• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1      SUBROUTINE ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
2*     .. Scalar Arguments ..
3      INTEGER INCX,N
4      CHARACTER DIAG,TRANS,UPLO
5*     ..
6*     .. Array Arguments ..
7      DOUBLE COMPLEX AP(*),X(*)
8*     ..
9*
10*  Purpose
11*  =======
12*
13*  ZTPMV  performs one of the matrix-vector operations
14*
15*     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
16*
17*  where x is an n element vector and  A is an n by n unit, or non-unit,
18*  upper or lower triangular matrix, supplied in packed form.
19*
20*  Arguments
21*  ==========
22*
23*  UPLO   - CHARACTER*1.
24*           On entry, UPLO specifies whether the matrix is an upper or
25*           lower triangular matrix as follows:
26*
27*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
28*
29*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
30*
31*           Unchanged on exit.
32*
33*  TRANS  - CHARACTER*1.
34*           On entry, TRANS specifies the operation to be performed as
35*           follows:
36*
37*              TRANS = 'N' or 'n'   x := A*x.
38*
39*              TRANS = 'T' or 't'   x := A'*x.
40*
41*              TRANS = 'C' or 'c'   x := conjg( A' )*x.
42*
43*           Unchanged on exit.
44*
45*  DIAG   - CHARACTER*1.
46*           On entry, DIAG specifies whether or not A is unit
47*           triangular as follows:
48*
49*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
50*
51*              DIAG = 'N' or 'n'   A is not assumed to be unit
52*                                  triangular.
53*
54*           Unchanged on exit.
55*
56*  N      - INTEGER.
57*           On entry, N specifies the order of the matrix A.
58*           N must be at least zero.
59*           Unchanged on exit.
60*
61*  AP     - COMPLEX*16       array of DIMENSION at least
62*           ( ( n*( n + 1 ) )/2 ).
63*           Before entry with  UPLO = 'U' or 'u', the array AP must
64*           contain the upper triangular matrix packed sequentially,
65*           column by column, so that AP( 1 ) contains a( 1, 1 ),
66*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
67*           respectively, and so on.
68*           Before entry with UPLO = 'L' or 'l', the array AP must
69*           contain the lower triangular matrix packed sequentially,
70*           column by column, so that AP( 1 ) contains a( 1, 1 ),
71*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
72*           respectively, and so on.
73*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
74*           A are not referenced, but are assumed to be unity.
75*           Unchanged on exit.
76*
77*  X      - COMPLEX*16       array of dimension at least
78*           ( 1 + ( n - 1 )*abs( INCX ) ).
79*           Before entry, the incremented array X must contain the n
80*           element vector x. On exit, X is overwritten with the
81*           tranformed vector x.
82*
83*  INCX   - INTEGER.
84*           On entry, INCX specifies the increment for the elements of
85*           X. INCX must not be zero.
86*           Unchanged on exit.
87*
88*  Further Details
89*  ===============
90*
91*  Level 2 Blas routine.
92*
93*  -- Written on 22-October-1986.
94*     Jack Dongarra, Argonne National Lab.
95*     Jeremy Du Croz, Nag Central Office.
96*     Sven Hammarling, Nag Central Office.
97*     Richard Hanson, Sandia National Labs.
98*
99*  =====================================================================
100*
101*     .. Parameters ..
102      DOUBLE COMPLEX ZERO
103      PARAMETER (ZERO= (0.0D+0,0.0D+0))
104*     ..
105*     .. Local Scalars ..
106      DOUBLE COMPLEX TEMP
107      INTEGER I,INFO,IX,J,JX,K,KK,KX
108      LOGICAL NOCONJ,NOUNIT
109*     ..
110*     .. External Functions ..
111      LOGICAL LSAME
112      EXTERNAL LSAME
113*     ..
114*     .. External Subroutines ..
115      EXTERNAL XERBLA
116*     ..
117*     .. Intrinsic Functions ..
118      INTRINSIC DCONJG
119*     ..
120*
121*     Test the input parameters.
122*
123      INFO = 0
124      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
125          INFO = 1
126      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
127     +         .NOT.LSAME(TRANS,'C')) THEN
128          INFO = 2
129      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
130          INFO = 3
131      ELSE IF (N.LT.0) THEN
132          INFO = 4
133      ELSE IF (INCX.EQ.0) THEN
134          INFO = 7
135      END IF
136      IF (INFO.NE.0) THEN
137          CALL XERBLA('ZTPMV ',INFO)
138          RETURN
139      END IF
140*
141*     Quick return if possible.
142*
143      IF (N.EQ.0) RETURN
144*
145      NOCONJ = LSAME(TRANS,'T')
146      NOUNIT = LSAME(DIAG,'N')
147*
148*     Set up the start point in X if the increment is not unity. This
149*     will be  ( N - 1 )*INCX  too small for descending loops.
150*
151      IF (INCX.LE.0) THEN
152          KX = 1 - (N-1)*INCX
153      ELSE IF (INCX.NE.1) THEN
154          KX = 1
155      END IF
156*
157*     Start the operations. In this version the elements of AP are
158*     accessed sequentially with one pass through AP.
159*
160      IF (LSAME(TRANS,'N')) THEN
161*
162*        Form  x:= A*x.
