1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #define EIGEN_NO_STATIC_ASSERT
11
12 #include "main.h"
13
adjoint(const MatrixType & m)14 template<typename MatrixType> void adjoint(const MatrixType& m)
15 {
16 /* this test covers the following files:
17 Transpose.h Conjugate.h Dot.h
18 */
19 typedef typename MatrixType::Index Index;
20 typedef typename MatrixType::Scalar Scalar;
21 typedef typename NumTraits<Scalar>::Real RealScalar;
22 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
23 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
24
25 Index rows = m.rows();
26 Index cols = m.cols();
27
28 MatrixType m1 = MatrixType::Random(rows, cols),
29 m2 = MatrixType::Random(rows, cols),
30 m3(rows, cols),
31 square = SquareMatrixType::Random(rows, rows);
32 VectorType v1 = VectorType::Random(rows),
33 v2 = VectorType::Random(rows),
34 v3 = VectorType::Random(rows),
35 vzero = VectorType::Zero(rows);
36
37 Scalar s1 = internal::random<Scalar>(),
38 s2 = internal::random<Scalar>();
39
40 // check basic compatibility of adjoint, transpose, conjugate
41 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
42 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
43
44 // check multiplicative behavior
45 VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
46 VERIFY_IS_APPROX((s1 * m1).adjoint(), internal::conj(s1) * m1.adjoint());
47
48 // check basic properties of dot, norm, norm2
49 typedef typename NumTraits<Scalar>::Real RealScalar;
50
51 RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
52 VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), internal::conj(s1) * v1.dot(v3) + internal::conj(s2) * v2.dot(v3), ref));
53 VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref));
54 VERIFY_IS_APPROX(internal::conj(v1.dot(v2)), v2.dot(v1));
55 VERIFY_IS_APPROX(internal::real(v1.dot(v1)), v1.squaredNorm());
56 if(!NumTraits<Scalar>::IsInteger) {
57 VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
58 // check normalized() and normalize()
59 VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
60 v3 = v1;
61 v3.normalize();
62 VERIFY_IS_APPROX(v1, v1.norm() * v3);
63 VERIFY_IS_APPROX(v3, v1.normalized());
64 VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
65 }
66 VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(vzero.dot(v1)), static_cast<RealScalar>(1));
67
68 // check compatibility of dot and adjoint
69
70 ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
71 VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), ref));
72
73 // like in testBasicStuff, test operator() to check const-qualification
74 Index r = internal::random<Index>(0, rows-1),
75 c = internal::random<Index>(0, cols-1);
76 VERIFY_IS_APPROX(m1.conjugate()(r,c), internal::conj(m1(r,c)));
77 VERIFY_IS_APPROX(m1.adjoint()(c,r), internal::conj(m1(r,c)));
78
79 if(!NumTraits<Scalar>::IsInteger)
80 {
81 // check that Random().normalized() works: tricky as the random xpr must be evaluated by
82 // normalized() in order to produce a consistent result.
83 VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1));
84 }
85
86 // check inplace transpose
87 m3 = m1;
88 m3.transposeInPlace();
89 VERIFY_IS_APPROX(m3,m1.transpose());
90 m3.transposeInPlace();
91 VERIFY_IS_APPROX(m3,m1);
92
93 // check inplace adjoint
94 m3 = m1;
95 m3.adjointInPlace();
96 VERIFY_IS_APPROX(m3,m1.adjoint());
97 m3.transposeInPlace();
98 VERIFY_IS_APPROX(m3,m1.conjugate());
99
100 // check mixed dot product
101 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
102 RealVectorType rv1 = RealVectorType::Random(rows);
103 VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
104 VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
105 }
106
test_adjoint()107 void test_adjoint()
108 {
109 for(int i = 0; i < g_repeat; i++) {
110 CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
111 CALL_SUBTEST_2( adjoint(Matrix3d()) );
112 CALL_SUBTEST_3( adjoint(Matrix4f()) );
113 CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
114 CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
115 CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
116 }
117 // test a large static matrix only once
118 CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
119
120 #ifdef EIGEN_TEST_PART_4
121 {
122 MatrixXcf a(10,10), b(10,10);
123 VERIFY_RAISES_ASSERT(a = a.transpose());
124 VERIFY_RAISES_ASSERT(a = a.transpose() + b);
125 VERIFY_RAISES_ASSERT(a = b + a.transpose());
126 VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
127 VERIFY_RAISES_ASSERT(a = a.adjoint());
128 VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
129 VERIFY_RAISES_ASSERT(a = b + a.adjoint());
130
131 // no assertion should be triggered for these cases:
132 a.transpose() = a.transpose();
133 a.transpose() += a.transpose();
134 a.transpose() += a.transpose() + b;
135 a.transpose() = a.adjoint();
136 a.transpose() += a.adjoint();
137 a.transpose() += a.adjoint() + b;
138 }
139 #endif
140 }
141
142