• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_POLYNOMIAL_UTILS_H
11 #define EIGEN_POLYNOMIAL_UTILS_H
12 
13 namespace Eigen {
14 
15 /** \ingroup Polynomials_Module
16  * \returns the evaluation of the polynomial at x using Horner algorithm.
17  *
18  * \param[in] poly : the vector of coefficients of the polynomial ordered
19  *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
20  *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
21  * \param[in] x : the value to evaluate the polynomial at.
22  *
23  * <i><b>Note for stability:</b></i>
24  *  <dd> \f$ |x| \le 1 \f$ </dd>
25  */
26 template <typename Polynomials, typename T>
27 inline
poly_eval_horner(const Polynomials & poly,const T & x)28 T poly_eval_horner( const Polynomials& poly, const T& x )
29 {
30   T val=poly[poly.size()-1];
31   for(DenseIndex i=poly.size()-2; i>=0; --i ){
32     val = val*x + poly[i]; }
33   return val;
34 }
35 
36 /** \ingroup Polynomials_Module
37  * \returns the evaluation of the polynomial at x using stabilized Horner algorithm.
38  *
39  * \param[in] poly : the vector of coefficients of the polynomial ordered
40  *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
41  *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
42  * \param[in] x : the value to evaluate the polynomial at.
43  */
44 template <typename Polynomials, typename T>
45 inline
poly_eval(const Polynomials & poly,const T & x)46 T poly_eval( const Polynomials& poly, const T& x )
47 {
48   typedef typename NumTraits<T>::Real Real;
49 
50   if( internal::abs2( x ) <= Real(1) ){
51     return poly_eval_horner( poly, x ); }
52   else
53   {
54     T val=poly[0];
55     T inv_x = T(1)/x;
56     for( DenseIndex i=1; i<poly.size(); ++i ){
57       val = val*inv_x + poly[i]; }
58 
59     return std::pow(x,(T)(poly.size()-1)) * val;
60   }
61 }
62 
63 /** \ingroup Polynomials_Module
64  * \returns a maximum bound for the absolute value of any root of the polynomial.
65  *
66  * \param[in] poly : the vector of coefficients of the polynomial ordered
67  *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
68  *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
69  *
70  *  <i><b>Precondition:</b></i>
71  *  <dd> the leading coefficient of the input polynomial poly must be non zero </dd>
72  */
73 template <typename Polynomial>
74 inline
cauchy_max_bound(const Polynomial & poly)75 typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
76 {
77   typedef typename Polynomial::Scalar Scalar;
78   typedef typename NumTraits<Scalar>::Real Real;
79 
80   assert( Scalar(0) != poly[poly.size()-1] );
81   const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
82   Real cb(0);
83 
84   for( DenseIndex i=0; i<poly.size()-1; ++i ){
85     cb += internal::abs(poly[i]*inv_leading_coeff); }
86   return cb + Real(1);
87 }
88 
89 /** \ingroup Polynomials_Module
90  * \returns a minimum bound for the absolute value of any non zero root of the polynomial.
91  * \param[in] poly : the vector of coefficients of the polynomial ordered
92  *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
93  *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
94  */
95 template <typename Polynomial>
96 inline
cauchy_min_bound(const Polynomial & poly)97 typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
98 {
99   typedef typename Polynomial::Scalar Scalar;
100   typedef typename NumTraits<Scalar>::Real Real;
101 
102   DenseIndex i=0;
103   while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
104   if( poly.size()-1 == i ){
105     return Real(1); }
106 
107   const Scalar inv_min_coeff = Scalar(1)/poly[i];
108   Real cb(1);
109   for( DenseIndex j=i+1; j<poly.size(); ++j ){
110     cb += internal::abs(poly[j]*inv_min_coeff); }
111   return Real(1)/cb;
112 }
113 
114 /** \ingroup Polynomials_Module
115  * Given the roots of a polynomial compute the coefficients in the
116  * monomial basis of the monic polynomial with same roots and minimal degree.
117  * If RootVector is a vector of complexes, Polynomial should also be a vector
118  * of complexes.
119  * \param[in] rv : a vector containing the roots of a polynomial.
120  * \param[out] poly : the vector of coefficients of the polynomial ordered
121  *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
122  *  e.g. \f$ 3 + x^2 \f$ is stored as a vector \f$ [ 3, 0, 1 ] \f$.
123  */
124 template <typename RootVector, typename Polynomial>
roots_to_monicPolynomial(const RootVector & rv,Polynomial & poly)125 void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
126 {
127 
128   typedef typename Polynomial::Scalar Scalar;
129 
130   poly.setZero( rv.size()+1 );
131   poly[0] = -rv[0]; poly[1] = Scalar(1);
132   for( DenseIndex i=1; i< rv.size(); ++i )
133   {
134     for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
135     poly[0] = -rv[i]*poly[0];
136   }
137 }
138 
139 } // end namespace Eigen
140 
141 #endif // EIGEN_POLYNOMIAL_UTILS_H
142