1
2 //
3 // file: rbbiscan.cpp
4 //
5 // Copyright (C) 2002-2012, International Business Machines Corporation and others.
6 // All Rights Reserved.
7 //
8 // This file contains the Rule Based Break Iterator Rule Builder functions for
9 // scanning the rules and assembling a parse tree. This is the first phase
10 // of compiling the rules.
11 //
12 // The overall of the rules is managed by class RBBIRuleBuilder, which will
13 // create and use an instance of this class as part of the process.
14 //
15
16 #include "unicode/utypes.h"
17
18 #if !UCONFIG_NO_BREAK_ITERATION
19
20 #include "unicode/unistr.h"
21 #include "unicode/uniset.h"
22 #include "unicode/uchar.h"
23 #include "unicode/uchriter.h"
24 #include "unicode/parsepos.h"
25 #include "unicode/parseerr.h"
26 #include "cmemory.h"
27 #include "cstring.h"
28
29 #include "rbbirpt.h" // Contains state table for the rbbi rules parser.
30 // generated by a Perl script.
31 #include "rbbirb.h"
32 #include "rbbinode.h"
33 #include "rbbiscan.h"
34 #include "rbbitblb.h"
35
36 #include "uassert.h"
37
38 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
39
40 //------------------------------------------------------------------------------
41 //
42 // Unicode Set init strings for each of the character classes needed for parsing a rule file.
43 // (Initialized with hex values for portability to EBCDIC based machines.
44 // Really ugly, but there's no good way to avoid it.)
45 //
46 // The sets are referred to by name in the rbbirpt.txt, which is the
47 // source form of the state transition table for the RBBI rule parser.
48 //
49 //------------------------------------------------------------------------------
50 static const UChar gRuleSet_rule_char_pattern[] = {
51 // [ ^ [ \ p { Z } \ u 0 0 2 0
52 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30,
53 // - \ u 0 0 7 f ] - [ \ p
54 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70,
55 // { L } ] - [ \ p { N } ] ]
56 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0};
57
58 static const UChar gRuleSet_name_char_pattern[] = {
59 // [ _ \ p { L } \ p { N } ]
60 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};
61
62 static const UChar gRuleSet_digit_char_pattern[] = {
63 // [ 0 - 9 ]
64 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
65
66 static const UChar gRuleSet_name_start_char_pattern[] = {
67 // [ _ \ p { L } ]
68 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };
69
70 static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any"
71
72
73 U_CDECL_BEGIN
RBBISetTable_deleter(void * p)74 static void U_CALLCONV RBBISetTable_deleter(void *p) {
75 icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p;
76 delete px->key;
77 // Note: px->val is owned by the linked list "fSetsListHead" in scanner.
78 // Don't delete the value nodes here.
79 uprv_free(px);
80 }
81 U_CDECL_END
82
83 U_NAMESPACE_BEGIN
84
85 //------------------------------------------------------------------------------
86 //
87 // Constructor.
88 //
89 //------------------------------------------------------------------------------
RBBIRuleScanner(RBBIRuleBuilder * rb)90 RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb)
91 {
92 fRB = rb;
93 fStackPtr = 0;
94 fStack[fStackPtr] = 0;
95 fNodeStackPtr = 0;
96 fRuleNum = 0;
97 fNodeStack[0] = NULL;
98
99 fSymbolTable = NULL;
100 fSetTable = NULL;
101
102 fScanIndex = 0;
103 fNextIndex = 0;
104
105 fReverseRule = FALSE;
106 fLookAheadRule = FALSE;
107
108 fLineNum = 1;
109 fCharNum = 0;
110 fQuoteMode = FALSE;
111
112 // Do not check status until after all critical fields are sufficiently initialized
113 // that the destructor can run cleanly.
114 if (U_FAILURE(*rb->fStatus)) {
115 return;
116 }
117
118 //
119 // Set up the constant Unicode Sets.
120 // Note: These could be made static, lazily initialized, and shared among
121 // all instances of RBBIRuleScanners. BUT this is quite a bit simpler,
122 // and the time to build these few sets should be small compared to a
123 // full break iterator build.
124 fRuleSets[kRuleSet_rule_char-128]
125 = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern), *rb->fStatus);
126 // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:]
127 fRuleSets[kRuleSet_white_space-128].
128 add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029);
129 fRuleSets[kRuleSet_name_char-128]
130 = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern), *rb->fStatus);
131 fRuleSets[kRuleSet_name_start_char-128]
132 = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus);
133 fRuleSets[kRuleSet_digit_char-128]
134 = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern), *rb->fStatus);
135 if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) {
136 // This case happens if ICU's data is missing. UnicodeSet tries to look up property
137 // names from the init string, can't find them, and claims an illegal argument.
138 // Change the error so that the actual problem will be clearer to users.
