• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1namespace Eigen {
2
3/** \page TutorialSparse Tutorial page 9 - Sparse Matrix
4    \ingroup Tutorial
5
6\li \b Previous: \ref TutorialGeometry
7\li \b Next: \ref TutorialMapClass
8
9\b Table \b of \b contents \n
10  - \ref TutorialSparseIntro
11  - \ref TutorialSparseExample "Example"
12  - \ref TutorialSparseSparseMatrix
13  - \ref TutorialSparseFilling
14  - \ref TutorialSparseDirectSolvers
15  - \ref TutorialSparseFeatureSet
16    - \ref TutorialSparse_BasicOps
17    - \ref TutorialSparse_Products
18    - \ref TutorialSparse_TriangularSelfadjoint
19    - \ref TutorialSparse_Submat
20
21
22<hr>
23
24Manipulating and solving sparse problems involves various modules which are summarized below:
25
26<table class="manual">
27<tr><th>Module</th><th>Header file</th><th>Contents</th></tr>
28<tr><td>\link Sparse_Module SparseCore \endlink</td><td>\code#include <Eigen/SparseCore>\endcode</td><td>SparseMatrix and SparseVector classes, matrix assembly, basic sparse linear algebra (including sparse triangular solvers)</td></tr>
29<tr><td>\link SparseCholesky_Module SparseCholesky \endlink</td><td>\code#include <Eigen/SparseCholesky>\endcode</td><td>Direct sparse LLT and LDLT Cholesky factorization to solve sparse self-adjoint positive definite problems</td></tr>
30<tr><td>\link IterativeLinearSolvers_Module IterativeLinearSolvers \endlink</td><td>\code#include <Eigen/IterativeLinearSolvers>\endcode</td><td>Iterative solvers to solve large general linear square problems (including self-adjoint positive definite problems)</td></tr>
31<tr><td></td><td>\code#include <Eigen/Sparse>\endcode</td><td>Includes all the above modules</td></tr>
32</table>
33
34\section TutorialSparseIntro Sparse matrix representation
35
36In many applications (e.g., finite element methods) it is common to deal with very large matrices where only a few coefficients are different from zero.  In such cases, memory consumption can be reduced and performance increased by using a specialized representation storing only the nonzero coefficients. Such a matrix is called a sparse matrix.
37
38\b The \b %SparseMatrix \b class
39
40The class SparseMatrix is the main sparse matrix representation of Eigen's sparse module; it offers high performance and low memory usage.
41It implements a more versatile variant of the widely-used Compressed Column (or Row) Storage scheme.
42It consists of four compact arrays:
43 - \c Values: stores the coefficient values of the non-zeros.
44 - \c InnerIndices: stores the row (resp. column) indices of the non-zeros.
45 - \c OuterStarts: stores for each column (resp. row) the index of the first non-zero in the previous two arrays.
46 - \c InnerNNZs: stores the number of non-zeros of each column (resp. row).
47The word \c inner refers to an \em inner \em vector that is a column for a column-major matrix, or a row for a row-major matrix.
48The word \c outer refers to the other direction.
49
50This storage scheme is better explained on an example. The following matrix
51<table class="manual">
52<tr><td> 0</td><td>3</td><td> 0</td><td>0</td><td> 0</td></tr>
53<tr><td>22</td><td>0</td><td> 0</td><td>0</td><td>17</td></tr>
54<tr><td> 7</td><td>5</td><td> 0</td><td>1</td><td> 0</td></tr>
55<tr><td> 0</td><td>0</td><td> 0</td><td>0</td><td> 0</td></tr>
56<tr><td> 0</td><td>0</td><td>14</td><td>0</td><td> 8</td></tr>
57</table>
58
59and one of its possible sparse, \b column \b major representation:
60<table class="manual">
61<tr><td>Values:</td>        <td>22</td><td>7</td><td>_</td><td>3</td><td>5</td><td>14</td><td>_</td><td>_</td><td>1</td><td>_</td><td>17</td><td>8</td></tr>
62<tr><td>InnerIndices:</td>  <td> 1</td><td>2</td><td>_</td><td>0</td><td>2</td><td> 4</td><td>_</td><td>_</td><td>2</td><td>_</td><td> 1</td><td>4</td></tr>
63</table>
64<table class="manual">
65<tr><td>OuterStarts:</td><td>0</td><td>3</td><td>5</td><td>8</td><td>10</td><td>\em 12 </td></tr>
66<tr><td>InnerNNZs:</td>    <td>2</td><td>2</td><td>1</td><td>1</td><td> 2</td><td></td></tr>
67</table>
68
69Currently the elements of a given inner vector are guaranteed to be always sorted by increasing inner indices.
