• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_ANGLEAXIS_H
11 #define EIGEN_ANGLEAXIS_H
12 
13 namespace Eigen {
14 
15 /** \geometry_module \ingroup Geometry_Module
16   *
17   * \class AngleAxis
18   *
19   * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
20   *
21   * \param _Scalar the scalar type, i.e., the type of the coefficients.
22   *
23   * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
24   *
25   * The following two typedefs are provided for convenience:
26   * \li \c AngleAxisf for \c float
27   * \li \c AngleAxisd for \c double
28   *
29   * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
30   * mimic Euler-angles. Here is an example:
31   * \include AngleAxis_mimic_euler.cpp
32   * Output: \verbinclude AngleAxis_mimic_euler.out
33   *
34   * \note This class is not aimed to be used to store a rotation transformation,
35   * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
36   * and transformation objects.
37   *
38   * \sa class Quaternion, class Transform, MatrixBase::UnitX()
39   */
40 
41 namespace internal {
42 template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
43 {
44   typedef _Scalar Scalar;
45 };
46 }
47 
48 template<typename _Scalar>
49 class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
50 {
51   typedef RotationBase<AngleAxis<_Scalar>,3> Base;
52 
53 public:
54 
55   using Base::operator*;
56 
57   enum { Dim = 3 };
58   /** the scalar type of the coefficients */
59   typedef _Scalar Scalar;
60   typedef Matrix<Scalar,3,3> Matrix3;
61   typedef Matrix<Scalar,3,1> Vector3;
62   typedef Quaternion<Scalar> QuaternionType;
63 
64 protected:
65 
66   Vector3 m_axis;
67   Scalar m_angle;
68 
69 public:
70 
71   /** Default constructor without initialization. */
72   AngleAxis() {}
73   /** Constructs and initialize the angle-axis rotation from an \a angle in radian
74     * and an \a axis which \b must \b be \b normalized.
75     *
76     * \warning If the \a axis vector is not normalized, then the angle-axis object
77     *          represents an invalid rotation. */
78   template<typename Derived>
79   inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
80   /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
81   template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
82   /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
83   template<typename Derived>
84   inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
85 
86   Scalar angle() const { return m_angle; }
87   Scalar& angle() { return m_angle; }
88 
89   const Vector3& axis() const { return m_axis; }
90   Vector3& axis() { return m_axis; }
91 
92   /** Concatenates two rotations */
93   inline QuaternionType operator* (const AngleAxis& other) const
94   { return QuaternionType(*this) * QuaternionType(other); }
95 
96   /** Concatenates two rotations */
97   inline QuaternionType operator* (const QuaternionType& other) const
98   { return QuaternionType(*this) * other; }
99 
100   /** Concatenates two rotations */
101   friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
102   { return a * QuaternionType(b); }
103 
104   /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
105   AngleAxis inverse() const
106   { return AngleAxis(-m_angle, m_axis); }
107 
108   template<class QuatDerived>
109   AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
110   template<typename Derived>
111   AngleAxis& operator=(const MatrixBase<Derived>& m);
112 
113   template<typename Derived>
114   AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
115   Matrix3 toRotationMatrix(void) const;
116 
117   /** \returns \c *this with scalar type casted to \a NewScalarType
118     *
119     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
120     * then this function smartly returns a const reference to \c *this.
121     */
122   template<typename NewScalarType>
123   inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
124   { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
125 
126   /** Copy constructor with scalar type conversion */
127   template<typename OtherScalarType>
128   inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
129   {
130     m_axis = other.axis().template cast<Scalar>();
131     m_angle = Scalar(other.angle());
132   }
133 
134   static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); }
135 
136   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
137     * determined by \a prec.
138     *
139     * \sa MatrixBase::isApprox() */
140   bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
141   { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
142 };
143 
144 /** \ingroup Geometry_Module
145   * single precision angle-axis type */
146 typedef AngleAxis<float> AngleAxisf;
147 /** \ingroup Geometry_Module
148   * double precision angle-axis type */
149 typedef AngleAxis<double> AngleAxisd;
150 
151 /** Set \c *this from a \b unit quaternion.
152   * The axis is normalized.
153   *
154   * \warning As any other method dealing with quaternion, if the input quaternion
155   *          is not normalized then the result is undefined.
156   */
157 template<typename Scalar>
158 template<typename QuatDerived>
159 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
160 {
161   using std::acos;
162   using std::min;
163   using std::max;
164   Scalar n2 = q.vec().squaredNorm();
165   if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
166   {
167     m_angle = 0;
168     m_axis << 1, 0, 0;
169   }
170   else
171   {
172     m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
173     m_axis = q.vec() / internal::sqrt(n2);
174   }
175   return *this;
176 }
177 
178 /** Set \c *this from a 3x3 rotation matrix \a mat.
179   */
180 template<typename Scalar>
181 template<typename Derived>
182 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
183 {
184   // Since a direct conversion would not be really faster,
185   // let's use the robust Quaternion implementation:
186   return *this = QuaternionType(mat);
187 }
188 
189 /**
190 * \brief Sets \c *this from a 3x3 rotation matrix.
191 **/
192 template<typename Scalar>
193 template<typename Derived>
194 AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
195 {
196   return *this = QuaternionType(mat);
197 }
198 
199 /** Constructs and \returns an equivalent 3x3 rotation matrix.
200   */
201 template<typename Scalar>
202 typename AngleAxis<Scalar>::Matrix3
203 AngleAxis<Scalar>::toRotationMatrix(void) const
204 {
205   Matrix3 res;
206   Vector3 sin_axis  = internal::sin(m_angle) * m_axis;
207   Scalar c = internal::cos(m_angle);
208   Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
209 
210   Scalar tmp;
211   tmp = cos1_axis.x() * m_axis.y();
212   res.coeffRef(0,1) = tmp - sin_axis.z();
213   res.coeffRef(1,0) = tmp + sin_axis.z();
214 
215   tmp = cos1_axis.x() * m_axis.z();
216   res.coeffRef(0,2) = tmp + sin_axis.y();
217   res.coeffRef(2,0) = tmp - sin_axis.y();
218 
219   tmp = cos1_axis.y() * m_axis.z();
220   res.coeffRef(1,2) = tmp - sin_axis.x();
221   res.coeffRef(2,1) = tmp + sin_axis.x();
222 
223   res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
224 
225   return res;
226 }
227 
228 } // end namespace Eigen
229 
230 #endif // EIGEN_ANGLEAXIS_H
231