139 *rb->fStatus = U_BRK_INIT_ERROR;
140 }
141 if (U_FAILURE(*rb->fStatus)) {
142 return;
143 }
144
145 fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus);
146 if (fSymbolTable == NULL) {
147 *rb->fStatus = U_MEMORY_ALLOCATION_ERROR;
148 return;
149 }
150 fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus);
151 if (U_FAILURE(*rb->fStatus)) {
152 return;
153 }
154 uhash_setValueDeleter(fSetTable, RBBISetTable_deleter);
155 }
156
157
158
159 //------------------------------------------------------------------------------
160 //
161 // Destructor
162 //
163 //------------------------------------------------------------------------------
~RBBIRuleScanner()164 RBBIRuleScanner::~RBBIRuleScanner() {
165 delete fSymbolTable;
166 if (fSetTable != NULL) {
167 uhash_close(fSetTable);
168 fSetTable = NULL;
169
170 }
171
172
173 // Node Stack.
174 // Normally has one entry, which is the entire parse tree for the rules.
175 // If errors occured, there may be additional subtrees left on the stack.
176 while (fNodeStackPtr > 0) {
177 delete fNodeStack[fNodeStackPtr];
178 fNodeStackPtr--;
179 }
180
181 }
182
183 //------------------------------------------------------------------------------
184 //
185 // doParseAction Do some action during rule parsing.
186 // Called by the parse state machine.
187 // Actions build the parse tree and Unicode Sets,
188 // and maintain the parse stack for nested expressions.
189 //
190 // TODO: unify EParseAction and RBBI_RuleParseAction enum types.
191 // They represent exactly the same thing. They're separate
192 // only to work around enum forward declaration restrictions
193 // in some compilers, while at the same time avoiding multiple
194 // definitions problems. I'm sure that there's a better way.
195 //
196 //------------------------------------------------------------------------------
doParseActions(int32_t action)197 UBool RBBIRuleScanner::doParseActions(int32_t action)
198 {
199 RBBINode *n = NULL;
200
201 UBool returnVal = TRUE;
202
203 switch (action) {
204
205 case doExprStart:
206 pushNewNode(RBBINode::opStart);
207 fRuleNum++;
208 break;
209
210
211 case doExprOrOperator:
212 {
213 fixOpStack(RBBINode::precOpCat);
214 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
215 RBBINode *orNode = pushNewNode(RBBINode::opOr);
216 orNode->fLeftChild = operandNode;
217 operandNode->fParent = orNode;
218 }
219 break;
220
221 case doExprCatOperator:
222 // concatenation operator.
223 // For the implicit concatenation of adjacent terms in an expression that are
224 // not separated by any other operator. Action is invoked between the
225 // actions for the two terms.
226 {
227 fixOpStack(RBBINode::precOpCat);
228 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
229 RBBINode *catNode = pushNewNode(RBBINode::opCat);
230 catNode->fLeftChild = operandNode;
231 operandNode->fParent = catNode;
232 }
233 break;
234
235 case doLParen:
236 // Open Paren.
237 // The openParen node is a dummy operation type with a low precedence,
238 // which has the affect of ensuring that any real binary op that
239 // follows within the parens binds more tightly to the operands than
240 // stuff outside of the parens.
241 pushNewNode(RBBINode::opLParen);
242 break;
243
244 case doExprRParen:
245 fixOpStack(RBBINode::precLParen);
246 break;
247
248 case doNOP:
249 break;
250
251 case doStartAssign:
252 // We've just scanned "$variable = "
253 // The top of the node stack has the $variable ref node.
254
255 // Save the start position of the RHS text in the StartExpression node
256 // that precedes the $variableReference node on the stack.
257 // This will eventually be used when saving the full $variable replacement
258 // text as a string.
259 n = fNodeStack[fNodeStackPtr-1];
260 n->fFirstPos = fNextIndex; // move past the '='
261
262 // Push a new start-of-expression node; needed to keep parse of the
263 // RHS expression happy.
264 pushNewNode(RBBINode::opStart);
265 break;
266
267
268
269
270 case doEndAssign:
271 {
272 // We have reached the end of an assignement statement.
273 // Current scan char is the ';' that terminates the assignment.
274
275 // Terminate expression, leaves expression parse tree rooted in TOS node.
276 fixOpStack(RBBINode::precStart);
277
278 RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2];
279 RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1];
280 RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr];
281
282 // Save original text of right side of assignment, excluding the terminating ';'
283 // in the root of the node for the right-hand-side expression.
284 RHSExprNode->fFirstPos = startExprNode->fFirstPos;
285 RHSExprNode->fLastPos = fScanIndex;
286 fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText);
287
288 // Expression parse tree becomes l. child of the $variable reference node.
289 varRefNode->fLeftChild = RHSExprNode;
290 RHSExprNode->fParent = varRefNode;
291
292 // Make a symbol table entry for the $variableRef node.
293 fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus);
294 if (U_FAILURE(*fRB->fStatus)) {
295 // This is a round-about way to get the parse position set
296 // so that duplicate symbols error messages include a line number.
297 UErrorCode t = *fRB->fStatus;
298 *fRB->fStatus = U_ZERO_ERROR;
299 error(t);
300 }
301
302 // Clean up the stack.
