• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_GMRES_H
12 #define EIGEN_GMRES_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 /**
19  * Generalized Minimal Residual Algorithm based on the
20  * Arnoldi algorithm implemented with Householder reflections.
21  *
22  * Parameters:
23  *  \param mat       matrix of linear system of equations
24  *  \param Rhs       right hand side vector of linear system of equations
25  *  \param x         on input: initial guess, on output: solution
26  *  \param precond   preconditioner used
27  *  \param iters     on input: maximum number of iterations to perform
28  *                   on output: number of iterations performed
29  *  \param restart   number of iterations for a restart
30  *  \param tol_error on input: residual tolerance
31  *                   on output: residuum achieved
32  *
33  * \sa IterativeMethods::bicgstab()
34  *
35  *
36  * For references, please see:
37  *
38  * Saad, Y. and Schultz, M. H.
39  * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
40  * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
41  *
42  * Saad, Y.
43  * Iterative Methods for Sparse Linear Systems.
44  * Society for Industrial and Applied Mathematics, Philadelphia, 2003.
45  *
46  * Walker, H. F.
47  * Implementations of the GMRES method.
48  * Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
49  *
50  * Walker, H. F.
51  * Implementation of the GMRES Method using Householder Transformations.
52  * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
53  *
54  */
55 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
gmres(const MatrixType & mat,const Rhs & rhs,Dest & x,const Preconditioner & precond,int & iters,const int & restart,typename Dest::RealScalar & tol_error)56 bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
57 		int &iters, const int &restart, typename Dest::RealScalar & tol_error) {
58 
59 	using std::sqrt;
60 	using std::abs;
61 
62 	typedef typename Dest::RealScalar RealScalar;
63 	typedef typename Dest::Scalar Scalar;
64 	typedef Matrix < RealScalar, Dynamic, 1 > RealVectorType;
65 	typedef Matrix < Scalar, Dynamic, 1 > VectorType;
66 	typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
67 
68 	RealScalar tol = tol_error;
69 	const int maxIters = iters;
70 	iters = 0;
71 
72 	const int m = mat.rows();
73 
74 	VectorType p0 = rhs - mat*x;
75 	VectorType r0 = precond.solve(p0);
76 // 	RealScalar r0_sqnorm = r0.squaredNorm();
77 
78 	VectorType w = VectorType::Zero(restart + 1);
79 
80 	FMatrixType H = FMatrixType::Zero(m, restart + 1);
81 	VectorType tau = VectorType::Zero(restart + 1);
82 	std::vector < JacobiRotation < Scalar > > G(restart);
83 
84 	// generate first Householder vector
85 	VectorType e;
86 	RealScalar beta;
87 	r0.makeHouseholder(e, tau.coeffRef(0), beta);
88 	w(0)=(Scalar) beta;
89 	H.bottomLeftCorner(m - 1, 1) = e;
90 
91 	for (int k = 1; k <= restart; ++k) {
92 
93 		++iters;
94 
95 		VectorType v = VectorType::Unit(m, k - 1), workspace(m);
96 
97 		// apply Householder reflections H_{1} ... H_{k-1} to v
98 		for (int i = k - 1; i >= 0; --i) {
99 			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
100 		}
101 
102 		// apply matrix M to v:  v = mat * v;
103 		VectorType t=mat*v;
104 		v=precond.solve(t);
105 
106 		// apply Householder reflections H_{k-1} ... H_{1} to v
107 		for (int i = 0; i < k; ++i) {
108 			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
109 		}
110 
111 		if (v.tail(m - k).norm() != 0.0) {
112 
113 			if (k <= restart) {
114 
115 				// generate new Householder vector
116                                   VectorType e(m - k - 1);
117 				RealScalar beta;
118 				v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
119 				H.col(k).tail(m - k - 1) = e;
120 
121 				// apply Householder reflection H_{k} to v
122 				v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
123 
124 			}
125                 }
126 
127                 if (k > 1) {
128                         for (int i = 0; i < k - 1; ++i) {
129                                 // apply old Givens rotations to v
130                                 v.applyOnTheLeft(i, i + 1, G[i].adjoint());
131                         }
132                 }
133 
134                 if (k<m && v(k) != (Scalar) 0) {
135                         // determine next Givens rotation
136                         G[k - 1].makeGivens(v(k - 1), v(k));
137 
138                         // apply Givens rotation to v and w
139                         v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
140                         w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
141 
142                 }
143 
144                 // insert coefficients into upper matrix triangle
145                 H.col(k - 1).head(k) = v.head(k);
146 
147                 bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
148 
149                 if (stop || k == restart) {
150 
151                         // solve upper triangular system
152                         VectorType y = w.head(k);
153                         H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
154 
155                         // use Horner-like scheme to calculate solution vector
156                         VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
157 
158                         // apply Householder reflection H_{k} to x_new
159                         x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
160 
161                         for (int i = k - 2; i >= 0; --i) {
162                                 x_new += y(i) * VectorType::Unit(m, i);
163                                 // apply Householder reflection H_{i} to x_new
164                                 x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
165                         }
166 
167                         x += x_new;
168 
169                         if (stop) {
170                                 return true;
171                         } else {
172                                 k=0;
173 
174                                 // reset data for a restart  r0 = rhs - mat * x;
175                                 VectorType p0=mat*x;
176                                 VectorType p1=precond.solve(p0);
177                                 r0 = rhs - p1;
178 //                                 r0_sqnorm = r0.squaredNorm();
179                                 w = VectorType::Zero(restart + 1);
180                                 H = FMatrixType::Zero(m, restart + 1);
181                                 tau = VectorType::Zero(restart + 1);
182 
183                                 // generate first Householder vector
184                                 RealScalar beta;
185                                 r0.makeHouseholder(e, tau.coeffRef(0), beta);
186                                 w(0)=(Scalar) beta;
187                                 H.bottomLeftCorner(m - 1, 1) = e;
188 
189                         }
190 
191                 }
192 
193 
194 
195 	}
196 
197 	return false;
198 
199 }
200 
201 }
202 
203 template< typename _MatrixType,
204           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
205 class GMRES;
206 
207 namespace internal {
208 
209 template< typename _MatrixType, typename _Preconditioner>
210 struct traits<GMRES<_MatrixType,_Preconditioner> >
211 {
212   typedef _MatrixType MatrixType;
213   typedef _Preconditioner Preconditioner;
214 };
215 
216 }
217 
218 /** \ingroup IterativeLinearSolvers_Module
219   * \brief A GMRES solver for sparse square problems
220   *
221   * This class allows to solve for A.x = b sparse linear problems using a generalized minimal
222   * residual method. The vectors x and b can be either dense or sparse.
