• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1namespace Eigen {
2/** \page SparseQuickRefPage Quick reference guide for sparse matrices
3
4\b Table \b of \b contents
5  - \ref Constructors
6  - \ref SparseMatrixInsertion
7  - \ref SparseBasicInfos
8  - \ref SparseBasicOps
9  - \ref SparseInterops
10  - \ref sparsepermutation
11  - \ref sparsesubmatrices
12  - \ref sparseselfadjointview
13\n
14
15<hr>
16
17In this page, we give a quick summary of the main operations available for sparse matrices in the class SparseMatrix. First, it is recommended to read first the introductory tutorial at \ref TutorialSparse. The important point to have in mind when working on sparse matrices is how they are stored :
18i.e either row major or column major. The default is column major. Most arithmetic operations on sparse matrices will assert that they have the same storage order. Moreover, when interacting with external libraries that are not yet supported by Eigen, it is important to know how to send the required matrix pointers.
19
20\section Constructors Constructors and assignments
21SparseMatrix is the core class to build and manipulate sparse matrices in Eigen. It takes as template parameters the Scalar type and the storage order, either RowMajor or ColumnMajor. The default is ColumnMajor.
22
23\code
24  SparseMatrix<double> sm1(1000,1000);              // 1000x1000 compressed sparse matrix of double.
25  SparseMatrix<std::complex<double>,RowMajor> sm2; // Compressed row major matrix of complex double.
26\endcode
27The copy constructor and assignment can be used to convert matrices from a storage order to another
28\code
29  SparseMatrix<double,Colmajor> sm1;
30  // Eventually fill the matrix sm1 ...
31  SparseMatrix<double,Rowmajor> sm2(sm1), sm3;         // Initialize sm2 with sm1.
32  sm3 = sm1; // Assignment and evaluations modify the storage order.
33 \endcode
34
35\section SparseMatrixInsertion  Allocating and inserting values
36resize() and reserve() are used to set the size and allocate space for nonzero elements
37 \code
38    sm1.resize(m,n);      //Change sm to a mxn matrix.
39    sm1.reserve(nnz);     // Allocate  room for nnz nonzeros elements.
40  \endcode
41Note that when calling reserve(), it is not required that nnz is the exact number of nonzero elements in the final matrix. However, an exact estimation will avoid multiple reallocations during the insertion phase.
42
43Insertions of values in the sparse matrix can be done directly by looping over nonzero elements and use the insert() function
44\code
45// Direct insertion of the value v_ij;
46  sm1.insert(i, j) = v_ij;   // It is assumed that v_ij does not already exist in the matrix.
47\endcode
48
49After insertion, a value at (i,j) can be modified using coeffRef()
50\code
51  // Update the value v_ij
52  sm1.coeffRef(i,j) = v_ij;
53  sm1.coeffRef(i,j) += v_ij;
54  sm1.coeffRef(i,j) -= v_ij;
55  ...
56\endcode
57
58The recommended way to insert values is to build a list of triplets (row, col, val) and then call setFromTriplets().
59\code
60  sm1.setFromTriplets(TripletList.begin(), TripletList.end());
61\endcode
62A complete example is available at \ref TutorialSparseFilling.
63
64The following functions can be used to set constant or random values in the matrix.
65\code
66  sm1.setZero(); // Reset the matrix with zero elements
67  ...
68\endcode
69
70\section SparseBasicInfos Matrix properties
71Beyond the functions rows() and cols() that are used to get the number of rows and columns, there are some useful functions that are available to easily get some informations from the matrix.
72<table class="manual">
73<tr>
74  <td> \code
75  sm1.rows();         // Number of rows
76  sm1.cols();         // Number of columns
77  sm1.nonZeros();     // Number of non zero values
78  sm1.outerSize();    // Number of columns (resp. rows) for a column major (resp. row major )
79  sm1.innerSize();    // Number of rows (resp. columns) for a row major (resp. column major)
80  sm1.norm();         // (Euclidian ??) norm of the matrix
81  sm1.squaredNorm();  //
82  sm1.isVector();     // Check if sm1 is a sparse vector or a sparse matrix
83  ...
84  \endcode </td>
85</tr>
86</table>
87
88\section SparseBasicOps Arithmetic operations
89It is easy to perform arithmetic operations on sparse matrices provided that the dimensions are adequate and that the matrices have the same storage order. Note that the evaluation can always be done in a matrix with a different storage order.
