• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_NO_STATIC_ASSERT
11 
12 #include "main.h"
13 
adjoint(const MatrixType & m)14 template<typename MatrixType> void adjoint(const MatrixType& m)
15 {
16   /* this test covers the following files:
17      Transpose.h Conjugate.h Dot.h
18   */
19   typedef typename MatrixType::Index Index;
20   typedef typename MatrixType::Scalar Scalar;
21   typedef typename NumTraits<Scalar>::Real RealScalar;
22   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
23   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
24 
25   Index rows = m.rows();
26   Index cols = m.cols();
27 
28   MatrixType m1 = MatrixType::Random(rows, cols),
29              m2 = MatrixType::Random(rows, cols),
30              m3(rows, cols),
31              square = SquareMatrixType::Random(rows, rows);
32   VectorType v1 = VectorType::Random(rows),
33              v2 = VectorType::Random(rows),
34              v3 = VectorType::Random(rows),
35              vzero = VectorType::Zero(rows);
36 
37   Scalar s1 = internal::random<Scalar>(),
38          s2 = internal::random<Scalar>();
39 
40   // check basic compatibility of adjoint, transpose, conjugate
41   VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1);
42   VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1);
43 
44   // check multiplicative behavior
45   VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1);
46   VERIFY_IS_APPROX((s1 * m1).adjoint(),                     internal::conj(s1) * m1.adjoint());
47 
48   // check basic properties of dot, norm, norm2
49   typedef typename NumTraits<Scalar>::Real RealScalar;
50 
51   RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
52   VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     internal::conj(s1) * v1.dot(v3) + internal::conj(s2) * v2.dot(v3), ref));
53   VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), ref));
54   VERIFY_IS_APPROX(internal::conj(v1.dot(v2)),               v2.dot(v1));
55   VERIFY_IS_APPROX(internal::real(v1.dot(v1)),                v1.squaredNorm());
56   if(!NumTraits<Scalar>::IsInteger) {
57     VERIFY_IS_APPROX(v1.squaredNorm(),                v1.norm() * v1.norm());
58     // check normalized() and normalize()
59     VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
60     v3 = v1;
61     v3.normalize();
62     VERIFY_IS_APPROX(v1, v1.norm() * v3);
63     VERIFY_IS_APPROX(v3, v1.normalized());
64     VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
65   }
66   VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(vzero.dot(v1)),  static_cast<RealScalar>(1));
67 
68   // check compatibility of dot and adjoint
69 
70   ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
71   VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), ref));
72 
73   // like in testBasicStuff, test operator() to check const-qualification
74   Index r = internal::random<Index>(0, rows-1),
75       c = internal::random<Index>(0, cols-1);
76   VERIFY_IS_APPROX(m1.conjugate()(r,c), internal::conj(m1(r,c)));
77   VERIFY_IS_APPROX(m1.adjoint()(c,r), internal::conj(m1(r,c)));
78 
79   if(!NumTraits<Scalar>::IsInteger)
80   {
81     // check that Random().normalized() works: tricky as the random xpr must be evaluated by
82     // normalized() in order to produce a consistent result.
83     VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1));
84   }
85 
86   // check inplace transpose
87   m3 = m1;
88   m3.transposeInPlace();
89   VERIFY_IS_APPROX(m3,m1.transpose());
90   m3.transposeInPlace();
91   VERIFY_IS_APPROX(m3,m1);
92 
93   // check inplace adjoint
94   m3 = m1;
95   m3.adjointInPlace();
96   VERIFY_IS_APPROX(m3,m1.adjoint());
97   m3.transposeInPlace();
98   VERIFY_IS_APPROX(m3,m1.conjugate());
99 
100   // check mixed dot product
101   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
102   RealVectorType rv1 = RealVectorType::Random(rows);
103   VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
104   VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
105 }
106 
test_adjoint()107 void test_adjoint()
108 {
109   for(int i = 0; i < g_repeat; i++) {
110     CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
111     CALL_SUBTEST_2( adjoint(Matrix3d()) );
112     CALL_SUBTEST_3( adjoint(Matrix4f()) );
113     CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
114     CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
115     CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
116   }
117   // test a large static matrix only once
118   CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
119 
120 #ifdef EIGEN_TEST_PART_4
121   {
122     MatrixXcf a(10,10), b(10,10);
123     VERIFY_RAISES_ASSERT(a = a.transpose());
124     VERIFY_RAISES_ASSERT(a = a.transpose() + b);
125     VERIFY_RAISES_ASSERT(a = b + a.transpose());
126     VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
127     VERIFY_RAISES_ASSERT(a = a.adjoint());
128     VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
129     VERIFY_RAISES_ASSERT(a = b + a.adjoint());
130 
131     // no assertion should be triggered for these cases:
132     a.transpose() = a.transpose();
133     a.transpose() += a.transpose();
134     a.transpose() += a.transpose() + b;
135     a.transpose() = a.adjoint();
136     a.transpose() += a.adjoint();
137     a.transpose() += a.adjoint() + b;
138   }
139 #endif
140 }
141 
142