303 delete startExprNode;
304 fNodeStackPtr-=3;
305 break;
306 }
307
308 case doEndOfRule:
309 {
310 fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression
311 if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node.
312 break;
313 }
314 #ifdef RBBI_DEBUG
315 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");}
316 #endif
317 U_ASSERT(fNodeStackPtr == 1);
318
319 // If this rule includes a look-ahead '/', add a endMark node to the
320 // expression tree.
321 if (fLookAheadRule) {
322 RBBINode *thisRule = fNodeStack[fNodeStackPtr];
323 RBBINode *endNode = pushNewNode(RBBINode::endMark);
324 RBBINode *catNode = pushNewNode(RBBINode::opCat);
325 fNodeStackPtr -= 2;
326 catNode->fLeftChild = thisRule;
327 catNode->fRightChild = endNode;
328 fNodeStack[fNodeStackPtr] = catNode;
329 endNode->fVal = fRuleNum;
330 endNode->fLookAheadEnd = TRUE;
331 }
332
333 // All rule expressions are ORed together.
334 // The ';' that terminates an expression really just functions as a '|' with
335 // a low operator prededence.
336 //
337 // Each of the four sets of rules are collected separately.
338 // (forward, reverse, safe_forward, safe_reverse)
339 // OR this rule into the appropriate group of them.
340 //
341 RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree);
342
343 if (*destRules != NULL) {
344 // This is not the first rule encounted.
345 // OR previous stuff (from *destRules)
346 // with the current rule expression (on the Node Stack)
347 // with the resulting OR expression going to *destRules
348 //
349 RBBINode *thisRule = fNodeStack[fNodeStackPtr];
350 RBBINode *prevRules = *destRules;
351 RBBINode *orNode = pushNewNode(RBBINode::opOr);
352 orNode->fLeftChild = prevRules;
353 prevRules->fParent = orNode;
354 orNode->fRightChild = thisRule;
355 thisRule->fParent = orNode;
356 *destRules = orNode;
357 }
358 else
359 {
360 // This is the first rule encountered (for this direction).
361 // Just move its parse tree from the stack to *destRules.
362 *destRules = fNodeStack[fNodeStackPtr];
363 }
364 fReverseRule = FALSE; // in preparation for the next rule.
365 fLookAheadRule = FALSE;
366 fNodeStackPtr = 0;
367 }
368 break;
369
370
371 case doRuleError:
372 error(U_BRK_RULE_SYNTAX);
373 returnVal = FALSE;
374 break;
375
376
377 case doVariableNameExpectedErr:
378 error(U_BRK_RULE_SYNTAX);
379 break;
380
381
382 //
383 // Unary operands + ? *
384 // These all appear after the operand to which they apply.
385 // When we hit one, the operand (may be a whole sub expression)
386 // will be on the top of the stack.
387 // Unary Operator becomes TOS, with the old TOS as its one child.
388 case doUnaryOpPlus:
389 {
390 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
391 RBBINode *plusNode = pushNewNode(RBBINode::opPlus);
392 plusNode->fLeftChild = operandNode;
393 operandNode->fParent = plusNode;
394 }
395 break;
396
397 case doUnaryOpQuestion:
398 {
399 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
400 RBBINode *qNode = pushNewNode(RBBINode::opQuestion);
401 qNode->fLeftChild = operandNode;
402 operandNode->fParent = qNode;
403 }
404 break;
405
406 case doUnaryOpStar:
407 {
408 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
409 RBBINode *starNode = pushNewNode(RBBINode::opStar);
410 starNode->fLeftChild = operandNode;
411 operandNode->fParent = starNode;
412 }
413 break;
414
415 case doRuleChar:
416 // A "Rule Character" is any single character that is a literal part
417 // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]"
418 // These are pretty uncommon in break rules; the terms are more commonly
419 // sets. To keep things uniform, treat these characters like as
420 // sets that just happen to contain only one character.
421 {
422 n = pushNewNode(RBBINode::setRef);
423 findSetFor(UnicodeString(fC.fChar), n);
424 n->fFirstPos = fScanIndex;
425 n->fLastPos = fNextIndex;
426 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
427 break;
428 }
429
430 case doDotAny:
431 // scanned a ".", meaning match any single character.
432 {
433 n = pushNewNode(RBBINode::setRef);
434 findSetFor(UnicodeString(TRUE, kAny, 3), n);
435 n->fFirstPos = fScanIndex;
436 n->fLastPos = fNextIndex;
437 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
438 break;
439 }
440
441 case doSlash:
442 // Scanned a '/', which identifies a look-ahead break position in a rule.
443 n = pushNewNode(RBBINode::lookAhead);
444 n->fVal = fRuleNum;
445 n->fFirstPos = fScanIndex;
446 n->fLastPos = fNextIndex;
447 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
448 fLookAheadRule = TRUE;
449 break;
450
451
452 case doStartTagValue:
453 // Scanned a '{', the opening delimiter for a tag value within a rule.
