• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_XPRHELPER_H
12 #define EIGEN_XPRHELPER_H
13 
14 // just a workaround because GCC seems to not really like empty structs
15 // FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
16 // so currently we simply disable this optimization for gcc 4.3
17 #if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3))
18   #define EIGEN_EMPTY_STRUCT_CTOR(X) \
19     EIGEN_STRONG_INLINE X() {} \
20     EIGEN_STRONG_INLINE X(const X& ) {}
21 #else
22   #define EIGEN_EMPTY_STRUCT_CTOR(X)
23 #endif
24 
25 namespace Eigen {
26 
27 typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
28 
29 namespace internal {
30 
31 //classes inheriting no_assignment_operator don't generate a default operator=.
32 class no_assignment_operator
33 {
34   private:
35     no_assignment_operator& operator=(const no_assignment_operator&);
36 };
37 
38 /** \internal return the index type with the largest number of bits */
39 template<typename I1, typename I2>
40 struct promote_index_type
41 {
42   typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
43 };
44 
45 /** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
46   * can be accessed using value() and setValue().
47   * Otherwise, this class is an empty structure and value() just returns the template parameter Value.
48   */
49 template<typename T, int Value> class variable_if_dynamic
50 {
51   public:
EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)52     EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
53     explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
value()54     static T value() { return T(Value); }
setValue(T)55     void setValue(T) {}
56 };
57 
58 template<typename T> class variable_if_dynamic<T, Dynamic>
59 {
60     T m_value;
variable_if_dynamic()61     variable_if_dynamic() { assert(false); }
62   public:
variable_if_dynamic(T value)63     explicit variable_if_dynamic(T value) : m_value(value) {}
value()64     T value() const { return m_value; }
setValue(T value)65     void setValue(T value) { m_value = value; }
66 };
67 
68 template<typename T> struct functor_traits
69 {
70   enum
71   {
72     Cost = 10,
73     PacketAccess = false
74   };
75 };
76 
77 template<typename T> struct packet_traits;
78 
79 template<typename T> struct unpacket_traits
80 {
81   typedef T type;
82   enum {size=1};
83 };
84 
85 template<typename _Scalar, int _Rows, int _Cols,
86          int _Options = AutoAlign |
87                           ( (_Rows==1 && _Cols!=1) ? RowMajor
88                           : (_Cols==1 && _Rows!=1) ? ColMajor
89                           : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
90          int _MaxRows = _Rows,
91          int _MaxCols = _Cols
92 > class make_proper_matrix_type
93 {
94     enum {
95       IsColVector = _Cols==1 && _Rows!=1,
96       IsRowVector = _Rows==1 && _Cols!=1,
97       Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
98               : IsRowVector ? (_Options | RowMajor) & ~ColMajor
99               : _Options
100     };
101   public:
102     typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
103 };
104 
105 template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
106 class compute_matrix_flags
107 {
108     enum {
109       row_major_bit = Options&RowMajor ? RowMajorBit : 0,
110       is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,
111 
112       aligned_bit =
113       (
114             ((Options&DontAlign)==0)
115         && (
116 #if EIGEN_ALIGN_STATICALLY
117              ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % 16) == 0))
118 #else
119              0
120 #endif
121 
122           ||
123 
124 #if EIGEN_ALIGN
125              is_dynamic_size_storage
126 #else
127              0
128 #endif
129 
130           )
131       ) ? AlignedBit : 0,
132       packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0
133     };
134 
135   public:
136     enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
137 };
138 
139 template<int _Rows, int _Cols> struct size_at_compile_time
140 {
141   enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
142 };
143 
144 /* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
145  * whereas eval is a const reference in the case of a matrix
146  */
147 
148 template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
149 template<typename T, typename BaseClassType> struct plain_matrix_type_dense;
150 template<typename T> struct plain_matrix_type<T,Dense>
151 {
152   typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
153 };
154 
155 template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
156 {
157   typedef Matrix<typename traits<T>::Scalar,
158                 traits<T>::RowsAtCompileTime,
