• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include <cstdlib>
12 #include <cerrno>
13 #include <ctime>
14 #include <iostream>
15 #include <fstream>
16 #include <string>
17 #include <vector>
18 #include <typeinfo>
19 #include <limits>
20 #include <algorithm>
21 #include <sstream>
22 #include <complex>
23 #include <deque>
24 #include <queue>
25 
26 #define min(A,B) please_protect_your_min_with_parentheses
27 #define max(A,B) please_protect_your_max_with_parentheses
28 
29 #define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes
30 // B0 is defined in POSIX header termios.h
31 #define B0 FORBIDDEN_IDENTIFIER
32 
33 // the following file is automatically generated by cmake
34 #include "split_test_helper.h"
35 
36 #ifdef NDEBUG
37 #undef NDEBUG
38 #endif
39 
40 // bounds integer values for AltiVec
41 #ifdef __ALTIVEC__
42 #define EIGEN_MAKING_DOCS
43 #endif
44 
45 #ifndef EIGEN_TEST_FUNC
46 #error EIGEN_TEST_FUNC must be defined
47 #endif
48 
49 #define DEFAULT_REPEAT 10
50 
51 #ifdef __ICC
52 // disable warning #279: controlling expression is constant
53 #pragma warning disable 279
54 #endif
55 
56 namespace Eigen
57 {
58   static std::vector<std::string> g_test_stack;
59   static int g_repeat;
60   static unsigned int g_seed;
61   static bool g_has_set_repeat, g_has_set_seed;
62 }
63 
64 #define EI_PP_MAKE_STRING2(S) #S
65 #define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
66 
67 #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, "  ", "\n", "", "", "", "")
68 
69 #ifndef EIGEN_NO_ASSERTION_CHECKING
70 
71   namespace Eigen
72   {
73     static const bool should_raise_an_assert = false;
74 
75     // Used to avoid to raise two exceptions at a time in which
76     // case the exception is not properly caught.
77     // This may happen when a second exceptions is triggered in a destructor.
78     static bool no_more_assert = false;
79     static bool report_on_cerr_on_assert_failure = true;
80 
81     struct eigen_assert_exception
82     {
eigen_assert_exceptioneigen_assert_exception83       eigen_assert_exception(void) {}
~eigen_assert_exceptioneigen_assert_exception84       ~eigen_assert_exception() { Eigen::no_more_assert = false; }
85     };
86   }
87   // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while
88   // one should have been, then the list of excecuted assertions is printed out.
89   //
90   // EIGEN_DEBUG_ASSERTS is not enabled by default as it
91   // significantly increases the compilation time
92   // and might even introduce side effects that would hide
93   // some memory errors.
94   #ifdef EIGEN_DEBUG_ASSERTS
95 
96     namespace Eigen
97     {
98       namespace internal
99       {
100         static bool push_assert = false;
101       }
102       static std::vector<std::string> eigen_assert_list;
103     }
104     #define eigen_assert(a)                       \
105       if( (!(a)) && (!no_more_assert) )     \
106       { \
107         if(report_on_cerr_on_assert_failure) \
108           std::cerr <<  #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
109         Eigen::no_more_assert = true;       \
110         throw Eigen::eigen_assert_exception(); \
111       }                                     \
112       else if (Eigen::internal::push_assert)       \
113       {                                     \
114         eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__) " (" EI_PP_MAKE_STRING(__LINE__) ") : " #a) ); \
115       }
116 
117     #define VERIFY_RAISES_ASSERT(a)                                                   \
118       {                                                                               \
119         Eigen::no_more_assert = false;                                                \
120         Eigen::eigen_assert_list.clear();                                                \
121         Eigen::internal::push_assert = true;                                                 \
122         Eigen::report_on_cerr_on_assert_failure = false;                              \
123         try {                                                                         \
124           a;                                                                          \
125           std::cerr << "One of the following asserts should have been triggered:\n";  \
126           for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai)                           \
127             std::cerr << "  " << eigen_assert_list[ai] << "\n";                          \
128           VERIFY(Eigen::should_raise_an_assert && # a);                               \
129         } catch (Eigen::eigen_assert_exception) {                                        \
130           Eigen::internal::push_assert = false; VERIFY(true);                                \