454 n = pushNewNode(RBBINode::tag);
455 n->fVal = 0;
456 n->fFirstPos = fScanIndex;
457 n->fLastPos = fNextIndex;
458 break;
459
460 case doTagDigit:
461 // Just scanned a decimal digit that's part of a tag value
462 {
463 n = fNodeStack[fNodeStackPtr];
464 uint32_t v = u_charDigitValue(fC.fChar);
465 U_ASSERT(v < 10);
466 n->fVal = n->fVal*10 + v;
467 break;
468 }
469
470 case doTagValue:
471 n = fNodeStack[fNodeStackPtr];
472 n->fLastPos = fNextIndex;
473 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
474 break;
475
476 case doTagExpectedError:
477 error(U_BRK_MALFORMED_RULE_TAG);
478 returnVal = FALSE;
479 break;
480
481 case doOptionStart:
482 // Scanning a !!option. At the start of string.
483 fOptionStart = fScanIndex;
484 break;
485
486 case doOptionEnd:
487 {
488 UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart);
489 if (opt == UNICODE_STRING("chain", 5)) {
490 fRB->fChainRules = TRUE;
491 } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) {
492 fRB->fLBCMNoChain = TRUE;
493 } else if (opt == UNICODE_STRING("forward", 7)) {
494 fRB->fDefaultTree = &fRB->fForwardTree;
495 } else if (opt == UNICODE_STRING("reverse", 7)) {
496 fRB->fDefaultTree = &fRB->fReverseTree;
497 } else if (opt == UNICODE_STRING("safe_forward", 12)) {
498 fRB->fDefaultTree = &fRB->fSafeFwdTree;
499 } else if (opt == UNICODE_STRING("safe_reverse", 12)) {
500 fRB->fDefaultTree = &fRB->fSafeRevTree;
501 } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) {
502 fRB->fLookAheadHardBreak = TRUE;
503 } else {
504 error(U_BRK_UNRECOGNIZED_OPTION);
505 }
506 }
507 break;
508
509 case doReverseDir:
510 fReverseRule = TRUE;
511 break;
512
513 case doStartVariableName:
514 n = pushNewNode(RBBINode::varRef);
515 if (U_FAILURE(*fRB->fStatus)) {
516 break;
517 }
518 n->fFirstPos = fScanIndex;
519 break;
520
521 case doEndVariableName:
522 n = fNodeStack[fNodeStackPtr];
523 if (n==NULL || n->fType != RBBINode::varRef) {
524 error(U_BRK_INTERNAL_ERROR);
525 break;
526 }
527 n->fLastPos = fScanIndex;
528 fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText);
529 // Look the newly scanned name up in the symbol table
530 // If there's an entry, set the l. child of the var ref to the replacement expression.
531 // (We also pass through here when scanning assignments, but no harm is done, other
532 // than a slight wasted effort that seems hard to avoid. Lookup will be null)
533 n->fLeftChild = fSymbolTable->lookupNode(n->fText);
534 break;
535
536 case doCheckVarDef:
537 n = fNodeStack[fNodeStackPtr];
538 if (n->fLeftChild == NULL) {
539 error(U_BRK_UNDEFINED_VARIABLE);
540 returnVal = FALSE;
541 }
542 break;
543
544 case doExprFinished:
545 break;
546
547 case doRuleErrorAssignExpr:
548 error(U_BRK_ASSIGN_ERROR);
549 returnVal = FALSE;
550 break;
551
552 case doExit:
553 returnVal = FALSE;
554 break;
555
556 case doScanUnicodeSet:
557 scanSet();
558 break;
559
560 default:
561 error(U_BRK_INTERNAL_ERROR);
562 returnVal = FALSE;
563 break;
564 }
565 return returnVal;
566 }
567
568
569
570
571 //------------------------------------------------------------------------------
572 //
573 // Error Report a rule parse error.
574 // Only report it if no previous error has been recorded.
575 //
576 //------------------------------------------------------------------------------
error(UErrorCode e)577 void RBBIRuleScanner::error(UErrorCode e) {
578 if (U_SUCCESS(*fRB->fStatus)) {
579 *fRB->fStatus = e;
580 if (fRB->fParseError) {
581 fRB->fParseError->line = fLineNum;
582 fRB->fParseError->offset = fCharNum;
583 fRB->fParseError->preContext[0] = 0;
584 fRB->fParseError->preContext[0] = 0;
585 }
586 }
587 }
588
589
590
591
592 //------------------------------------------------------------------------------
593 //
594 // fixOpStack The parse stack holds partially assembled chunks of the parse tree.
595 // An entry on the stack may be as small as a single setRef node,
596 // or as large as the parse tree
597 // for an entire expression (this will be the one item left on the stack
598 // when the parsing of an RBBI rule completes.
599 //
600 // This function is called when a binary operator is encountered.
601 // It looks back up the stack for operators that are not yet associated
602 // with a right operand, and if the precedence of the stacked operator >=
603 // the precedence of the current operator, binds the operand left,
604 // to the previously encountered operator.