70The \c "_" indicates available free space to quickly insert new elements.
71Assuming no reallocation is needed, the insertion of a random element is therefore in O(nnz_j) where nnz_j is the number of nonzeros of the respective inner vector.
72On the other hand, inserting elements with increasing inner indices in a given inner vector is much more efficient since this only requires to increase the respective \c InnerNNZs entry that is a O(1) operation.
73
74The case where no empty space is available is a special case, and is refered as the \em compressed mode.
75It corresponds to the widely used Compressed Column (or Row) Storage schemes (CCS or CRS).
76Any SparseMatrix can be turned to this form by calling the SparseMatrix::makeCompressed() function.
77In this case, one can remark that the \c InnerNNZs array is redundant with \c OuterStarts because we the equality: \c InnerNNZs[j] = \c OuterStarts[j+1]-\c OuterStarts[j].
78Therefore, in practice a call to SparseMatrix::makeCompressed() frees this buffer.
79
80It is worth noting that most of our wrappers to external libraries requires compressed matrices as inputs.
81
82The results of %Eigen's operations always produces \b compressed sparse matrices.
83On the other hand, the insertion of a new element into a SparseMatrix converts this later to the \b uncompressed mode.
84
85Here is the previous matrix represented in compressed mode:
86<table class="manual">
87<tr><td>Values:</td>        <td>22</td><td>7</td><td>3</td><td>5</td><td>14</td><td>1</td><td>17</td><td>8</td></tr>
88<tr><td>InnerIndices:</td>  <td> 1</td><td>2</td><td>0</td><td>2</td><td> 4</td><td>2</td><td> 1</td><td>4</td></tr>
89</table>
90<table class="manual">
91<tr><td>OuterStarts:</td><td>0</td><td>2</td><td>4</td><td>5</td><td>6</td><td>\em 8 </td></tr>
92</table>
93
94A SparseVector is a special case of a SparseMatrix where only the \c Values and \c InnerIndices arrays are stored.
95There is no notion of compressed/uncompressed mode for a SparseVector.
96
97
98\section TutorialSparseExample First example
99
100Before describing each individual class, let's start with the following typical example: solving the Lapace equation \f$ \nabla u = 0 \f$ on a regular 2D grid using a finite difference scheme and Dirichlet boundary conditions.
101Such problem can be mathematically expressed as a linear problem of the form \f$ Ax=b \f$ where \f$ x \f$ is the vector of \c m unknowns (in our case, the values of the pixels), \f$ b \f$ is the right hand side vector resulting from the boundary conditions, and \f$ A \f$ is an \f$ m \times m \f$ matrix containing only a few non-zero elements resulting from the discretization of the Laplacian operator.
102
103<table class="manual">
104<tr><td>
105\include Tutorial_sparse_example.cpp
106</td>
107<td>
108\image html Tutorial_sparse_example.jpeg
109</td></tr></table>
110
111In this example, we start by defining a column-major sparse matrix type of double \c SparseMatrix<double>, and a triplet list of the same scalar type \c  Triplet<double>. A triplet is a simple object representing a non-zero entry as the triplet: \c row index, \c column index, \c value.
112
113In the main function, we declare a list \c coefficients of triplets (as a std vector) and the right hand side vector \f$ b \f$ which are filled by the \a buildProblem function.
114The raw and flat list of non-zero entries is then converted to a true SparseMatrix object \c A.
115Note that the elements of the list do not have to be sorted, and possible duplicate entries will be summed up.
116
117The last step consists of effectively solving the assembled problem.
118Since the resulting matrix \c A is symmetric by construction, we can perform a direct Cholesky factorization via the SimplicialLDLT class which behaves like its LDLT counterpart for dense objects.
119
120The resulting vector \c x contains the pixel values as a 1D array which is saved to a jpeg file shown on the right of the code above.
121
122Describing the \a buildProblem and \a save functions is out of the scope of this tutorial. They are given \ref TutorialSparse_example_details "here" for the curious and reproducibility purpose.