163*
164          IF (LSAME(UPLO,'U')) THEN
165              KK = 1
166              IF (INCX.EQ.1) THEN
167                  DO 20 J = 1,N
168                      IF (X(J).NE.ZERO) THEN
169                          TEMP = X(J)
170                          K = KK
171                          DO 10 I = 1,J - 1
172                              X(I) = X(I) + TEMP*AP(K)
173                              K = K + 1
174   10                     CONTINUE
175                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
176                      END IF
177                      KK = KK + J
178   20             CONTINUE
179              ELSE
180                  JX = KX
181                  DO 40 J = 1,N
182                      IF (X(JX).NE.ZERO) THEN
183                          TEMP = X(JX)
184                          IX = KX
185                          DO 30 K = KK,KK + J - 2
186                              X(IX) = X(IX) + TEMP*AP(K)
187                              IX = IX + INCX
188   30                     CONTINUE
189                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
190                      END IF
191                      JX = JX + INCX
192                      KK = KK + J
193   40             CONTINUE
194              END IF
195          ELSE
196              KK = (N* (N+1))/2
197              IF (INCX.EQ.1) THEN
198                  DO 60 J = N,1,-1
199                      IF (X(J).NE.ZERO) THEN
200                          TEMP = X(J)
201                          K = KK
202                          DO 50 I = N,J + 1,-1
203                              X(I) = X(I) + TEMP*AP(K)
204                              K = K - 1
205   50                     CONTINUE
206                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
207                      END IF
208                      KK = KK - (N-J+1)
209   60             CONTINUE
210              ELSE
211                  KX = KX + (N-1)*INCX
212                  JX = KX
213                  DO 80 J = N,1,-1
214                      IF (X(JX).NE.ZERO) THEN
215                          TEMP = X(JX)
216                          IX = KX
217                          DO 70 K = KK,KK - (N- (J+1)),-1
218                              X(IX) = X(IX) + TEMP*AP(K)
219                              IX = IX - INCX
220   70                     CONTINUE
221                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
222                      END IF
223                      JX = JX - INCX
224                      KK = KK - (N-J+1)
225   80             CONTINUE
226              END IF
227          END IF
228      ELSE
229*
230*        Form  x := A'*x  or  x := conjg( A' )*x.
231*
232          IF (LSAME(UPLO,'U')) THEN
233              KK = (N* (N+1))/2
234              IF (INCX.EQ.1) THEN
235                  DO 110 J = N,1,-1
236                      TEMP = X(J)
237                      K = KK - 1
238                      IF (NOCONJ) THEN
239                          IF (NOUNIT) TEMP = TEMP*AP(KK)
240                          DO 90 I = J - 1,1,-1
241                              TEMP = TEMP + AP(K)*X(I)
242                              K = K - 1
243   90                     CONTINUE
244                      ELSE
245                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
246                          DO 100 I = J - 1,1,-1
247                              TEMP = TEMP + DCONJG(AP(K))*X(I)
248                              K = K - 1
249  100                     CONTINUE
250                      END IF
251                      X(J) = TEMP
252                      KK = KK - J
253  110             CONTINUE
254              ELSE
255                  JX = KX + (N-1)*INCX
256                  DO 140 J = N,1,-1
257                      TEMP = X(JX)
258                      IX = JX
259                      IF (NOCONJ) THEN
260                          IF (NOUNIT) TEMP = TEMP*AP(KK)
261                          DO 120 K = KK - 1,KK - J + 1,-1
262                              IX = IX - INCX
263                              TEMP = TEMP + AP(K)*X(IX)
264  120                     CONTINUE
265                      ELSE
266                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
267                          DO 130 K = KK - 1,KK - J + 1,-1
268                              IX = IX - INCX
269                              TEMP = TEMP + DCONJG(AP(K))*X(IX)
270  130                     CONTINUE
271                      END IF
272                      X(JX) = TEMP
273                      JX = JX - INCX
274                      KK = KK - J
275  140             CONTINUE
276              END IF
277          ELSE
278              KK = 1
279              IF (INCX.EQ.1) THEN
280                  DO 170 J = 1,N
281                      TEMP = X(J)
282                      K = KK + 1
283                      IF (NOCONJ) THEN
284                          IF (NOUNIT) TEMP = TEMP*AP(KK)
285                          DO 150 I = J + 1,N
286                              TEMP = TEMP + AP(K)*X(I)
287                              K = K + 1
288  150                     CONTINUE
289                      ELSE
290                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
291                          DO 160 I = J + 1,N
292                              TEMP = TEMP + DCONJG(AP(K))*X(I)
293                              K = K + 1
294  160                     CONTINUE
295                      END IF
296                      X(J) = TEMP
297                      KK = KK + (N-J+1)
298  170             CONTINUE
299              ELSE
300                  JX = KX
301                  DO 200 J = 1,N
302                      TEMP = X(JX)
303                      IX = JX
304                      IF (NOCONJ) THEN
305                          IF (NOUNIT) TEMP = TEMP*AP(KK)
306                          DO 180 K = KK + 1,KK + N - J
307                              IX = IX + INCX
308                              TEMP = TEMP + AP(K)*X(IX)
309  180                     CONTINUE
310                      ELSE
311                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
312                          DO 190 K = KK + 1,KK + N - J
313                              IX = IX + INCX
314                              TEMP = TEMP + DCONJG(AP(K))*X(IX)
315  190                     CONTINUE
316                      END IF
317                      X(JX) = TEMP
318                      JX = JX + INCX
319                      KK = KK + (N-J+1)
320  200             CONTINUE
321              END IF
322          END IF
323      END IF
324*
325      RETURN
326*
327*     End of ZTPMV .
328*
329      END
330