• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/Geometry>
13 #include <Eigen/LU>
14 #include <Eigen/SVD>
15 
bounded_acos(T v)16 template<typename T> T bounded_acos(T v)
17 {
18   using std::acos;
19   using std::min;
20   using std::max;
21   return acos((max)(T(-1),(min)(v,T(1))));
22 }
23 
check_slerp(const QuatType & q0,const QuatType & q1)24 template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
25 {
26   typedef typename QuatType::Scalar Scalar;
27   typedef Matrix<Scalar,3,1> VectorType;
28   typedef AngleAxis<Scalar> AA;
29 
30   Scalar largeEps = test_precision<Scalar>();
31 
32   Scalar theta_tot = AA(q1*q0.inverse()).angle();
33   if(theta_tot>M_PI)
34     theta_tot = 2.*M_PI-theta_tot;
35   for(Scalar t=0; t<=1.001; t+=0.1)
36   {
37     QuatType q = q0.slerp(t,q1);
38     Scalar theta = AA(q*q0.inverse()).angle();
39     VERIFY(internal::abs(q.norm() - 1) < largeEps);
40     if(theta_tot==0)  VERIFY(theta_tot==0);
41     else              VERIFY(internal::abs(theta/theta_tot - t) < largeEps);
42   }
43 }
44 
quaternion(void)45 template<typename Scalar, int Options> void quaternion(void)
46 {
47   /* this test covers the following files:
48      Quaternion.h
49   */
50 
51   typedef Matrix<Scalar,3,3> Matrix3;
52   typedef Matrix<Scalar,3,1> Vector3;
53   typedef Matrix<Scalar,4,1> Vector4;
54   typedef Quaternion<Scalar,Options> Quaternionx;
55   typedef AngleAxis<Scalar> AngleAxisx;
56 
57   Scalar largeEps = test_precision<Scalar>();
58   if (internal::is_same<Scalar,float>::value)
59     largeEps = 1e-3f;
60 
61   Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
62 
63   Vector3 v0 = Vector3::Random(),
64           v1 = Vector3::Random(),
65           v2 = Vector3::Random(),
66           v3 = Vector3::Random();
67 
68   Scalar  a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)),
69           b = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
70 
71   // Quaternion: Identity(), setIdentity();
72   Quaternionx q1, q2;
73   q2.setIdentity();
74   VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
75   q1.coeffs().setRandom();
76   VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
77 
78   // concatenation
79   q1 *= q2;
80 
81   q1 = AngleAxisx(a, v0.normalized());
82   q2 = AngleAxisx(a, v1.normalized());
83 
84   // angular distance
85   Scalar refangle = internal::abs(AngleAxisx(q1.inverse()*q2).angle());
86   if (refangle>Scalar(M_PI))
87     refangle = Scalar(2)*Scalar(M_PI) - refangle;
88 
89   if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
90   {
91     VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(q1.angularDistance(q2) - refangle), Scalar(1));
92   }
93 
94   // rotation matrix conversion
95   VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
96   VERIFY_IS_APPROX(q1 * q2 * v2,
97     q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
98 
99   VERIFY(  (q2*q1).isApprox(q1*q2, largeEps)
100         || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
101 
102   q2 = q1.toRotationMatrix();
103   VERIFY_IS_APPROX(q1*v1,q2*v1);
104 
105 
106   // angle-axis conversion
107   AngleAxisx aa = AngleAxisx(q1);
108   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
109 
110   // Do not execute the test if the rotation angle is almost zero, or
111   // the rotation axis and v1 are almost parallel.
112   if (internal::abs(aa.angle()) > 5*test_precision<Scalar>()
113       && (aa.axis() - v1.normalized()).norm() < 1.99
114       && (aa.axis() + v1.normalized()).norm() < 1.99)
115   {
116     VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
117   }
118 
119   // from two vector creation
120   VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
121   VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
122   VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
123   if (internal::is_same<Scalar,double>::value)
124   {
125     v3 = (v1.array()+eps).matrix();
126     VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
127     VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
128   }
129 
130   // from two vector creation static function
131   VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
132   VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
133   VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
134   if (internal::is_same<Scalar,double>::value)
135   {
136     v3 = (v1.array()+eps).matrix();
137     VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
138     VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
139   }
140 
141   // inverse and conjugate
142   VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
143   VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
144 
145   // test casting
146   Quaternion<float> q1f = q1.template cast<float>();
147   VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
148   Quaternion<double> q1d = q1.template cast<double>();
149   VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
150 
151   // test bug 369 - improper alignment.
