1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11
linearStructure(const MatrixType & m)12 template<typename MatrixType> void linearStructure(const MatrixType& m)
13 {
14 /* this test covers the following files:
15 Sum.h Difference.h Opposite.h ScalarMultiple.h
16 */
17
18 typedef typename MatrixType::Scalar Scalar;
19 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
20
21 int rows = m.rows();
22 int cols = m.cols();
23
24 // this test relies a lot on Random.h, and there's not much more that we can do
25 // to test it, hence I consider that we will have tested Random.h
26 MatrixType m1 = MatrixType::Random(rows, cols),
27 m2 = MatrixType::Random(rows, cols),
28 m3(rows, cols),
29 mzero = MatrixType::Zero(rows, cols);
30
31 Scalar s1 = ei_random<Scalar>();
32 while (ei_abs(s1)<1e-3) s1 = ei_random<Scalar>();
33
34 int r = ei_random<int>(0, rows-1),
35 c = ei_random<int>(0, cols-1);
36
37 VERIFY_IS_APPROX(-(-m1), m1);
38 VERIFY_IS_APPROX(m1+m1, 2*m1);
39 VERIFY_IS_APPROX(m1+m2-m1, m2);
40 VERIFY_IS_APPROX(-m2+m1+m2, m1);
41 VERIFY_IS_APPROX(m1*s1, s1*m1);
42 VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
43 VERIFY_IS_APPROX((-m1+m2)*s1, -s1*m1+s1*m2);
44 m3 = m2; m3 += m1;
45 VERIFY_IS_APPROX(m3, m1+m2);
46 m3 = m2; m3 -= m1;
47 VERIFY_IS_APPROX(m3, m2-m1);
48 m3 = m2; m3 *= s1;
49 VERIFY_IS_APPROX(m3, s1*m2);
50 if(NumTraits<Scalar>::HasFloatingPoint)
51 {
52 m3 = m2; m3 /= s1;
53 VERIFY_IS_APPROX(m3, m2/s1);
54 }
55
56 // again, test operator() to check const-qualification
57 VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c)));
58 VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c)));
59 VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
60 VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c)));
61 VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
62 if(NumTraits<Scalar>::HasFloatingPoint)
63 VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);
64
65 // use .block to disable vectorization and compare to the vectorized version
66 VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1);
67 VERIFY_IS_APPROX(m1.cwise() * m1.block(0,0,rows,cols), m1.cwise() * m1);
68 VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1);
69 VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
70 }
71
test_eigen2_linearstructure()72 void test_eigen2_linearstructure()
73 {
74 for(int i = 0; i < g_repeat; i++) {
75 CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
76 CALL_SUBTEST_2( linearStructure(Matrix2f()) );
77 CALL_SUBTEST_3( linearStructure(Vector3d()) );
78 CALL_SUBTEST_4( linearStructure(Matrix4d()) );
79 CALL_SUBTEST_5( linearStructure(MatrixXcf(3, 3)) );
80 CALL_SUBTEST_6( linearStructure(MatrixXf(8, 12)) );
81 CALL_SUBTEST_7( linearStructure(MatrixXi(8, 12)) );
82 CALL_SUBTEST_8( linearStructure(MatrixXcd(20, 20)) );
83 }
84 }
85