223   *
224   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
225   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
226   *
227   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
228   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
229   * and NumTraits<Scalar>::epsilon() for the tolerance.
230   *
231   * This class can be used as the direct solver classes. Here is a typical usage example:
232   * \code
233   * int n = 10000;
234   * VectorXd x(n), b(n);
235   * SparseMatrix<double> A(n,n);
236   * // fill A and b
237   * GMRES<SparseMatrix<double> > solver(A);
238   * x = solver.solve(b);
239   * std::cout << "#iterations:     " << solver.iterations() << std::endl;
240   * std::cout << "estimated error: " << solver.error()      << std::endl;
241   * // update b, and solve again
242   * x = solver.solve(b);
243   * \endcode
244   *
245   * By default the iterations start with x=0 as an initial guess of the solution.
246   * One can control the start using the solveWithGuess() method. Here is a step by
247   * step execution example starting with a random guess and printing the evolution
248   * of the estimated error:
249   * * \code
250   * x = VectorXd::Random(n);
251   * solver.setMaxIterations(1);
252   * int i = 0;
253   * do {
254   *   x = solver.solveWithGuess(b,x);
255   *   std::cout << i << " : " << solver.error() << std::endl;
256   *   ++i;
257   * } while (solver.info()!=Success && i<100);
258   * \endcode
259   * Note that such a step by step excution is slightly slower.
260   *
261   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
262   */
263 template< typename _MatrixType, typename _Preconditioner>
264 class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
265 {
266   typedef IterativeSolverBase<GMRES> Base;
267   using Base::mp_matrix;
268   using Base::m_error;
269   using Base::m_iterations;
270   using Base::m_info;
271   using Base::m_isInitialized;
272 
273 private:
274   int m_restart;
275 
276 public:
277   typedef _MatrixType MatrixType;
278   typedef typename MatrixType::Scalar Scalar;
279   typedef typename MatrixType::Index Index;
280   typedef typename MatrixType::RealScalar RealScalar;
281   typedef _Preconditioner Preconditioner;
282 
283 public:
284 
285   /** Default constructor. */
286   GMRES() : Base(), m_restart(30) {}
287 
288   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
289     *
290     * This constructor is a shortcut for the default constructor followed
291     * by a call to compute().
292     *
293     * \warning this class stores a reference to the matrix A as well as some
294     * precomputed values that depend on it. Therefore, if \a A is changed
295     * this class becomes invalid. Call compute() to update it with the new
296     * matrix A, or modify a copy of A.
297     */
298   GMRES(const MatrixType& A) : Base(A), m_restart(30) {}
299 
300   ~GMRES() {}
301 
302   /** Get the number of iterations after that a restart is performed.
303     */
304   int get_restart() { return m_restart; }
305 
306   /** Set the number of iterations after that a restart is performed.
307     *  \param restart   number of iterations for a restarti, default is 30.
308     */
309   void set_restart(const int restart) { m_restart=restart; }
310 
311   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
312     * \a x0 as an initial solution.
313     *
314     * \sa compute()
315     */
316   template<typename Rhs,typename Guess>
317   inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
318   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
319   {
320     eigen_assert(m_isInitialized && "GMRES is not initialized.");
321     eigen_assert(Base::rows()==b.rows()
322               && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
323     return internal::solve_retval_with_guess
324             <GMRES, Rhs, Guess>(*this, b.derived(), x0);
325   }
326 
327   /** \internal */
328   template<typename Rhs,typename Dest>
329   void _solveWithGuess(const Rhs& b, Dest& x) const
330   {
331     bool failed = false;
332     for(int j=0; j<b.cols(); ++j)
333     {
334       m_iterations = Base::maxIterations();
335       m_error = Base::m_tolerance;
336 
337       typename Dest::ColXpr xj(x,j);
338       if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
339         failed = true;
340     }
341     m_info = failed ? NumericalIssue
342            : m_error <= Base::m_tolerance ? Success
343            : NoConvergence;
344     m_isInitialized = true;
345   }
346 
347   /** \internal */
348   template<typename Rhs,typename Dest>
349   void _solve(const Rhs& b, Dest& x) const
350   {
351     x.setZero();
352     _solveWithGuess(b,x);
353   }
354 
355 protected:
356 
357 };
358 
359 
360 namespace internal {
361 
362   template<typename _MatrixType, typename _Preconditioner, typename Rhs>
363 struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
364   : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
365 {
366   typedef GMRES<_MatrixType, _Preconditioner> Dec;
367   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
368 
369   template<typename Dest> void evalTo(Dest& dst) const
370   {
371     dec()._solve(rhs(),dst);
372   }
373 };
374 
375 } // end namespace internal
376 
377 } // end namespace Eigen
378 
379 #endif // EIGEN_GMRES_H
380