• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 namespace Eigen {
2 
3 namespace internal {
4 
5 template <typename Scalar>
dogleg(const Matrix<Scalar,Dynamic,Dynamic> & qrfac,const Matrix<Scalar,Dynamic,1> & diag,const Matrix<Scalar,Dynamic,1> & qtb,Scalar delta,Matrix<Scalar,Dynamic,1> & x)6 void dogleg(
7         const Matrix< Scalar, Dynamic, Dynamic >  &qrfac,
8         const Matrix< Scalar, Dynamic, 1 >  &diag,
9         const Matrix< Scalar, Dynamic, 1 >  &qtb,
10         Scalar delta,
11         Matrix< Scalar, Dynamic, 1 >  &x)
12 {
13     typedef DenseIndex Index;
14 
15     /* Local variables */
16     Index i, j;
17     Scalar sum, temp, alpha, bnorm;
18     Scalar gnorm, qnorm;
19     Scalar sgnorm;
20 
21     /* Function Body */
22     const Scalar epsmch = NumTraits<Scalar>::epsilon();
23     const Index n = qrfac.cols();
24     assert(n==qtb.size());
25     assert(n==x.size());
26     assert(n==diag.size());
27     Matrix< Scalar, Dynamic, 1 >  wa1(n), wa2(n);
28 
29     /* first, calculate the gauss-newton direction. */
30     for (j = n-1; j >=0; --j) {
31         temp = qrfac(j,j);
32         if (temp == 0.) {
33             temp = epsmch * qrfac.col(j).head(j+1).maxCoeff();
34             if (temp == 0.)
35                 temp = epsmch;
36         }
37         if (j==n-1)
38             x[j] = qtb[j] / temp;
39         else
40             x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp;
41     }
42 
43     /* test whether the gauss-newton direction is acceptable. */
44     qnorm = diag.cwiseProduct(x).stableNorm();
45     if (qnorm <= delta)
46         return;
47 
48     // TODO : this path is not tested by Eigen unit tests
49 
50     /* the gauss-newton direction is not acceptable. */
51     /* next, calculate the scaled gradient direction. */
52 
53     wa1.fill(0.);
54     for (j = 0; j < n; ++j) {
55         wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j];
56         wa1[j] /= diag[j];
57     }
58 
59     /* calculate the norm of the scaled gradient and test for */
60     /* the special case in which the scaled gradient is zero. */
61     gnorm = wa1.stableNorm();
62     sgnorm = 0.;
63     alpha = delta / qnorm;
64     if (gnorm == 0.)
65         goto algo_end;
66 
67     /* calculate the point along the scaled gradient */
68     /* at which the quadratic is minimized. */
69     wa1.array() /= (diag*gnorm).array();
70     // TODO : once unit tests cover this part,:
71     // wa2 = qrfac.template triangularView<Upper>() * wa1;
72     for (j = 0; j < n; ++j) {
73         sum = 0.;
74         for (i = j; i < n; ++i) {
75             sum += qrfac(j,i) * wa1[i];
76         }
77         wa2[j] = sum;
78     }
79     temp = wa2.stableNorm();
80     sgnorm = gnorm / temp / temp;
81 
82     /* test whether the scaled gradient direction is acceptable. */
83     alpha = 0.;
84     if (sgnorm >= delta)
85         goto algo_end;
86 
87     /* the scaled gradient direction is not acceptable. */
88     /* finally, calculate the point along the dogleg */
89     /* at which the quadratic is minimized. */
90     bnorm = qtb.stableNorm();
91     temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
92     temp = temp - delta / qnorm * abs2(sgnorm / delta) + sqrt(abs2(temp - delta / qnorm) + (1.-abs2(delta / qnorm)) * (1.-abs2(sgnorm / delta)));
93     alpha = delta / qnorm * (1. - abs2(sgnorm / delta)) / temp;
94 algo_end:
95 
96     /* form appropriate convex combination of the gauss-newton */
97     /* direction and the scaled gradient direction. */
98     temp = (1.-alpha) * (std::min)(sgnorm,delta);
99     x = temp * wa1 + alpha * x;
100 }
101 
102 } // end namespace internal
103 
104 } // end namespace Eigen
105