131         }                                                                             \
132         Eigen::report_on_cerr_on_assert_failure = true;                               \
133         Eigen::internal::push_assert = false;                                                \
134       }
135 
136   #else // EIGEN_DEBUG_ASSERTS
137     // see bug 89. The copy_bool here is working around a bug in gcc <= 4.3
138     #define eigen_assert(a) \
139       if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\
140       {                                       \
141         Eigen::no_more_assert = true;         \
142         if(report_on_cerr_on_assert_failure)  \
143           eigen_plain_assert(a);              \
144         else                                  \
145           throw Eigen::eigen_assert_exception(); \
146       }
147     #define VERIFY_RAISES_ASSERT(a) {                             \
148         Eigen::no_more_assert = false;                            \
149         Eigen::report_on_cerr_on_assert_failure = false;          \
150         try {                                                     \
151           a;                                                      \
152           VERIFY(Eigen::should_raise_an_assert && # a);           \
153         }                                                         \
154         catch (Eigen::eigen_assert_exception&) { VERIFY(true); }     \
155         Eigen::report_on_cerr_on_assert_failure = true;           \
156       }
157 
158   #endif // EIGEN_DEBUG_ASSERTS
159 
160   #define EIGEN_USE_CUSTOM_ASSERT
161 
162 #else // EIGEN_NO_ASSERTION_CHECKING
163 
164   #define VERIFY_RAISES_ASSERT(a) {}
165 
166 #endif // EIGEN_NO_ASSERTION_CHECKING
167 
168 
169 #define EIGEN_INTERNAL_DEBUGGING
170 #include <Eigen/QR> // required for createRandomPIMatrixOfRank
171 
verify_impl(bool condition,const char * testname,const char * file,int line,const char * condition_as_string)172 static void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string)
173 {
174   if (!condition)
175   {
176     std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")" \
177       << std::endl << "    " << condition_as_string << std::endl << std::endl; \
178     abort();
179   }
180 }
181 
182 #define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a))
183 
184 #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b))
185 #define VERIFY_IS_APPROX(a, b) VERIFY(test_isApprox(a, b))
186 #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b))
187 #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b))
188 #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b))
189 #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b))
190 #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b))
191 
192 #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
193 
194 #define CALL_SUBTEST(FUNC) do { \
195     g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \
196     FUNC; \
197     g_test_stack.pop_back(); \
198   } while (0)
199 
200 
201 namespace Eigen {
202 
test_precision()203 template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
204 template<> inline float test_precision<float>() { return 1e-3f; }
205 template<> inline double test_precision<double>() { return 1e-6; }
206 template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
207 template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
208 template<> inline long double test_precision<long double>() { return 1e-6; }
209 
test_isApprox(const int & a,const int & b)210 inline bool test_isApprox(const int& a, const int& b)
211 { return internal::isApprox(a, b, test_precision<int>()); }
test_isMuchSmallerThan(const int & a,const int & b)212 inline bool test_isMuchSmallerThan(const int& a, const int& b)
213 { return internal::isMuchSmallerThan(a, b, test_precision<int>()); }
test_isApproxOrLessThan(const int & a,const int & b)214 inline bool test_isApproxOrLessThan(const int& a, const int& b)
215 { return internal::isApproxOrLessThan(a, b, test_precision<int>()); }
216 
test_isApprox(const float & a,const float & b)217 inline bool test_isApprox(const float& a, const float& b)
218 { return internal::isApprox(a, b, test_precision<float>()); }
test_isMuchSmallerThan(const float & a,const float & b)219 inline bool test_isMuchSmallerThan(const float& a, const float& b)
220 { return internal::isMuchSmallerThan(a, b, test_precision<float>()); }
test_isApproxOrLessThan(const float & a,const float & b)221 inline bool test_isApproxOrLessThan(const float& a, const float& b)
222 { return internal::isApproxOrLessThan(a, b, test_precision<float>()); }
test_isApprox(const double & a,const double & b)223 inline bool test_isApprox(const double& a, const double& b)