605 //
606 //------------------------------------------------------------------------------
fixOpStack(RBBINode::OpPrecedence p)607 void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) {
608 RBBINode *n;
609 // printNodeStack("entering fixOpStack()");
610 for (;;) {
611 n = fNodeStack[fNodeStackPtr-1]; // an operator node
612 if (n->fPrecedence == 0) {
613 RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node");
614 error(U_BRK_INTERNAL_ERROR);
615 return;
616 }
617
618 if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) {
619 // The most recent operand goes with the current operator,
620 // not with the previously stacked one.
621 break;
622 }
623 // Stack operator is a binary op ( '|' or concatenation)
624 // TOS operand becomes right child of this operator.
625 // Resulting subexpression becomes the TOS operand.
626 n->fRightChild = fNodeStack[fNodeStackPtr];
627 fNodeStack[fNodeStackPtr]->fParent = n;
628 fNodeStackPtr--;
629 // printNodeStack("looping in fixOpStack() ");
630 }
631
632 if (p <= RBBINode::precLParen) {
633 // Scan is at a right paren or end of expression.
634 // The scanned item must match the stack, or else there was an error.
635 // Discard the left paren (or start expr) node from the stack,
636 // leaving the completed (sub)expression as TOS.
637 if (n->fPrecedence != p) {
638 // Right paren encountered matched start of expression node, or
639 // end of expression matched with a left paren node.
640 error(U_BRK_MISMATCHED_PAREN);
641 }
642 fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr];
643 fNodeStackPtr--;
644 // Delete the now-discarded LParen or Start node.
645 delete n;
646 }
647 // printNodeStack("leaving fixOpStack()");
648 }
649
650
651
652
653 //------------------------------------------------------------------------------
654 //
655 // findSetFor given a UnicodeString,
656 // - find the corresponding Unicode Set (uset node)
657 // (create one if necessary)
658 // - Set fLeftChild of the caller's node (should be a setRef node)
659 // to the uset node
660 // Maintain a hash table of uset nodes, so the same one is always used
661 // for the same string.
662 // If a "to adopt" set is provided and we haven't seen this key before,
663 // add the provided set to the hash table.
664 // If the string is one (32 bit) char in length, the set contains
665 // just one element which is the char in question.
666 // If the string is "any", return a set containing all chars.
667 //
668 //------------------------------------------------------------------------------
findSetFor(const UnicodeString & s,RBBINode * node,UnicodeSet * setToAdopt)669 void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) {
670
671 RBBISetTableEl *el;
672
673 // First check whether we've already cached a set for this string.
674 // If so, just use the cached set in the new node.
675 // delete any set provided by the caller, since we own it.
676 el = (RBBISetTableEl *)uhash_get(fSetTable, &s);
677 if (el != NULL) {
678 delete setToAdopt;
679 node->fLeftChild = el->val;
680 U_ASSERT(node->fLeftChild->fType == RBBINode::uset);
681 return;
682 }
683
684 // Haven't seen this set before.
685 // If the caller didn't provide us with a prebuilt set,
686 // create a new UnicodeSet now.
687 if (setToAdopt == NULL) {
688 if (s.compare(kAny, -1) == 0) {
689 setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
690 } else {
691 UChar32 c;
692 c = s.char32At(0);
693 setToAdopt = new UnicodeSet(c, c);
694 }
695 }
696
697 //
698 // Make a new uset node to refer to this UnicodeSet
699 // This new uset node becomes the child of the caller's setReference node.
700 //
701 RBBINode *usetNode = new RBBINode(RBBINode::uset);
702 if (usetNode == NULL) {
703 error(U_MEMORY_ALLOCATION_ERROR);
704 return;
705 }
706 usetNode->fInputSet = setToAdopt;
707 usetNode->fParent = node;
708 node->fLeftChild = usetNode;
709 usetNode->fText = s;
710
711
712 //
713 // Add the new uset node to the list of all uset nodes.
714 //
715 fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus);
716
717
718 //
719 // Add the new set to the set hash table.
720 //
721 el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl));
722 UnicodeString *tkey = new UnicodeString(s);
723 if (tkey == NULL || el == NULL || setToAdopt == NULL) {
724 // Delete to avoid memory leak
725 delete tkey;
726 tkey = NULL;
727 uprv_free(el);
728 el = NULL;
729 delete setToAdopt;
730 setToAdopt = NULL;
731
732 error(U_MEMORY_ALLOCATION_ERROR);
733 return;
734 }
735 el->key = tkey;
736 el->val = usetNode;
737 uhash_put(fSetTable, el->key, el, fRB->fStatus);
738
739 return;
740 }
741
742
743
744 //
745 // Assorted Unicode character constants.
746 // Numeric because there is no portable way to enter them as literals.
747 // (Think EBCDIC).
748 //
749 static const UChar chCR = 0x0d; // New lines, for terminating comments.
750 static const UChar chLF = 0x0a;
751 static const UChar chNEL = 0x85; // NEL newline variant
752 static const UChar chLS = 0x2028; // Unicode Line Separator
753 static const UChar chApos = 0x27; // single quote, for quoted chars.
754 static const UChar chPound = 0x23; // '#', introduces a comment.