90<table class="manual">
91<tr><th> Operations </th> <th> Code </th> <th> Notes </th></tr>
92
93<tr>
94  <td> add subtract </td>
95  <td> \code
96  sm3 = sm1 + sm2;
97  sm3 = sm1 - sm2;
98  sm2 += sm1;
99  sm2 -= sm1; \endcode
100  </td>
101  <td>
102  sm1 and sm2 should have the same storage order
103  </td>
104</tr>
105
106<tr class="alt"><td>
107  scalar product</td><td>\code
108  sm3 = sm1 * s1;   sm3 *= s1;
109  sm3 = s1 * sm1 + s2 * sm2; sm3 /= s1;\endcode
110  </td>
111  <td>
112    Many combinations are possible if the dimensions and the storage order agree.
113</tr>
114
115<tr>
116  <td> Product </td>
117  <td> \code
118  sm3 = sm1 * sm2;
119  dm2 = sm1 * dm1;
120  dv2 = sm1 * dv1;
121  \endcode </td>
122  <td>
123  </td>
124</tr>
125
126<tr class='alt'>
127  <td> transposition, adjoint</td>
128  <td> \code
129  sm2 = sm1.transpose();
130  sm2 = sm1.adjoint();
131  \endcode </td>
132  <td>
133  Note that the transposition change the storage order. There is no support for transposeInPlace().
134  </td>
135</tr>
136
137<tr>
138  <td>
139  Component-wise ops
140  </td>
141  <td>\code
142  sm1.cwiseProduct(sm2);
143  sm1.cwiseQuotient(sm2);
144  sm1.cwiseMin(sm2);
145  sm1.cwiseMax(sm2);
146  sm1.cwiseAbs();
147  sm1.cwiseSqrt();
148  \endcode</td>
149  <td>
150  sm1 and sm2 should have the same storage order
151  </td>
152</tr>
153</table>
154
155
156\section SparseInterops Low-level storage
157There are a set of low-levels functions to get the standard compressed storage pointers. The matrix should be in compressed mode which can be checked by calling isCompressed(); makeCompressed() should do the job otherwise.
158\code
159  // Scalar pointer to the values of the matrix, size nnz
160  sm1.valuePtr();
161  // Index pointer to get the row indices (resp. column indices) for column major (resp. row major) matrix, size nnz
162  sm1.innerIndexPtr();
163  // Index pointer to the beginning of each row (resp. column) in valuePtr() and innerIndexPtr() for column major (row major). The size is outersize()+1;
164  sm1.outerIndexPtr();
165\endcode
166These pointers can therefore be easily used to send the matrix to some external libraries/solvers that are not yet supported by Eigen.
167
168\section sparsepermutation Permutations, submatrices and Selfadjoint Views
169In many cases, it is necessary to reorder the rows and/or the columns of the sparse matrix for several purposes : fill-in reducing during matrix decomposition, better data locality for sparse matrix-vector products... The class PermutationMatrix is available to this end.
170 \code
171  PermutationMatrix<Dynamic, Dynamic, int> perm;
172  // Reserve and fill the values of perm;
173  perm.inverse(n); // Compute eventually the inverse permutation
174  sm1.twistedBy(perm) //Apply the permutation on rows and columns
175  sm2 = sm1 * perm; // ??? Apply the permutation on columns ???;
176  sm2 = perm * sm1; // ??? Apply the permutation on rows ???;
177  \endcode
178
179\section sparsesubmatrices Sub-matrices
180The following functions are useful to extract a block of rows (resp. columns) from a row-major (resp. column major) sparse matrix. Note that because of the particular storage, it is not ?? efficient ?? to extract a submatrix comprising a certain number of subrows and subcolumns.
181 \code
182  sm1.innerVector(outer); // Returns the outer -th column (resp. row) of the matrix if sm is col-major (resp. row-major)
183  sm1.innerVectors(outer); // Returns the outer -th column (resp. row) of the matrix if mat is col-major (resp. row-major)
184  sm1.middleRows(start, numRows); // For row major matrices, get a range of numRows rows
185  sm1.middleCols(start, numCols); // For column major matrices, get a range of numCols cols
186 \endcode
187 Examples :
188
189\section sparseselfadjointview Sparse triangular and selfadjoint Views
190 \code
191  sm2 = sm1.triangularview<Lower>(); // Get the lower triangular part of the matrix.
192  dv2 = sm1.triangularView<Upper>().solve(dv1); // Solve the linear system with the uppper triangular part.
193  sm2 = sm1.selfadjointview<Lower>(); // Build a selfadjoint matrix from the lower part of sm1.
194  \endcode
195
196
197*/
198}
199