152   Quaternionx *q = new Quaternionx;
153   delete q;
154 
155   q1 = AngleAxisx(a, v0.normalized());
156   q2 = AngleAxisx(b, v1.normalized());
157   check_slerp(q1,q2);
158 
159   q1 = AngleAxisx(b, v1.normalized());
160   q2 = AngleAxisx(b+M_PI, v1.normalized());
161   check_slerp(q1,q2);
162 
163   q1 = AngleAxisx(b,  v1.normalized());
164   q2 = AngleAxisx(-b, -v1.normalized());
165   check_slerp(q1,q2);
166 
167   q1.coeffs() = Vector4::Random().normalized();
168   q2.coeffs() = -q1.coeffs();
169   check_slerp(q1,q2);
170 }
171 
mapQuaternion(void)172 template<typename Scalar> void mapQuaternion(void){
173   typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
174   typedef Map<Quaternion<Scalar> > MQuaternionUA;
175   typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
176   typedef Quaternion<Scalar> Quaternionx;
177 
178   EIGEN_ALIGN16 Scalar array1[4];
179   EIGEN_ALIGN16 Scalar array2[4];
180   EIGEN_ALIGN16 Scalar array3[4+1];
181   Scalar* array3unaligned = array3+1;
182 
183 //  std::cerr << array1 << " " << array2 << " " << array3 << "\n";
184   MQuaternionA(array1).coeffs().setRandom();
185   (MQuaternionA(array2)) = MQuaternionA(array1);
186   (MQuaternionUA(array3unaligned)) = MQuaternionA(array1);
187 
188   Quaternionx q1 = MQuaternionA(array1);
189   Quaternionx q2 = MQuaternionA(array2);
190   Quaternionx q3 = MQuaternionUA(array3unaligned);
191   Quaternionx q4 = MCQuaternionUA(array3unaligned);
192 
193   VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
194   VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
195   VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
196   #ifdef EIGEN_VECTORIZE
197   if(internal::packet_traits<Scalar>::Vectorizable)
198     VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
199   #endif
200 }
201 
quaternionAlignment(void)202 template<typename Scalar> void quaternionAlignment(void){
203   typedef Quaternion<Scalar,AutoAlign> QuaternionA;
204   typedef Quaternion<Scalar,DontAlign> QuaternionUA;
205 
206   EIGEN_ALIGN16 Scalar array1[4];
207   EIGEN_ALIGN16 Scalar array2[4];
208   EIGEN_ALIGN16 Scalar array3[4+1];
209   Scalar* arrayunaligned = array3+1;
210 
211   QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
212   QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
213   QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
214 
215   q1->coeffs().setRandom();
216   *q2 = *q1;
217   *q3 = *q1;
218 
219   VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
220   VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
221   #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
222   if(internal::packet_traits<Scalar>::Vectorizable)
223     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
224   #endif
225 }
226 
check_const_correctness(const PlainObjectType &)227 template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
228 {
229   // there's a lot that we can't test here while still having this test compile!
230   // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
231   // CMake can help with that.
232 
233   // verify that map-to-const don't have LvalueBit
234   typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
235   VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
236   VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
237   VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
238   VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
239 }
240 
test_geo_quaternion()241 void test_geo_quaternion()
242 {
243   for(int i = 0; i < g_repeat; i++) {
244     CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
245     CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
246     CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
247     CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
248     CALL_SUBTEST_3(( quaternion<float,DontAlign>() ));
249     CALL_SUBTEST_4(( quaternion<double,DontAlign>() ));
250     CALL_SUBTEST_5(( quaternionAlignment<float>() ));
251     CALL_SUBTEST_6(( quaternionAlignment<double>() ));
252     CALL_SUBTEST_1( mapQuaternion<float>() );
253     CALL_SUBTEST_2( mapQuaternion<double>() );
254   }
255 }
256