159                 traits<T>::ColsAtCompileTime,
160                 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
161                 traits<T>::MaxRowsAtCompileTime,
162                 traits<T>::MaxColsAtCompileTime
163           > type;
164 };
165 
166 template<typename T> struct plain_matrix_type_dense<T,ArrayXpr>
167 {
168   typedef Array<typename traits<T>::Scalar,
169                 traits<T>::RowsAtCompileTime,
170                 traits<T>::ColsAtCompileTime,
171                 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
172                 traits<T>::MaxRowsAtCompileTime,
173                 traits<T>::MaxColsAtCompileTime
174           > type;
175 };
176 
177 /* eval : the return type of eval(). For matrices, this is just a const reference
178  * in order to avoid a useless copy
179  */
180 
181 template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;
182 
183 template<typename T> struct eval<T,Dense>
184 {
185   typedef typename plain_matrix_type<T>::type type;
186 //   typedef typename T::PlainObject type;
187 //   typedef T::Matrix<typename traits<T>::Scalar,
188 //                 traits<T>::RowsAtCompileTime,
189 //                 traits<T>::ColsAtCompileTime,
190 //                 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
191 //                 traits<T>::MaxRowsAtCompileTime,
192 //                 traits<T>::MaxColsAtCompileTime
193 //           > type;
194 };
195 
196 // for matrices, no need to evaluate, just use a const reference to avoid a useless copy
197 template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
198 struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
199 {
200   typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
201 };
202 
203 template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
204 struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
205 {
206   typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
207 };
208 
209 
210 
211 /* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
212  */
213 template<typename T> struct plain_matrix_type_column_major
214 {
215   enum { Rows = traits<T>::RowsAtCompileTime,
216          Cols = traits<T>::ColsAtCompileTime,
217          MaxRows = traits<T>::MaxRowsAtCompileTime,
218          MaxCols = traits<T>::MaxColsAtCompileTime
219   };
220   typedef Matrix<typename traits<T>::Scalar,
221                 Rows,
222                 Cols,
223                 (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
224                 MaxRows,
225                 MaxCols
226           > type;
227 };
228 
229 /* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
230  */
231 template<typename T> struct plain_matrix_type_row_major
232 {
233   enum { Rows = traits<T>::RowsAtCompileTime,
234          Cols = traits<T>::ColsAtCompileTime,
235          MaxRows = traits<T>::MaxRowsAtCompileTime,
236          MaxCols = traits<T>::MaxColsAtCompileTime
237   };
238   typedef Matrix<typename traits<T>::Scalar,
239                 Rows,
240                 Cols,
241                 (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
242                 MaxRows,
243                 MaxCols
244           > type;
245 };
246 
247 // we should be able to get rid of this one too
248 template<typename T> struct must_nest_by_value { enum { ret = false }; };
249 
250 /** \internal The reference selector for template expressions. The idea is that we don't
251   * need to use references for expressions since they are light weight proxy
252   * objects which should generate no copying overhead. */
253 template <typename T>
254 struct ref_selector
255 {
256   typedef typename conditional<
257     bool(traits<T>::Flags & NestByRefBit),
258     T const&,
259     const T
260   >::type type;
261 };
262 
263 /** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */
264 template<typename T1, typename T2>
265 struct transfer_constness
266 {
267   typedef typename conditional<
268     bool(internal::is_const<T1>::value),
269     typename internal::add_const_on_value_type<T2>::type,
270     T2
271   >::type type;
272 };
273 
274 /** \internal Determines how a given expression should be nested into another one.
275   * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
276   * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
277   * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
278   * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
279   * many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
280   *
281   * \param T the type of the expression being nested
282   * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
283   *
284   * Note that if no evaluation occur, then the constness of T is preserved.