755 static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
756 static const UChar chLParen = 0x28;
757 static const UChar chRParen = 0x29;
758
759
760 //------------------------------------------------------------------------------
761 //
762 // stripRules Return a rules string without unnecessary
763 // characters.
764 //
765 //------------------------------------------------------------------------------
stripRules(const UnicodeString & rules)766 UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) {
767 UnicodeString strippedRules;
768 int rulesLength = rules.length();
769 for (int idx = 0; idx < rulesLength; ) {
770 UChar ch = rules[idx++];
771 if (ch == chPound) {
772 while (idx < rulesLength
773 && ch != chCR && ch != chLF && ch != chNEL)
774 {
775 ch = rules[idx++];
776 }
777 }
778 if (!u_isISOControl(ch)) {
779 strippedRules.append(ch);
780 }
781 }
782 // strippedRules = strippedRules.unescape();
783 return strippedRules;
784 }
785
786
787 //------------------------------------------------------------------------------
788 //
789 // nextCharLL Low Level Next Char from rule input source.
790 // Get a char from the input character iterator,
791 // keep track of input position for error reporting.
792 //
793 //------------------------------------------------------------------------------
nextCharLL()794 UChar32 RBBIRuleScanner::nextCharLL() {
795 UChar32 ch;
796
797 if (fNextIndex >= fRB->fRules.length()) {
798 return (UChar32)-1;
799 }
800 ch = fRB->fRules.char32At(fNextIndex);
801 fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1);
802
803 if (ch == chCR ||
804 ch == chNEL ||
805 ch == chLS ||
806 (ch == chLF && fLastChar != chCR)) {
807 // Character is starting a new line. Bump up the line number, and
808 // reset the column to 0.
809 fLineNum++;
810 fCharNum=0;
811 if (fQuoteMode) {
812 error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
813 fQuoteMode = FALSE;
814 }
815 }
816 else {
817 // Character is not starting a new line. Except in the case of a
818 // LF following a CR, increment the column position.
819 if (ch != chLF) {
820 fCharNum++;
821 }
822 }
823 fLastChar = ch;
824 return ch;
825 }
826
827
828 //------------------------------------------------------------------------------
829 //
830 // nextChar for rules scanning. At this level, we handle stripping
831 // out comments and processing backslash character escapes.
832 // The rest of the rules grammar is handled at the next level up.
833 //
834 //------------------------------------------------------------------------------
nextChar(RBBIRuleChar & c)835 void RBBIRuleScanner::nextChar(RBBIRuleChar &c) {
836
837 // Unicode Character constants needed for the processing done by nextChar(),
838 // in hex because literals wont work on EBCDIC machines.
839
840 fScanIndex = fNextIndex;
841 c.fChar = nextCharLL();
842 c.fEscaped = FALSE;
843
844 //
845 // check for '' sequence.
846 // These are recognized in all contexts, whether in quoted text or not.
847 //
848 if (c.fChar == chApos) {
849 if (fRB->fRules.char32At(fNextIndex) == chApos) {
850 c.fChar = nextCharLL(); // get nextChar officially so character counts
851 c.fEscaped = TRUE; // stay correct.
852 }
853 else
854 {
855 // Single quote, by itself.
856 // Toggle quoting mode.
857 // Return either '(' or ')', because quotes cause a grouping of the quoted text.
858 fQuoteMode = !fQuoteMode;
859 if (fQuoteMode == TRUE) {
860 c.fChar = chLParen;
861 } else {
862 c.fChar = chRParen;
863 }
864 c.fEscaped = FALSE; // The paren that we return is not escaped.
865 return;
866 }
867 }
868
869 if (fQuoteMode) {
870 c.fEscaped = TRUE;
871 }
872 else
873 {
874 // We are not in a 'quoted region' of the source.
875 //
876 if (c.fChar == chPound) {
877 // Start of a comment. Consume the rest of it.
878 // The new-line char that terminates the comment is always returned.
879 // It will be treated as white-space, and serves to break up anything
880 // that might otherwise incorrectly clump together with a comment in
881 // the middle (a variable name, for example.)
882 for (;;) {
883 c.fChar = nextCharLL();
884 if (c.fChar == (UChar32)-1 || // EOF
885 c.fChar == chCR ||
886 c.fChar == chLF ||
887 c.fChar == chNEL ||
888 c.fChar == chLS) {break;}
889 }
890 }
891 if (c.fChar == (UChar32)-1) {
892 return;
893 }
894
895 //
896 // check for backslash escaped characters.
897 // Use UnicodeString::unescapeAt() to handle them.
898 //
899 if (c.fChar == chBackSlash) {
900 c.fEscaped = TRUE;
901 int32_t startX = fNextIndex;
902 c.fChar = fRB->fRules.unescapeAt(fNextIndex);
903 if (fNextIndex == startX) {
904 error(U_BRK_HEX_DIGITS_EXPECTED);
905 }
906 fCharNum += fNextIndex-startX;
907 }
908 }
909 // putc(c.fChar, stdout);
910 }
911
912 //------------------------------------------------------------------------------
913 //
914 // Parse RBBI rules. The state machine for rules parsing is here.