123
124
125
126
127\section TutorialSparseSparseMatrix The SparseMatrix class
128
129\b %Matrix \b and \b vector \b properties \n
130
131The SparseMatrix and SparseVector classes take three template arguments:
132 * the scalar type (e.g., double)
133 * the storage order (ColMajor or RowMajor, the default is RowMajor)
134 * the inner index type (default is \c int).
135
136As for dense Matrix objects, constructors takes the size of the object.
137Here are some examples:
138
139\code
140SparseMatrix<std::complex<float> > mat(1000,2000);         // declares a 1000x2000 column-major compressed sparse matrix of complex<float>
141SparseMatrix<double,RowMajor> mat(1000,2000);              // declares a 1000x2000 row-major compressed sparse matrix of double
142SparseVector<std::complex<float> > vec(1000);              // declares a column sparse vector of complex<float> of size 1000
143SparseVector<double,RowMajor> vec(1000);                   // declares a row sparse vector of double of size 1000
144\endcode
145
146In the rest of the tutorial, \c mat and \c vec represent any sparse-matrix and sparse-vector objects, respectively.
147
148The dimensions of a matrix can be queried using the following functions:
149<table class="manual">
150<tr><td>Standard \n dimensions</td><td>\code
151mat.rows()
152mat.cols()\endcode</td>
153<td>\code
154vec.size() \endcode</td>
155</tr>
156<tr><td>Sizes along the \n inner/outer dimensions</td><td>\code
157mat.innerSize()
158mat.outerSize()\endcode</td>
159<td></td>
160</tr>
161<tr><td>Number of non \n zero coefficients</td><td>\code
162mat.nonZeros() \endcode</td>
163<td>\code
164vec.nonZeros() \endcode</td></tr>
165</table>
166
167
168\b Iterating \b over \b the \b nonzero \b coefficients \n
169
170Random access to the elements of a sparse object can be done through the \c coeffRef(i,j) function.
171However, this function involves a quite expensive binary search.
172In most cases, one only wants to iterate over the non-zeros elements. This is achieved by a standard loop over the outer dimension, and then by iterating over the non-zeros of the current inner vector via an InnerIterator. Thus, the non-zero entries have to be visited in the same order than the storage order.
173Here is an example:
174<table class="manual">
175<tr><td>
176\code
177SparseMatrix<double> mat(rows,cols);
178for (int k=0; k<mat.outerSize(); ++k)
179  for (SparseMatrix<double>::InnerIterator it(mat,k); it; ++it)
180  {
181    it.value();
182    it.row();   // row index
183    it.col();   // col index (here it is equal to k)
184    it.index(); // inner index, here it is equal to it.row()
185  }
186\endcode
187</td><td>
188\code
189SparseVector<double> vec(size);
190for (SparseVector<double>::InnerIterator it(vec); it; ++it)
191{
192  it.value(); // == vec[ it.index() ]
193  it.index();
194}
195\endcode
196</td></tr>
197</table>
198For a writable expression, the referenced value can be modified using the valueRef() function.
199If the type of the sparse matrix or vector depends on a template parameter, then the \c typename keyword is
200required to indicate that \c InnerIterator denotes a type; see \ref TopicTemplateKeyword for details.
201
202
203\section TutorialSparseFilling Filling a sparse matrix
204
205Because of the special storage scheme of a SparseMatrix, special care has to be taken when adding new nonzero entries.
206For instance, the cost of a single purely random insertion into a SparseMatrix is \c O(nnz), where \c nnz is the current number of non-zero coefficients.
207
208The simplest way to create a sparse matrix while guaranteeing good performance is thus to first build a list of so-called \em triplets, and then convert it to a SparseMatrix.
209
210Here is a typical usage example:
211\code
212typedef Eigen::Triplet<double> T;
213std::vector<T> tripletList;
214triplets.reserve(estimation_of_entries);
215for(...)
216{
217  // ...
218  tripletList.push_back(T(i,j,v_ij));
219}
220SparseMatrixType mat(rows,cols);
221mat.setFromTriplets(tripletList.begin(), tripletList.end());
222// mat is ready to go!
223\endcode
224The \c std::vector of triplets might contain the elements in arbitrary order, and might even contain duplicated elements that will be summed up by setFromTriplets().
225See the SparseMatrix::setFromTriplets() function and class Triplet for more details.
226
227
228In some cases, however, slightly higher performance, and lower memory consumption can be reached by directly inserting the non-zeros into the destination matrix.
