template<typename Func, typename Derived> 290 struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling> 291 { 292 typedef typename Derived::Scalar Scalar; 293 typedef typename packet_traits<Scalar>::type PacketScalar; 294 enum { 295 PacketSize = packet_traits<Scalar>::size, 296 Size = Derived::SizeAtCompileTime, 297 VectorizedSize = (Size / PacketSize) * PacketSize 298 }; 299 static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func) 300 { 301 eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); 302 Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func)); 303 if (VectorizedSize != Size) 304 res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func)); 305 return res; 306 } 307 }; 308 309 } // end namespace internal 310 311 /*************************************************************************** 312 * Part 4 : public API 313 ***************************************************************************/ 314 315 316 /** \returns the result of a full redux operation on the whole matrix or vector using \a func 317 * 318 * The template parameter \a BinaryOp is the type of the functor \a func which must be 319 * an associative operator. Both current STL and TR1 functor styles are handled. 320 * 321 * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() 322 */ 323 template<typename Derived> 324 template<typename Func> 325 EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type 326 DenseBase<Derived>::redux(const Func& func) const 327 { 328 typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested; 329 return internal::redux_impl<Func, ThisNested> 330 ::run(derived(), func); 331 } 332 333 /** \returns the minimum of all coefficients of *this 334 */ 335 template<typename Derived> 336 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar 337 DenseBase<Derived>::minCoeff() const 338 { 339 return this->redux(Eigen::internal::scalar_min_op<Scalar>()); 340 } 341 342 /** \returns the maximum of all coefficients of *this 343 */ 344 template<typename Derived> 345 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar 346 DenseBase<Derived>::maxCoeff() const 347 { 348 return this->redux(Eigen::internal::scalar_max_op<Scalar>()); 349 } 350 351 /** \returns the sum of all coefficients of *this 352 * 353 * \sa trace(), prod(), mean() 354 */ 355 template<typename Derived> 356 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar 357 DenseBase<Derived>::sum() const 358 { 359 if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) 360 return Scalar(0); 361 return this->redux(Eigen::internal::scalar_sum_op<Scalar>()); 362 } 363 364 /** \returns the mean of all coefficients of *this 365 * 366 * \sa trace(), prod(), sum() 367 */ 368 template<typename Derived> 369 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar 370 DenseBase<Derived>::mean() const 371 { 372 return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size()); 373 } 374 375 /** \returns the product of all coefficients of *this 376 * 377 * Example: \include MatrixBase_prod.cpp 378 * Output: \verbinclude MatrixBase_prod.out 379 * 380 * \sa sum(), mean(), trace() 381 */ 382 template<typename Derived> 383 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar 384 DenseBase<Derived>::prod() const 385 { 386 if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) 387 return Scalar(1); 388 return this->redux(Eigen::internal::scalar_product_op<Scalar>()); 389 } 390 391 /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. 392 * 393 * \c *this can be any matrix, not necessarily square. 394 * 395 * \sa diagonal(), sum() 396 */ 397 template<typename Derived> 398 EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar 399 MatrixBase<Derived>::trace() const 400 { 401 return derived().diagonal().sum(); 402 } 403 404 } // end namespace Eigen 405 406 #endif // EIGEN_REDUX_H 407