915 // The state tables are hand-written in the file rbbirpt.txt,
916 // and converted to the form used here by a perl
917 // script rbbicst.pl
918 //
919 //------------------------------------------------------------------------------
parse()920 void RBBIRuleScanner::parse() {
921 uint16_t state;
922 const RBBIRuleTableEl *tableEl;
923
924 if (U_FAILURE(*fRB->fStatus)) {
925 return;
926 }
927
928 state = 1;
929 nextChar(fC);
930 //
931 // Main loop for the rule parsing state machine.
932 // Runs once per state transition.
933 // Each time through optionally performs, depending on the state table,
934 // - an advance to the the next input char
935 // - an action to be performed.
936 // - pushing or popping a state to/from the local state return stack.
937 //
938 for (;;) {
939 // Bail out if anything has gone wrong.
940 // RBBI rule file parsing stops on the first error encountered.
941 if (U_FAILURE(*fRB->fStatus)) {
942 break;
943 }
944
945 // Quit if state == 0. This is the normal way to exit the state machine.
946 //
947 if (state == 0) {
948 break;
949 }
950
951 // Find the state table element that matches the input char from the rule, or the
952 // class of the input character. Start with the first table row for this
953 // state, then linearly scan forward until we find a row that matches the
954 // character. The last row for each state always matches all characters, so
955 // the search will stop there, if not before.
956 //
957 tableEl = &gRuleParseStateTable[state];
958 #ifdef RBBI_DEBUG
959 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) {
960 RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ",
961 fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]);
962 }
963 #endif
964
965 for (;;) {
966 #ifdef RBBI_DEBUG
967 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");}
968 #endif
969 if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) {
970 // Table row specified an individual character, not a set, and
971 // the input character is not escaped, and
972 // the input character matched it.
973 break;
974 }
975 if (tableEl->fCharClass == 255) {
976 // Table row specified default, match anything character class.
977 break;
978 }
979 if (tableEl->fCharClass == 254 && fC.fEscaped) {
980 // Table row specified "escaped" and the char was escaped.
981 break;
982 }
983 if (tableEl->fCharClass == 253 && fC.fEscaped &&
984 (fC.fChar == 0x50 || fC.fChar == 0x70 )) {
985 // Table row specified "escaped P" and the char is either 'p' or 'P'.
986 break;
987 }
988 if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) {
989 // Table row specified eof and we hit eof on the input.
990 break;
991 }
992
993 if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
994 fC.fEscaped == FALSE && // char is not escaped &&
995 fC.fChar != (UChar32)-1) { // char is not EOF
996 U_ASSERT((tableEl->fCharClass-128) < LENGTHOF(fRuleSets));
997 if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
998 // Table row specified a character class, or set of characters,
999 // and the current char matches it.
1000 break;
1001 }
1002 }
1003
1004 // No match on this row, advance to the next row for this state,
1005 tableEl++;
1006 }
1007 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");}
1008
1009 //
1010 // We've found the row of the state table that matches the current input
1011 // character from the rules string.
1012 // Perform any action specified by this row in the state table.
1013 if (doParseActions((int32_t)tableEl->fAction) == FALSE) {
1014 // Break out of the state machine loop if the
1015 // the action signalled some kind of error, or
1016 // the action was to exit, occurs on normal end-of-rules-input.
1017 break;
1018 }
1019
1020 if (tableEl->fPushState != 0) {
1021 fStackPtr++;
1022 if (fStackPtr >= kStackSize) {
1023 error(U_BRK_INTERNAL_ERROR);
1024 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow.");
1025 fStackPtr--;
1026 }
1027 fStack[fStackPtr] = tableEl->fPushState;
1028 }
1029
1030 if (tableEl->fNextChar) {
1031 nextChar(fC);
1032 }
1033
1034 // Get the next state from the table entry, or from the
1035 // state stack if the next state was specified as "pop".
1036 if (tableEl->fNextState != 255) {
1037 state = tableEl->fNextState;
1038 } else {
1039 state = fStack[fStackPtr];
1040 fStackPtr--;
1041 if (fStackPtr < 0) {
1042 error(U_BRK_INTERNAL_ERROR);
1043 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow.");
1044 fStackPtr++;
1045 }
1046 }
1047
1048 }
1049
1050 //
1051 // If there were NO user specified reverse rules, set up the equivalent of ".*;"
1052 //
1053 if (fRB->fReverseTree == NULL) {
1054 fRB->fReverseTree = pushNewNode(RBBINode::opStar);
1055 RBBINode *operand = pushNewNode(RBBINode::setRef);
1056 findSetFor(UnicodeString(TRUE, kAny, 3), operand);
1057 fRB->fReverseTree->fLeftChild = operand;
1058 operand->fParent = fRB->fReverseTree;
1059 fNodeStackPtr -= 2;
1060 }
1061
1062
1063 //
1064 // Parsing of the input RBBI rules is complete.
1065 // We now have a parse tree for the rule expressions
1066 // and a list of all UnicodeSets that are referenced.