285   *
286   * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
287   * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
288   * the Product expression uses: nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
289   * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
290   * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::ret, which turns out to be
291   * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
292   * in copying it into another matrix.
293   */
294 template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
295 {
296   enum {
297     // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
298     // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
299     // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
300     // (poor choice of temporaries).
301     // it's important that this value can still be squared without integer overflowing.
302     DynamicAsInteger = 10000,
303     ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
304     ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? DynamicAsInteger : ScalarReadCost,
305     CoeffReadCost = traits<T>::CoeffReadCost,
306     CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? DynamicAsInteger : CoeffReadCost,
307     NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
308     CostEvalAsInteger   = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
309     CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger
310   };
311 
312   typedef typename conditional<
313       ( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
314         int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
315       ),
316       PlainObject,
317       typename ref_selector<T>::type
318   >::type type;
319 };
320 
321 template<typename T>
322 T* const_cast_ptr(const T* ptr)
323 {
324   return const_cast<T*>(ptr);
325 }
326 
327 template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
328 struct dense_xpr_base
329 {
330   /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
331 };
332 
333 template<typename Derived>
334 struct dense_xpr_base<Derived, MatrixXpr>
335 {
336   typedef MatrixBase<Derived> type;
337 };
338 
339 template<typename Derived>
340 struct dense_xpr_base<Derived, ArrayXpr>
341 {
342   typedef ArrayBase<Derived> type;
343 };
344 
345 /** \internal Helper base class to add a scalar multiple operator
346   * overloads for complex types */
347 template<typename Derived,typename Scalar,typename OtherScalar,
348          bool EnableIt = !is_same<Scalar,OtherScalar>::value >
349 struct special_scalar_op_base : public DenseCoeffsBase<Derived>
350 {
351   // dummy operator* so that the
352   // "using special_scalar_op_base::operator*" compiles
353   void operator*() const;
354 };
355 
356 template<typename Derived,typename Scalar,typename OtherScalar>
357 struct special_scalar_op_base<Derived,Scalar,OtherScalar,true>  : public DenseCoeffsBase<Derived>
358 {
359   const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
360   operator*(const OtherScalar& scalar) const
361   {
362     return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
363       (*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
364   }
365 
366   inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
367   operator*(const OtherScalar& scalar, const Derived& matrix)
368   { return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
369 };
370 
371 template<typename XprType, typename CastType> struct cast_return_type
372 {
373   typedef typename XprType::Scalar CurrentScalarType;
374   typedef typename remove_all<CastType>::type _CastType;
375   typedef typename _CastType::Scalar NewScalarType;
376   typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
377                               const XprType&,CastType>::type type;
378 };
379 
380 template <typename A, typename B> struct promote_storage_type;
381 
382 template <typename A> struct promote_storage_type<A,A>
383 {
384   typedef A ret;
385 };
386 
387 /** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
388   * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
389   */
390 template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
391 struct plain_row_type
392 {
393   typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
394                  ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
395   typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
396                  ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;
397 
398   typedef typename conditional<
399     is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
400     MatrixRowType,
401     ArrayRowType
402   >::type type;
403 };
404 
405 template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
406 struct plain_col_type
407 {
408   typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
409                  ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
410   typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
411                  ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;
412 
413   typedef typename conditional<
414     is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
415     MatrixColType,
416     ArrayColType
417   >::type type;
418 };
419 
420 template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
421 struct plain_diag_type
422 {
423   enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
424          max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
425   };
426   typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
427   typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;
428 
429   typedef typename conditional<
430     is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
431     MatrixDiagType,
432     ArrayDiagType
433   >::type type;
434 };
435 
436 template<typename ExpressionType>
437 struct is_lvalue
438 {
439   enum { value = !bool(is_const<ExpressionType>::value) &&
440                  bool(traits<ExpressionType>::Flags & LvalueBit) };
441 };
442 
443 } // end namespace internal
444 
445 } // end namespace Eigen
446 
447 #endif // EIGEN_XPRHELPER_H
448