224 { return internal::isApprox(a, b, test_precision<double>()); }
225 
test_isMuchSmallerThan(const double & a,const double & b)226 inline bool test_isMuchSmallerThan(const double& a, const double& b)
227 { return internal::isMuchSmallerThan(a, b, test_precision<double>()); }
test_isApproxOrLessThan(const double & a,const double & b)228 inline bool test_isApproxOrLessThan(const double& a, const double& b)
229 { return internal::isApproxOrLessThan(a, b, test_precision<double>()); }
230 
test_isApprox(const std::complex<float> & a,const std::complex<float> & b)231 inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b)
232 { return internal::isApprox(a, b, test_precision<std::complex<float> >()); }
test_isMuchSmallerThan(const std::complex<float> & a,const std::complex<float> & b)233 inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
234 { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
235 
test_isApprox(const std::complex<double> & a,const std::complex<double> & b)236 inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b)
237 { return internal::isApprox(a, b, test_precision<std::complex<double> >()); }
test_isMuchSmallerThan(const std::complex<double> & a,const std::complex<double> & b)238 inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b)
239 { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
240 
test_isApprox(const long double & a,const long double & b)241 inline bool test_isApprox(const long double& a, const long double& b)
242 {
243     bool ret = internal::isApprox(a, b, test_precision<long double>());
244     if (!ret) std::cerr
245         << std::endl << "    actual   = " << a
246         << std::endl << "    expected = " << b << std::endl << std::endl;
247     return ret;
248 }
249 
test_isMuchSmallerThan(const long double & a,const long double & b)250 inline bool test_isMuchSmallerThan(const long double& a, const long double& b)
251 { return internal::isMuchSmallerThan(a, b, test_precision<long double>()); }
test_isApproxOrLessThan(const long double & a,const long double & b)252 inline bool test_isApproxOrLessThan(const long double& a, const long double& b)
253 { return internal::isApproxOrLessThan(a, b, test_precision<long double>()); }
254 
255 template<typename Type1, typename Type2>
test_isApprox(const Type1 & a,const Type2 & b)256 inline bool test_isApprox(const Type1& a, const Type2& b)
257 {
258   return a.isApprox(b, test_precision<typename Type1::Scalar>());
259 }
260 
261 // The idea behind this function is to compare the two scalars a and b where
262 // the scalar ref is a hint about the expected order of magnitude of a and b.
263 // Therefore, if for some reason a and b are very small compared to ref,
264 // we won't issue a false negative.
265 // This test could be: abs(a-b) <= eps * ref
266 // However, it seems that simply comparing a+ref and b+ref is more sensitive to true error.
267 template<typename Scalar,typename ScalarRef>
test_isApproxWithRef(const Scalar & a,const Scalar & b,const ScalarRef & ref)268 inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref)
269 {
270   return test_isApprox(a+ref, b+ref);
271 }
272 
273 template<typename Derived1, typename Derived2>
test_isMuchSmallerThan(const MatrixBase<Derived1> & m1,const MatrixBase<Derived2> & m2)274 inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
275                                    const MatrixBase<Derived2>& m2)
276 {
277   return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>());
278 }
279 
280 template<typename Derived>
test_isMuchSmallerThan(const MatrixBase<Derived> & m,const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real & s)281 inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m,
282                                    const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s)
283 {
284   return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>());
285 }
286 
287 template<typename Derived>
test_isUnitary(const MatrixBase<Derived> & m)288 inline bool test_isUnitary(const MatrixBase<Derived>& m)
289 {
290   return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>());
291 }
292 
293 template<typename T, typename U>
test_is_equal(const T & actual,const U & expected)294 bool test_is_equal(const T& actual, const U& expected)
295 {
296     if (actual==expected)
297         return true;
298     // false:
299     std::cerr
300         << std::endl << "    actual   = " << actual
301         << std::endl << "    expected = " << expected << std::endl << std::endl;
302     return false;
303 }
304 
305 /** Creates a random Partial Isometry matrix of given rank.
306   *
307   * A partial isometry is a matrix all of whose singular values are either 0 or 1.
308   * This is very useful to test rank-revealing algorithms.