229A typical scenario of this approach is illustrated bellow:
230\code
2311: SparseMatrix<double> mat(rows,cols);         // default is column major
2322: mat.reserve(VectorXi::Constant(cols,6));
2333: for each i,j such that v_ij != 0
2344:   mat.insert(i,j) = v_ij;                    // alternative: mat.coeffRef(i,j) += v_ij;
2355: mat.makeCompressed();                        // optional
236\endcode
237
238- The key ingredient here is the line 2 where we reserve room for 6 non-zeros per column. In many cases, the number of non-zeros per column or row can easily be known in advance. If it varies significantly for each inner vector, then it is possible to specify a reserve size for each inner vector by providing a vector object with an operator[](int j) returning the reserve size of the \c j-th inner vector (e.g., via a VectorXi or std::vector<int>). If only a rought estimate of the number of nonzeros per inner-vector can be obtained, it is highly recommended to overestimate it rather than the opposite. If this line is omitted, then the first insertion of a new element will reserve room for 2 elements per inner vector.
239- The line 4 performs a sorted insertion. In this example, the ideal case is when the \c j-th column is not full and contains non-zeros whose inner-indices are smaller than \c i. In this case, this operation boils down to trivial O(1) operation.
240- When calling insert(i,j) the element \c i \c ,j must not already exists, otherwise use the coeffRef(i,j) method that will allow to, e.g., accumulate values. This method first performs a binary search and finally calls insert(i,j) if the element does not already exist. It is more flexible than insert() but also more costly.
241- The line 5 suppresses the remaining empty space and transforms the matrix into a compressed column storage.
242
243
244\section TutorialSparseDirectSolvers Solving linear problems
245
246%Eigen currently provides a limited set of built-in solvers, as well as wrappers to external solver libraries.
247They are summarized in the following table:
248
249<table class="manual">
250<tr><th>Class</th><th>Module</th><th>Solver kind</th><th>Matrix kind</th><th>Features related to performance</th>
251    <th>Dependencies,License</th><th class="width20em"><p>Notes</p></th></tr>
252<tr><td>SimplicialLLT    </td><td>\link SparseCholesky_Module SparseCholesky \endlink</td><td>Direct LLt factorization</td><td>SPD</td><td>Fill-in reducing</td>
253    <td>built-in, LGPL</td>
254    <td>SimplicialLDLT is often preferable</td></tr>
255<tr><td>SimplicialLDLT   </td><td>\link SparseCholesky_Module SparseCholesky \endlink</td><td>Direct LDLt factorization</td><td>SPD</td><td>Fill-in reducing</td>
256    <td>built-in, LGPL</td>
257    <td>Recommended for very sparse and not too large problems (e.g., 2D Poisson eq.)</td></tr>
258<tr><td>ConjugateGradient</td><td>\link IterativeLinearSolvers_Module IterativeLinearSolvers \endlink</td><td>Classic iterative CG</td><td>SPD</td><td>Preconditionning</td>
259    <td>built-in, LGPL</td>
260    <td>Recommended for large symmetric problems (e.g., 3D Poisson eq.)</td></tr>
261<tr><td>BiCGSTAB</td><td>\link IterativeLinearSolvers_Module IterativeLinearSolvers \endlink</td><td>Iterative stabilized bi-conjugate gradient</td><td>Square</td><td>Preconditionning</td>
262    <td>built-in, LGPL</td>
263    <td>Might not always converge</td></tr>
264
265
266<tr><td>PastixLLT \n PastixLDLT \n PastixLU</td><td>\link PaStiXSupport_Module PaStiXSupport \endlink</td><td>Direct LLt, LDLt, LU factorizations</td><td>SPD \n SPD \n Square</td><td>Fill-in reducing, Leverage fast dense algebra, Multithreading</td>
267    <td>Requires the <a href="http://pastix.gforge.inria.fr">PaStiX</a> package, \b CeCILL-C </td>
268    <td>optimized for tough problems and symmetric patterns</td></tr>
269<tr><td>CholmodSupernodalLLT</td><td>\link CholmodSupport_Module CholmodSupport \endlink</td><td>Direct LLt factorization</td><td>SPD</td><td>Fill-in reducing, Leverage fast dense algebra</td>
270    <td>Requires the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">SuiteSparse</a> package, \b GPL </td>
271    <td></td></tr>
272<tr><td>UmfPackLU</td><td>\link UmfPackSupport_Module UmfPackSupport \endlink</td><td>Direct LU factorization</td><td>Square</td><td>Fill-in reducing, Leverage fast dense algebra</td>
273    <td>Requires the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">SuiteSparse</a> package, \b GPL </td>
274    <td></td></tr>
275<tr><td>SuperLU</td><td>\link SuperLUSupport_Module SuperLUSupport \endlink</td><td>Direct LU factorization</td><td>Square</td><td>Fill-in reducing, Leverage fast dense algebra</td>
276    <td>Requires the <a href="http://crd-legacy.lbl.gov/~xiaoye/SuperLU/">SuperLU</a> library, (BSD-like)</td>
277    <td></td></tr>
278</table>
279
280Here \c SPD means symmetric positive definite.
