1 /*
2 ******************************************************************************
3 *
4 * Copyright (C) 2000-2012, International Business Machines
5 * Corporation and others. All Rights Reserved.
6 *
7 ******************************************************************************
8 * file name: ucnvmbcs.c
9 * encoding: US-ASCII
10 * tab size: 8 (not used)
11 * indentation:4
12 *
13 * created on: 2000jul03
14 * created by: Markus W. Scherer
15 *
16 * The current code in this file replaces the previous implementation
17 * of conversion code from multi-byte codepages to Unicode and back.
18 * This implementation supports the following:
19 * - legacy variable-length codepages with up to 4 bytes per character
20 * - all Unicode code points (up to 0x10ffff)
21 * - efficient distinction of unassigned vs. illegal byte sequences
22 * - it is possible in fromUnicode() to directly deal with simple
23 * stateful encodings (used for EBCDIC_STATEFUL)
24 * - it is possible to convert Unicode code points
25 * to a single zero byte (but not as a fallback except for SBCS)
26 *
27 * Remaining limitations in fromUnicode:
28 * - byte sequences must not have leading zero bytes
29 * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
30 * - limitation to up to 4 bytes per character
31 *
32 * ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
33 * limitations and adds m:n character mappings and other features.
34 * See ucnv_ext.h for details.
35 *
36 * Change history:
37 *
38 * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
39 * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
40 * macros to ucnvmbcs.h file
41 */
42
43 #include "unicode/utypes.h"
44
45 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
46
47 #include "unicode/ucnv.h"
48 #include "unicode/ucnv_cb.h"
49 #include "unicode/udata.h"
50 #include "unicode/uset.h"
51 #include "unicode/utf8.h"
52 #include "unicode/utf16.h"
53 #include "ucnv_bld.h"
54 #include "ucnvmbcs.h"
55 #include "ucnv_ext.h"
56 #include "ucnv_cnv.h"
57 #include "cmemory.h"
58 #include "cstring.h"
59 #include "umutex.h"
60
61 /* control optimizations according to the platform */
62 #define MBCS_UNROLL_SINGLE_TO_BMP 1
63 #define MBCS_UNROLL_SINGLE_FROM_BMP 0
64
65 /*
66 * _MBCSHeader versions 5.3 & 4.3
67 * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
68 *
69 * This version is optional. Version 5 is used for incompatible data format changes.
70 * makeconv will continue to generate version 4 files if possible.
71 *
72 * Changes from version 4:
73 *
74 * The main difference is an additional _MBCSHeader field with
75 * - the length (number of uint32_t) of the _MBCSHeader
76 * - flags for further incompatible data format changes
77 * - flags for further, backward compatible data format changes
78 *
79 * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
80 * the file and needs to be reconstituted at load time.
81 * This requires a utf8Friendly format with an additional mbcsIndex table for fast
82 * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
83 * (For details about these structures see below, and see ucnvmbcs.h.)
84 *
85 * utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
86 * of the Unicode code points. (This requires that the .ucm file has the |0 etc.
87 * precision markers for all mappings.)
88 *
89 * All fallbacks have been moved to the extension table, leaving only roundtrips in the
90 * omitted data that can be reconstituted from the toUnicode data.
91 *
92 * Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
93 * With only roundtrip mappings in the base fromUnicode data, this part is fully
94 * redundant with the mbcsIndex and will be reconstituted from that (also using the
95 * stage 1 table which contains the information about how stage 2 was compacted).
96 *
97 * The rest of the stage 2 table, the part for code points above maxFastUChar,
98 * is stored in the file and will be appended to the reconstituted part.
99 *
100 * The entire fromUBytes array is omitted from the file and will be reconstitued.
101 * This is done by enumerating all toUnicode roundtrip mappings, performing
102 * each mapping (using the stage 1 and reconstituted stage 2 tables) and
103 * writing instead of reading the byte values.
104 *
105 * _MBCSHeader version 4.3
106 *
107 * Change from version 4.2:
108 * - Optional utf8Friendly data structures, with 64-entry stage 3 block
109 * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
110 * files which can be used instead of stages 1 & 2.
111 * Faster lookups for roundtrips from most commonly used characters,
112 * and lookups from UTF-8 byte sequences with a natural bit distribution.
113 * See ucnvmbcs.h for more details.
114 *
115 * Change from version 4.1:
116 * - Added an optional extension table structure at the end of the .cnv file.
117 * It is present if the upper bits of the header flags field contains a non-zero
118 * byte offset to it.
119 * Files that contain only a conversion table and no base table
120 * use the special outputType MBCS_OUTPUT_EXT_ONLY.
121 * These contain the base table name between the MBCS header and the extension
122 * data.
123 *
124 * Change from version 4.0:
125 * - Replace header.reserved with header.fromUBytesLength so that all
126 * fields in the data have length.
127 *
128 * Changes from version 3 (for performance improvements):
129 * - new bit distribution for state table entries
130 * - reordered action codes
131 * - new data structure for single-byte fromUnicode
132 * + stage 2 only contains indexes
133 * + stage 3 stores 16 bits per character with classification bits 15..8
134 * - no multiplier for stage 1 entries
135 * - stage 2 for non-single-byte codepages contains the index and the flags in
136 * one 32-bit value
137 * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
138 *
139 * For more details about old versions of the MBCS data structure, see
140 * the corresponding versions of this file.
141 *
142 * Converting stateless codepage data ---------------------------------------***
143 * (or codepage data with simple states) to Unicode.
144 *
145 * Data structure and algorithm for converting from complex legacy codepages
146 * to Unicode. (Designed before 2000-may-22.)
