• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
matrixRedux(const MatrixType & m)12 template<typename MatrixType> void matrixRedux(const MatrixType& m)
13 {
14   typedef typename MatrixType::Index Index;
15   typedef typename MatrixType::Scalar Scalar;
16   typedef typename MatrixType::RealScalar RealScalar;
17 
18   Index rows = m.rows();
19   Index cols = m.cols();
20 
21   MatrixType m1 = MatrixType::Random(rows, cols);
22 
23   // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test
24   // failures if we underflow into denormals. Thus, we scale so that entires are close to 1.
25   MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + Scalar(0.2) * m1;
26 
27   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
28   VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
29   Scalar s(0), p(1), minc(internal::real(m1.coeff(0))), maxc(internal::real(m1.coeff(0)));
30   for(int j = 0; j < cols; j++)
31   for(int i = 0; i < rows; i++)
32   {
33     s += m1(i,j);
34     p *= m1_for_prod(i,j);
35     minc = (std::min)(internal::real(minc), internal::real(m1(i,j)));
36     maxc = (std::max)(internal::real(maxc), internal::real(m1(i,j)));
37   }
38   const Scalar mean = s/Scalar(RealScalar(rows*cols));
39 
40   VERIFY_IS_APPROX(m1.sum(), s);
41   VERIFY_IS_APPROX(m1.mean(), mean);
42   VERIFY_IS_APPROX(m1_for_prod.prod(), p);
43   VERIFY_IS_APPROX(m1.real().minCoeff(), internal::real(minc));
44   VERIFY_IS_APPROX(m1.real().maxCoeff(), internal::real(maxc));
45 
46   // test slice vectorization assuming assign is ok
47   Index r0 = internal::random<Index>(0,rows-1);
48   Index c0 = internal::random<Index>(0,cols-1);
49   Index r1 = internal::random<Index>(r0+1,rows)-r0;
50   Index c1 = internal::random<Index>(c0+1,cols)-c0;
51   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum());
52   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean());
53   VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod());
54   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff());
55   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff());
56 
57   // test empty objects
58   VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(),   Scalar(0));
59   VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(),  Scalar(1));
60 }
61 
vectorRedux(const VectorType & w)62 template<typename VectorType> void vectorRedux(const VectorType& w)
63 {
64   typedef typename VectorType::Index Index;
65   typedef typename VectorType::Scalar Scalar;
66   typedef typename NumTraits<Scalar>::Real RealScalar;
67   Index size = w.size();
68 
69   VectorType v = VectorType::Random(size);
70   VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod
71 
72   for(int i = 1; i < size; i++)
73   {
74     Scalar s(0), p(1);
75     RealScalar minc(internal::real(v.coeff(0))), maxc(internal::real(v.coeff(0)));
76     for(int j = 0; j < i; j++)
77     {
78       s += v[j];
79       p *= v_for_prod[j];
80       minc = (std::min)(minc, internal::real(v[j]));
81       maxc = (std::max)(maxc, internal::real(v[j]));
82     }
83     VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(s - v.head(i).sum()), Scalar(1));
84     VERIFY_IS_APPROX(p, v_for_prod.head(i).prod());
85     VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
86     VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
87   }
88 
89   for(int i = 0; i < size-1; i++)
90   {
91     Scalar s(0), p(1);
92     RealScalar minc(internal::real(v.coeff(i))), maxc(internal::real(v.coeff(i)));
93     for(int j = i; j < size; j++)
94     {
95       s += v[j];
96       p *= v_for_prod[j];
97       minc = (std::min)(minc, internal::real(v[j]));
98       maxc = (std::max)(maxc, internal::real(v[j]));
99     }
100     VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(s - v.tail(size-i).sum()), Scalar(1));
101     VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod());
102     VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff());
103     VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff());
104   }
105 
106   for(int i = 0; i < size/2; i++)
107   {
108     Scalar s(0), p(1);
109     RealScalar minc(internal::real(v.coeff(i))), maxc(internal::real(v.coeff(i)));
110     for(int j = i; j < size-i; j++)
111     {
112       s += v[j];
113       p *= v_for_prod[j];
114       minc = (std::min)(minc, internal::real(v[j]));
115       maxc = (std::max)(maxc, internal::real(v[j]));
116     }
117     VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(s - v.segment(i, size-2*i).sum()), Scalar(1));
118     VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod());
119     VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
120     VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
121   }
122 
123   // test empty objects
124   VERIFY_IS_APPROX(v.head(0).sum(),   Scalar(0));
125   VERIFY_IS_APPROX(v.tail(0).prod(),  Scalar(1));
126   VERIFY_RAISES_ASSERT(v.head(0).mean());
127   VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
128   VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
129 }
130 
test_redux()131 void test_redux()
132 {
133   // the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
134   int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE);
135   EIGEN_UNUSED_VARIABLE(maxsize);
136   for(int i = 0; i < g_repeat; i++) {
137     CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) );
138     CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) );
139     CALL_SUBTEST_2( matrixRedux(Matrix2f()) );
140     CALL_SUBTEST_2( matrixRedux(Array2f()) );
141     CALL_SUBTEST_3( matrixRedux(Matrix4d()) );
142     CALL_SUBTEST_3( matrixRedux(Array4d()) );
143     CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
144     CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
145     CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
146     CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
147     CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
148     CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
149   }
150   for(int i = 0; i < g_repeat; i++) {
151     CALL_SUBTEST_7( vectorRedux(Vector4f()) );
152     CALL_SUBTEST_7( vectorRedux(Array4f()) );
153     CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) );
154     CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) );
155     CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) );
156     CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) );
157   }
158 }
159