309   */
310 template<typename MatrixType>
createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank,typename MatrixType::Index rows,typename MatrixType::Index cols,MatrixType & m)311 void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m)
312 {
313   typedef typename internal::traits<MatrixType>::Index Index;
314   typedef typename internal::traits<MatrixType>::Scalar Scalar;
315   enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
316 
317   typedef Matrix<Scalar, Dynamic, 1> VectorType;
318   typedef Matrix<Scalar, Rows, Rows> MatrixAType;
319   typedef Matrix<Scalar, Cols, Cols> MatrixBType;
320 
321   if(desired_rank == 0)
322   {
323     m.setZero(rows,cols);
324     return;
325   }
326 
327   if(desired_rank == 1)
328   {
329     // here we normalize the vectors to get a partial isometry
330     m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose();
331     return;
332   }
333 
334   MatrixAType a = MatrixAType::Random(rows,rows);
335   MatrixType d = MatrixType::Identity(rows,cols);
336   MatrixBType  b = MatrixBType::Random(cols,cols);
337 
338   // set the diagonal such that only desired_rank non-zero entries reamain
339   const Index diag_size = (std::min)(d.rows(),d.cols());
340   if(diag_size != desired_rank)
341     d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
342 
343   HouseholderQR<MatrixAType> qra(a);
344   HouseholderQR<MatrixBType> qrb(b);
345   m = qra.householderQ() * d * qrb.householderQ();
346 }
347 
348 template<typename PermutationVectorType>
randomPermutationVector(PermutationVectorType & v,typename PermutationVectorType::Index size)349 void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size)
350 {
351   typedef typename PermutationVectorType::Index Index;
352   typedef typename PermutationVectorType::Scalar Scalar;
353   v.resize(size);
354   for(Index i = 0; i < size; ++i) v(i) = Scalar(i);
355   if(size == 1) return;
356   for(Index n = 0; n < 3 * size; ++n)
357   {
358     Index i = internal::random<Index>(0, size-1);
359     Index j;
360     do j = internal::random<Index>(0, size-1); while(j==i);
361     std::swap(v(i), v(j));
362   }
363 }
364 
365 } // end namespace Eigen
366 
367 template<typename T> struct GetDifferentType;
368 
369 template<> struct GetDifferentType<float> { typedef double type; };
370 template<> struct GetDifferentType<double> { typedef float type; };
371 template<typename T> struct GetDifferentType<std::complex<T> >
372 { typedef std::complex<typename GetDifferentType<T>::type> type; };
373 
374 template<typename T> std::string type_name() { return "other"; }
375 template<> std::string type_name<float>() { return "float"; }
376 template<> std::string type_name<double>() { return "double"; }
377 template<> std::string type_name<int>() { return "int"; }
378 template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
379 template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
380 template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
381 
382 // forward declaration of the main test function
383 void EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
384 
385 using namespace Eigen;
386 
387 void set_repeat_from_string(const char *str)
388 {
389   errno = 0;
390   g_repeat = int(strtoul(str, 0, 10));
391   if(errno || g_repeat <= 0)
392   {
393     std::cout << "Invalid repeat value " << str << std::endl;
394     exit(EXIT_FAILURE);
395   }
396   g_has_set_repeat = true;
397 }
398 
399 void set_seed_from_string(const char *str)
400 {
401   errno = 0;
402   g_seed = strtoul(str, 0, 10);
403   if(errno || g_seed == 0)
404   {
405     std::cout << "Invalid seed value " << str << std::endl;
406     exit(EXIT_FAILURE);
407   }
408   g_has_set_seed = true;
409 }
410 
411 int main(int argc, char *argv[])
412 {
413     g_has_set_repeat = false;
414     g_has_set_seed = false;
415     bool need_help = false;
416 
417     for(int i = 1; i < argc; i++)
418     {
419       if(argv[i][0] == 'r')
420       {
421         if(g_has_set_repeat)
422         {
423           std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
424           return 1;
425         }
426         set_repeat_from_string(argv[i]+1);
427       }
428       else if(argv[i][0] == 's')
429       {
430         if(g_has_set_seed)
431         {
432           std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
433           return 1;
434         }
435          set_seed_from_string(argv[i]+1);
436       }
437       else
438       {
439         need_help = true;
440       }
441     }
442 
443     if(need_help)
444     {
445       std::cout << "This test application takes the following optional arguments:" << std::endl;
446       std::cout << "  rN     Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl;
447       std::cout << "  sN     Use N as seed for random numbers (default: based on current time)" << std::endl;
448       std::cout << std::endl;
449       std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl;
450       std::cout << "will be used as default values for these parameters." << std::endl;
451       return 1;
452     }
453 
454     char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
455     if(!g_has_set_repeat && env_EIGEN_REPEAT)
456       set_repeat_from_string(env_EIGEN_REPEAT);
457     char *env_EIGEN_SEED = getenv("EIGEN_SEED");
458     if(!g_has_set_seed && env_EIGEN_SEED)
459       set_seed_from_string(env_EIGEN_SEED);
460 
461     if(!g_has_set_seed) g_seed = (unsigned int) time(NULL);
462     if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
463 
464     std::cout << "Initializing random number generator with seed " << g_seed << std::endl;
465     srand(g_seed);
466     std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
467 
468     Eigen::g_test_stack.push_back(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC));
469 
470     EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
471     return 0;
472 }
473