281
282All these solvers follow the same general concept.
283Here is a typical and general example:
284\code
285#include <Eigen/RequiredModuleName>
286// ...
287SparseMatrix<double> A;
288// fill A
289VectorXd b, x;
290// fill b
291// solve Ax = b
292SolverClassName<SparseMatrix<double> > solver;
293solver.compute(A);
294if(solver.info()!=Succeeded) {
295  // decomposition failed
296  return;
297}
298x = solver.solve(b);
299if(solver.info()!=Succeeded) {
300  // solving failed
301  return;
302}
303// solve for another right hand side:
304x1 = solver.solve(b1);
305\endcode
306
307For \c SPD solvers, a second optional template argument allows to specify which triangular part have to be used, e.g.:
308
309\code
310#include <Eigen/IterativeLinearSolvers>
311
312ConjugateGradient<SparseMatrix<double>, Eigen::Upper> solver;
313x = solver.compute(A).solve(b);
314\endcode
315In the above example, only the upper triangular part of the input matrix A is considered for solving. The opposite triangle might either be empty or contain arbitrary values.
316
317In the case where multiple problems with the same sparcity pattern have to be solved, then the "compute" step can be decomposed as follow:
318\code
319SolverClassName<SparseMatrix<double> > solver;
320solver.analyzePattern(A);   // for this step the numerical values of A are not used
321solver.factorize(A);
322x1 = solver.solve(b1);
323x2 = solver.solve(b2);
324...
325A = ...;                    // modify the values of the nonzeros of A, the nonzeros pattern must stay unchanged
326solver.factorize(A);
327x1 = solver.solve(b1);
328x2 = solver.solve(b2);
329...
330\endcode
331The compute() method is equivalent to calling both analyzePattern() and factorize().
332
333Finally, each solver provides some specific features, such as determinant, access to the factors, controls of the iterations, and so on.
334More details are availble in the documentations of the respective classes.
335
336
337\section TutorialSparseFeatureSet Supported operators and functions
338
339Because of their special storage format, sparse matrices cannot offer the same level of flexbility than dense matrices.
340In Eigen's sparse module we chose to expose only the subset of the dense matrix API which can be efficiently implemented.
341In the following \em sm denotes a sparse matrix, \em sv a sparse vector, \em dm a dense matrix, and \em dv a dense vector.
342
343\subsection TutorialSparse_BasicOps Basic operations
344
345%Sparse expressions support most of the unary and binary coefficient wise operations:
346\code
347sm1.real()   sm1.imag()   -sm1                    0.5*sm1
348sm1+sm2      sm1-sm2      sm1.cwiseProduct(sm2)
349\endcode
350However, a strong restriction is that the storage orders must match. For instance, in the following example:
351\code
352sm4 = sm1 + sm2 + sm3;
353\endcode
354sm1, sm2, and sm3 must all be row-major or all column major.
355On the other hand, there is no restriction on the target matrix sm4.
356For instance, this means that for computing \f$ A^T + A \f$, the matrix \f$ A^T \f$ must be evaluated into a temporary matrix of compatible storage order:
357\code
358SparseMatrix<double> A, B;
359B = SparseMatrix<double>(A.transpose()) + A;
360\endcode
361
362Binary coefficient wise operators can also mix sparse and dense expressions:
363\code
364sm2 = sm1.cwiseProduct(dm1);
365dm2 = sm1 + dm1;
366\endcode
367
368
369%Sparse expressions also support transposition:
370\code
371sm1 = sm2.transpose();
372sm1 = sm2.adjoint();
373\endcode
374However, there is no transposeInPlace() method.
