• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
map_class_vector(const VectorType & m)12 template<typename VectorType> void map_class_vector(const VectorType& m)
13 {
14   typedef typename VectorType::Scalar Scalar;
15 
16   int size = m.size();
17 
18   // test Map.h
19   Scalar* array1 = ei_aligned_new<Scalar>(size);
20   Scalar* array2 = ei_aligned_new<Scalar>(size);
21   Scalar* array3 = new Scalar[size+1];
22   Scalar* array3unaligned = std::size_t(array3)%16 == 0 ? array3+1 : array3;
23 
24   Map<VectorType, Aligned>(array1, size) = VectorType::Random(size);
25   Map<VectorType>(array2, size) = Map<VectorType>(array1, size);
26   Map<VectorType>(array3unaligned, size) = Map<VectorType>((const Scalar*)array1, size); // test non-const-correctness support in eigen2
27   VectorType ma1 = Map<VectorType>(array1, size);
28   VectorType ma2 = Map<VectorType, Aligned>(array2, size);
29   VectorType ma3 = Map<VectorType>(array3unaligned, size);
30   VERIFY_IS_APPROX(ma1, ma2);
31   VERIFY_IS_APPROX(ma1, ma3);
32 
33   ei_aligned_delete(array1, size);
34   ei_aligned_delete(array2, size);
35   delete[] array3;
36 }
37 
map_class_matrix(const MatrixType & m)38 template<typename MatrixType> void map_class_matrix(const MatrixType& m)
39 {
40   typedef typename MatrixType::Scalar Scalar;
41 
42   int rows = m.rows(), cols = m.cols(), size = rows*cols;
43 
44   // test Map.h
45   Scalar* array1 = ei_aligned_new<Scalar>(size);
46   for(int i = 0; i < size; i++) array1[i] = Scalar(1);
47   Scalar* array2 = ei_aligned_new<Scalar>(size);
48   for(int i = 0; i < size; i++) array2[i] = Scalar(1);
49   Scalar* array3 = new Scalar[size+1];
50   for(int i = 0; i < size+1; i++) array3[i] = Scalar(1);
51   Scalar* array3unaligned = std::size_t(array3)%16 == 0 ? array3+1 : array3;
52   Map<MatrixType, Aligned>(array1, rows, cols) = MatrixType::Ones(rows,cols);
53   Map<MatrixType>(array2, rows, cols) = Map<MatrixType>((const Scalar*)array1, rows, cols); // test non-const-correctness support in eigen2
54   Map<MatrixType>(array3unaligned, rows, cols) = Map<MatrixType>(array1, rows, cols);
55   MatrixType ma1 = Map<MatrixType>(array1, rows, cols);
56   MatrixType ma2 = Map<MatrixType, Aligned>(array2, rows, cols);
57   VERIFY_IS_APPROX(ma1, ma2);
58   MatrixType ma3 = Map<MatrixType>(array3unaligned, rows, cols);
59   VERIFY_IS_APPROX(ma1, ma3);
60 
61   ei_aligned_delete(array1, size);
62   ei_aligned_delete(array2, size);
63   delete[] array3;
64 }
65 
map_static_methods(const VectorType & m)66 template<typename VectorType> void map_static_methods(const VectorType& m)
67 {
68   typedef typename VectorType::Scalar Scalar;
69 
70   int size = m.size();
71 
72   // test Map.h
73   Scalar* array1 = ei_aligned_new<Scalar>(size);
74   Scalar* array2 = ei_aligned_new<Scalar>(size);
75   Scalar* array3 = new Scalar[size+1];
76   Scalar* array3unaligned = std::size_t(array3)%16 == 0 ? array3+1 : array3;
77 
78   VectorType::MapAligned(array1, size) = VectorType::Random(size);
79   VectorType::Map(array2, size) = VectorType::Map(array1, size);
80   VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size);
81   VectorType ma1 = VectorType::Map(array1, size);
82   VectorType ma2 = VectorType::MapAligned(array2, size);
83   VectorType ma3 = VectorType::Map(array3unaligned, size);
84   VERIFY_IS_APPROX(ma1, ma2);
85   VERIFY_IS_APPROX(ma1, ma3);
86 
87   ei_aligned_delete(array1, size);
88   ei_aligned_delete(array2, size);
89   delete[] array3;
90 }
91 
92 
test_eigen2_map()93 void test_eigen2_map()
94 {
95   for(int i = 0; i < g_repeat; i++) {
96     CALL_SUBTEST_1( map_class_vector(Matrix<float, 1, 1>()) );
97     CALL_SUBTEST_2( map_class_vector(Vector4d()) );
98     CALL_SUBTEST_3( map_class_vector(RowVector4f()) );
99     CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) );
100     CALL_SUBTEST_5( map_class_vector(VectorXi(12)) );
101 
102     CALL_SUBTEST_1( map_class_matrix(Matrix<float, 1, 1>()) );
103     CALL_SUBTEST_2( map_class_matrix(Matrix4d()) );
104     CALL_SUBTEST_6( map_class_matrix(Matrix<float,3,5>()) );
105     CALL_SUBTEST_4( map_class_matrix(MatrixXcf(ei_random<int>(1,10),ei_random<int>(1,10))) );
106     CALL_SUBTEST_5( map_class_matrix(MatrixXi(ei_random<int>(1,10),ei_random<int>(1,10))) );
107 
108     CALL_SUBTEST_1( map_static_methods(Matrix<double, 1, 1>()) );
109     CALL_SUBTEST_2( map_static_methods(Vector3f()) );
110     CALL_SUBTEST_7( map_static_methods(RowVector3d()) );
111     CALL_SUBTEST_4( map_static_methods(VectorXcd(8)) );
112     CALL_SUBTEST_5( map_static_methods(VectorXf(12)) );
113   }
114 }
115