• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/QR>
13 
qr()14 template<typename MatrixType> void qr()
15 {
16   typedef typename MatrixType::Index Index;
17 
18   Index rows = internal::random<Index>(20,200), cols = internal::random<int>(20,200), cols2 = internal::random<int>(20,200);
19   Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
20 
21   typedef typename MatrixType::Scalar Scalar;
22   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
23   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
24   MatrixType m1;
25   createRandomPIMatrixOfRank(rank,rows,cols,m1);
26   FullPivHouseholderQR<MatrixType> qr(m1);
27   VERIFY(rank == qr.rank());
28   VERIFY(cols - qr.rank() == qr.dimensionOfKernel());
29   VERIFY(!qr.isInjective());
30   VERIFY(!qr.isInvertible());
31   VERIFY(!qr.isSurjective());
32 
33   MatrixType r = qr.matrixQR();
34 
35   MatrixQType q = qr.matrixQ();
36   VERIFY_IS_UNITARY(q);
37 
38   // FIXME need better way to construct trapezoid
39   for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
40 
41   MatrixType c = qr.matrixQ() * r * qr.colsPermutation().inverse();
42 
43   VERIFY_IS_APPROX(m1, c);
44 
45   MatrixType m2 = MatrixType::Random(cols,cols2);
46   MatrixType m3 = m1*m2;
47   m2 = MatrixType::Random(cols,cols2);
48   m2 = qr.solve(m3);
49   VERIFY_IS_APPROX(m3, m1*m2);
50 }
51 
qr_invertible()52 template<typename MatrixType> void qr_invertible()
53 {
54   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
55   typedef typename MatrixType::Scalar Scalar;
56 
57   int size = internal::random<int>(10,50);
58 
59   MatrixType m1(size, size), m2(size, size), m3(size, size);
60   m1 = MatrixType::Random(size,size);
61 
62   if (internal::is_same<RealScalar,float>::value)
63   {
64     // let's build a matrix more stable to inverse
65     MatrixType a = MatrixType::Random(size,size*2);
66     m1 += a * a.adjoint();
67   }
68 
69   FullPivHouseholderQR<MatrixType> qr(m1);
70   VERIFY(qr.isInjective());
71   VERIFY(qr.isInvertible());
72   VERIFY(qr.isSurjective());
73 
74   m3 = MatrixType::Random(size,size);
75   m2 = qr.solve(m3);
76   VERIFY_IS_APPROX(m3, m1*m2);
77 
78   // now construct a matrix with prescribed determinant
79   m1.setZero();
80   for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
81   RealScalar absdet = internal::abs(m1.diagonal().prod());
82   m3 = qr.matrixQ(); // get a unitary
83   m1 = m3 * m1 * m3;
84   qr.compute(m1);
85   VERIFY_IS_APPROX(absdet, qr.absDeterminant());
86   VERIFY_IS_APPROX(internal::log(absdet), qr.logAbsDeterminant());
87 }
88 
qr_verify_assert()89 template<typename MatrixType> void qr_verify_assert()
90 {
91   MatrixType tmp;
92 
93   FullPivHouseholderQR<MatrixType> qr;
94   VERIFY_RAISES_ASSERT(qr.matrixQR())
95   VERIFY_RAISES_ASSERT(qr.solve(tmp))
96   VERIFY_RAISES_ASSERT(qr.matrixQ())
97   VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
98   VERIFY_RAISES_ASSERT(qr.isInjective())
99   VERIFY_RAISES_ASSERT(qr.isSurjective())
100   VERIFY_RAISES_ASSERT(qr.isInvertible())
101   VERIFY_RAISES_ASSERT(qr.inverse())
102   VERIFY_RAISES_ASSERT(qr.absDeterminant())
103   VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
104 }
105 
test_qr_fullpivoting()106 void test_qr_fullpivoting()
107 {
108  for(int i = 0; i < 1; i++) {
109     // FIXME : very weird bug here
110 //     CALL_SUBTEST(qr(Matrix2f()) );
111     CALL_SUBTEST_1( qr<MatrixXf>() );
112     CALL_SUBTEST_2( qr<MatrixXd>() );
113     CALL_SUBTEST_3( qr<MatrixXcd>() );
114   }
115 
116   for(int i = 0; i < g_repeat; i++) {
117     CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
118     CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
119     CALL_SUBTEST_4( qr_invertible<MatrixXcf>() );
120     CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
121   }
122 
123   CALL_SUBTEST_5(qr_verify_assert<Matrix3f>());
124   CALL_SUBTEST_6(qr_verify_assert<Matrix3d>());
125   CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
126   CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
127   CALL_SUBTEST_4(qr_verify_assert<MatrixXcf>());
128   CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
129 
130   // Test problem size constructors
131   CALL_SUBTEST_7(FullPivHouseholderQR<MatrixXf>(10, 20));
132 }
133