375
376
377\subsection TutorialSparse_Products Matrix products
378
379%Eigen supports various kind of sparse matrix products which are summarize below:
380  - \b sparse-dense:
381    \code
382dv2 = sm1 * dv1;
383dm2 = dm1 * sm1.adjoint();
384dm2 = 2. * sm1 * dm1;
385    \endcode
386  - \b symmetric \b sparse-dense. The product of a sparse symmetric matrix with a dense matrix (or vector) can also be optimized by specifying the symmetry with selfadjointView():
387    \code
388dm2 = sm1.selfadjointView<>() * dm1;        // if all coefficients of A are stored
389dm2 = A.selfadjointView<Upper>() * dm1;     // if only the upper part of A is stored
390dm2 = A.selfadjointView<Lower>() * dm1;     // if only the lower part of A is stored
391    \endcode
392  - \b sparse-sparse. For sparse-sparse products, two different algorithms are available. The default one is conservative and preserve the explicit zeros that might appear:
393    \code
394sm3 = sm1 * sm2;
395sm3 = 4 * sm1.adjoint() * sm2;
396    \endcode
397    The second algorithm prunes on the fly the explicit zeros, or the values smaller than a given threshold. It is enabled and controlled through the prune() functions:
398    \code
399sm3 = (sm1 * sm2).prune();                  // removes numerical zeros
400sm3 = (sm1 * sm2).prune(ref);               // removes elements much smaller than ref
401sm3 = (sm1 * sm2).prune(ref,epsilon);       // removes elements smaller than ref*epsilon
402    \endcode
403
404  - \b permutations. Finally, permutations can be applied to sparse matrices too:
405    \code
406PermutationMatrix<Dynamic,Dynamic> P = ...;
407sm2 = P * sm1;
408sm2 = sm1 * P.inverse();
409sm2 = sm1.transpose() * P;
410    \endcode
411
412
413\subsection TutorialSparse_TriangularSelfadjoint Triangular and selfadjoint views
414
415Just as with dense matrices, the triangularView() function can be used to address a triangular part of the matrix, and perform triangular solves with a dense right hand side:
416\code
417dm2 = sm1.triangularView<Lower>(dm1);
418dv2 = sm1.transpose().triangularView<Upper>(dv1);
419\endcode
420
421The selfadjointView() function permits various operations:
422 - optimized sparse-dense matrix products:
423    \code
424dm2 = sm1.selfadjointView<>() * dm1;        // if all coefficients of A are stored
425dm2 = A.selfadjointView<Upper>() * dm1;     // if only the upper part of A is stored
426dm2 = A.selfadjointView<Lower>() * dm1;     // if only the lower part of A is stored
427    \endcode
428 - copy of triangular parts:
429    \code
430sm2 = sm1.selfadjointView<Upper>();                               // makes a full selfadjoint matrix from the upper triangular part
431sm2.selfadjointView<Lower>() = sm1.selfadjointView<Upper>();      // copies the upper triangular part to the lower triangular part
432    \endcode
433 - application of symmetric permutations:
434 \code
435PermutationMatrix<Dynamic,Dynamic> P = ...;
436sm2 = A.selfadjointView<Upper>().twistedBy(P);                                // compute P S P' from the upper triangular part of A, and make it a full matrix
437sm2.selfadjointView<Lower>() = A.selfadjointView<Lower>().twistedBy(P);       // compute P S P' from the lower triangular part of A, and then only compute the lower part
438 \endcode
439
440\subsection TutorialSparse_Submat Sub-matrices
441
442%Sparse matrices does not support yet the addressing of arbitrary sub matrices. Currently, one can only reference a set of contiguous \em inner vectors, i.e., a set of contiguous rows for a row-major matrix, or a set of contiguous columns for a column major matrix:
443\code
444  sm1.innerVector(j);       // returns an expression of the j-th column (resp. row) of the matrix if sm1 is col-major (resp. row-major)
445  sm1.innerVectors(j, nb);  // returns an expression of the nb columns (resp. row) starting from the j-th column (resp. row)
446                            // of the matrix if sm1 is col-major (resp. row-major)
447  sm1.middleRows(j, nb);    // for row major matrices only, get a range of nb rows
448  sm1.middleCols(j, nb);    // for column major matrices only, get a range of nb columns
449\endcode
450
451\li \b Next: \ref TutorialMapClass
452
453*/
454
455}
456