1067 //
1068 #ifdef RBBI_DEBUG
1069 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();}
1070 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree"))
1071 {
1072 RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n");
1073 fRB->fForwardTree->printTree(TRUE);
1074 RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n");
1075 fRB->fReverseTree->printTree(TRUE);
1076 RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n");
1077 fRB->fSafeFwdTree->printTree(TRUE);
1078 RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n");
1079 fRB->fSafeRevTree->printTree(TRUE);
1080 }
1081 #endif
1082 }
1083
1084
1085 //------------------------------------------------------------------------------
1086 //
1087 // printNodeStack for debugging...
1088 //
1089 //------------------------------------------------------------------------------
1090 #ifdef RBBI_DEBUG
printNodeStack(const char * title)1091 void RBBIRuleScanner::printNodeStack(const char *title) {
1092 int i;
1093 RBBIDebugPrintf("%s. Dumping node stack...\n", title);
1094 for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);}
1095 }
1096 #endif
1097
1098
1099
1100
1101 //------------------------------------------------------------------------------
1102 //
1103 // pushNewNode create a new RBBINode of the specified type and push it
1104 // onto the stack of nodes.
1105 //
1106 //------------------------------------------------------------------------------
pushNewNode(RBBINode::NodeType t)1107 RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) {
1108 fNodeStackPtr++;
1109 if (fNodeStackPtr >= kStackSize) {
1110 error(U_BRK_INTERNAL_ERROR);
1111 RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow.");
1112 *fRB->fStatus = U_BRK_INTERNAL_ERROR;
1113 return NULL;
1114 }
1115 fNodeStack[fNodeStackPtr] = new RBBINode(t);
1116 if (fNodeStack[fNodeStackPtr] == NULL) {
1117 *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR;
1118 }
1119 return fNodeStack[fNodeStackPtr];
1120 }
1121
1122
1123
1124 //------------------------------------------------------------------------------
1125 //
1126 // scanSet Construct a UnicodeSet from the text at the current scan
1127 // position. Advance the scan position to the first character
1128 // after the set.
1129 //
1130 // A new RBBI setref node referring to the set is pushed onto the node
1131 // stack.
1132 //
1133 // The scan position is normally under the control of the state machine
1134 // that controls rule parsing. UnicodeSets, however, are parsed by
1135 // the UnicodeSet constructor, not by the RBBI rule parser.
1136 //
1137 //------------------------------------------------------------------------------
scanSet()1138 void RBBIRuleScanner::scanSet() {
1139 UnicodeSet *uset;
1140 ParsePosition pos;
1141 int startPos;
1142 int i;
1143
1144 if (U_FAILURE(*fRB->fStatus)) {
1145 return;
1146 }
1147
1148 pos.setIndex(fScanIndex);
1149 startPos = fScanIndex;
1150 UErrorCode localStatus = U_ZERO_ERROR;
1151 uset = new UnicodeSet();
1152 if (uset == NULL) {
1153 localStatus = U_MEMORY_ALLOCATION_ERROR;
1154 } else {
1155 uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus);
1156 }
1157 if (U_FAILURE(localStatus)) {
1158 // TODO: Get more accurate position of the error from UnicodeSet's return info.
1159 // UnicodeSet appears to not be reporting correctly at this time.
1160 #ifdef RBBI_DEBUG
1161 RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
1162 #endif
1163 error(localStatus);
1164 delete uset;
1165 return;
1166 }
1167
1168 // Verify that the set contains at least one code point.
1169 //
1170 U_ASSERT(uset!=NULL);
1171 if (uset->isEmpty()) {
1172 // This set is empty.
1173 // Make it an error, because it almost certainly is not what the user wanted.
1174 // Also, avoids having to think about corner cases in the tree manipulation code
1175 // that occurs later on.
1176 error(U_BRK_RULE_EMPTY_SET);
1177 delete uset;
1178 return;
1179 }
1180
1181
1182 // Advance the RBBI parse postion over the UnicodeSet pattern.
1183 // Don't just set fScanIndex because the line/char positions maintained
1184 // for error reporting would be thrown off.
1185 i = pos.getIndex();
1186 for (;;) {
1187 if (fNextIndex >= i) {
1188 break;
1189 }
1190 nextCharLL();
1191 }
1192
1193 if (U_SUCCESS(*fRB->fStatus)) {
1194 RBBINode *n;
1195
1196 n = pushNewNode(RBBINode::setRef);
1197 n->fFirstPos = startPos;
1198 n->fLastPos = fNextIndex;
1199 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
1200 // findSetFor() serves several purposes here:
1201 // - Adopts storage for the UnicodeSet, will be responsible for deleting.
1202 // - Mantains collection of all sets in use, needed later for establishing
1203 // character categories for run time engine.
1204 // - Eliminates mulitiple instances of the same set.
1205 // - Creates a new uset node if necessary (if this isn't a duplicate.)
1206 findSetFor(n->fText, n, uset);
1207 }
1208
1209 }
1210
1211 U_NAMESPACE_END
1212
1213 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1214