• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
product_extra(const MatrixType & m)12 template<typename MatrixType> void product_extra(const MatrixType& m)
13 {
14   typedef typename MatrixType::Index Index;
15   typedef typename MatrixType::Scalar Scalar;
16   typedef typename NumTraits<Scalar>::NonInteger NonInteger;
17   typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
18   typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
19   typedef Matrix<Scalar, Dynamic, Dynamic,
20                          MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
21 
22   Index rows = m.rows();
23   Index cols = m.cols();
24 
25   MatrixType m1 = MatrixType::Random(rows, cols),
26              m2 = MatrixType::Random(rows, cols),
27              m3(rows, cols),
28              mzero = MatrixType::Zero(rows, cols),
29              identity = MatrixType::Identity(rows, rows),
30              square = MatrixType::Random(rows, rows),
31              res = MatrixType::Random(rows, rows),
32              square2 = MatrixType::Random(cols, cols),
33              res2 = MatrixType::Random(cols, cols);
34   RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
35   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
36   OtherMajorMatrixType tm1 = m1;
37 
38   Scalar s1 = internal::random<Scalar>(),
39          s2 = internal::random<Scalar>(),
40          s3 = internal::random<Scalar>();
41 
42   VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval());
43   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval());
44   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2);
45   VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2);
46   VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2,        (internal::conj(s1) * m1.adjoint()).eval() * m2);
47   VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval());
48   VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2);
49   VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval());
50 
51   // a very tricky case where a scale factor has to be automatically conjugated:
52   VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());
53 
54 
55   // test all possible conjugate combinations for the four matrix-vector product cases:
56 
57   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2),
58                    (-m1.conjugate()*s2).eval() * (s1 * vc2).eval());
59   VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()),
60                    (-m1*s2).eval() * (s1 * vc2.conjugate()).eval());
61   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
62                    (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());
63 
64   VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
65                    (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval());
66   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
67                    (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval());
68   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
69                    (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());
70 
71   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
72                    (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval());
73   VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
74                    (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval());
75   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
76                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
77 
78   VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2),
79                    (s1 * v1).eval() * (-m1.conjugate()*s2).eval());
80   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2),
81                    (s1 * v1.conjugate()).eval() * (-m1*s2).eval());
82   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
83                    (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());
84 
85   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
86                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
87 
88   // test the vector-matrix product with non aligned starts
89   Index i = internal::random<Index>(0,m1.rows()-2);
90   Index j = internal::random<Index>(0,m1.cols()-2);
91   Index r = internal::random<Index>(1,m1.rows()-i);
92   Index c = internal::random<Index>(1,m1.cols()-j);
93   Index i2 = internal::random<Index>(0,m1.rows()-1);
94   Index j2 = internal::random<Index>(0,m1.cols()-1);
95 
96   VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval());
97   VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval());
98 
99   // regression test
100   MatrixType tmp = m1 * m1.adjoint() * s1;
101   VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1);
102 }
103 
104 // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947
mat_mat_scalar_scalar_product()105 void mat_mat_scalar_scalar_product()
106 {
107   Eigen::Matrix2Xd dNdxy(2, 3);
108   dNdxy << -0.5, 0.5, 0,
109            -0.3, 0, 0.3;
110   double det = 6.0, wt = 0.5;
111   VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy);
112 }
113 
zero_sized_objects()114 void zero_sized_objects()
115 {
116   // Bug 127
117   //
118   // a product of the form lhs*rhs with
119   //
120   // lhs:
121   // rows = 1, cols = 4
122   // RowsAtCompileTime = 1, ColsAtCompileTime = -1
123   // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5
124   //
125   // rhs:
126   // rows = 4, cols = 0
127   // RowsAtCompileTime = -1, ColsAtCompileTime = -1
128   // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1
129   //
130   // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the
131   // max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1.
132 
133   Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4);
134   Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0);
135   a*b;
136 }
137 
test_product_extra()138 void test_product_extra()
139 {
140   for(int i = 0; i < g_repeat; i++) {
141     CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
142     CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
143     CALL_SUBTEST_2( mat_mat_scalar_scalar_product() );
144     CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
145     CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
146     CALL_SUBTEST_5( zero_sized_objects() );
147   }
148 }
149