147 *
148 * The basic idea is that the structure of legacy codepages can be described
149 * with state tables.
150 * When reading a byte stream, each input byte causes a state transition.
151 * Some transitions result in the output of a code point, some result in
152 * "unassigned" or "illegal" output.
153 * This is used here for character conversion.
154 *
155 * The data structure begins with a state table consisting of a row
156 * per state, with 256 entries (columns) per row for each possible input
157 * byte value.
158 * Each entry is 32 bits wide, with two formats distinguished by
159 * the sign bit (bit 31):
160 *
161 * One format for transitional entries (bit 31 not set) for non-final bytes, and
162 * one format for final entries (bit 31 set).
163 * Both formats contain the number of the next state in the same bit
164 * positions.
165 * State 0 is the initial state.
166 *
167 * Most of the time, the offset values of subsequent states are added
168 * up to a scalar value. This value will eventually be the index of
169 * the Unicode code point in a table that follows the state table.
170 * The effect is that the code points for final state table rows
171 * are contiguous. The code points of final state rows follow each other
172 * in the order of the references to those final states by previous
173 * states, etc.
174 *
175 * For some terminal states, the offset is itself the output Unicode
176 * code point (16 bits for a BMP code point or 20 bits for a supplementary
177 * code point (stored as code point minus 0x10000 so that 20 bits are enough).
178 * For others, the code point in the Unicode table is stored with either
179 * one or two code units: one for BMP code points, two for a pair of
180 * surrogates.
181 * All code points for a final state entry take up the same number of code
182 * units, regardless of whether they all actually _use_ the same number
183 * of code units. This is necessary for simple array access.
184 *
185 * An additional feature comes in with what in ICU is called "fallback"
186 * mappings:
187 *
188 * In addition to round-trippable, precise, 1:1 mappings, there are often
189 * mappings defined between similar, though not the same, characters.
190 * Typically, such mappings occur only in fromUnicode mapping tables because
191 * Unicode has a superset repertoire of most other codepages. However, it
192 * is possible to provide such mappings in the toUnicode tables, too.
193 * In this case, the fallback mappings are partly integrated into the
194 * general state tables because the structure of the encoding includes their
195 * byte sequences.
196 * For final entries in an initial state, fallback mappings are stored in
197 * the entry itself like with roundtrip mappings.
198 * For other final entries, they are stored in the code units table if
199 * the entry is for a pair of code units.
200 * For single-unit results in the code units table, there is no space to
201 * alternatively hold a fallback mapping; in this case, the code unit
202 * is stored as U+fffe (unassigned), and the fallback mapping needs to
203 * be looked up by the scalar offset value in a separate table.
204 *
205 * "Unassigned" state entries really mean "structurally unassigned",
206 * i.e., such a byte sequence will never have a mapping result.
207 *
208 * The interpretation of the bits in each entry is as follows:
209 *
210 * Bit 31 not set, not a terminal entry ("transitional"):
211 * 30..24 next state
212 * 23..0 offset delta, to be added up
213 *
214 * Bit 31 set, terminal ("final") entry:
215 * 30..24 next state (regardless of action code)
216 * 23..20 action code:
217 * action codes 0 and 1 result in precise-mapping Unicode code points
218 * 0 valid byte sequence
219 * 19..16 not used, 0
220 * 15..0 16-bit Unicode BMP code point
221 * never U+fffe or U+ffff
222 * 1 valid byte sequence
223 * 19..0 20-bit Unicode supplementary code point
224 * never U+fffe or U+ffff
225 *
226 * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
227 * 2 valid byte sequence (fallback)
228 * 19..16 not used, 0
229 * 15..0 16-bit Unicode BMP code point as fallback result
230 * 3 valid byte sequence (fallback)
231 * 19..0 20-bit Unicode supplementary code point as fallback result
232 *
233 * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
234 * depending on the code units they result in
235 * 4 valid byte sequence
236 * 19..9 not used, 0
237 * 8..0 final offset delta
238 * pointing to one 16-bit code unit which may be
239 * fffe unassigned -- look for a fallback for this offset
240 * ffff illegal
241 * 5 valid byte sequence
242 * 19..9 not used, 0
243 * 8..0 final offset delta
244 * pointing to two 16-bit code units
245 * (typically UTF-16 surrogates)
246 * the result depends on the first code unit as follows:
247 * 0000..d7ff roundtrip BMP code point (1st alone)
248 * d800..dbff roundtrip surrogate pair (1st, 2nd)
249 * dc00..dfff fallback surrogate pair (1st-400, 2nd)
250 * e000 roundtrip BMP code point (2nd alone)
251 * e001 fallback BMP code point (2nd alone)
252 * fffe unassigned
253 * ffff illegal
254 * (the final offset deltas are at most 255 * 2,
255 * times 2 because of storing code unit pairs)
256 *
257 * 6 unassigned byte sequence
258 * 19..16 not used, 0
259 * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2)
260 * this does not contain a final offset delta because the main
261 * purpose of this action code is to save scalar offset values;
262 * therefore, fallback values cannot be assigned to byte
263 * sequences that result in this action code
264 * 7 illegal byte sequence
265 * 19..16 not used, 0
266 * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2)
267 * 8 state change only
268 * 19..0 not used, 0
269 * useful for state changes in simple stateful encodings,
270 * at Shift-In/Shift-Out codes
271 *
272 *
273 * 9..15 reserved for future use
274 * current implementations will only perform a state change
275 * and ignore bits 19..0
276 *
277 * An encoding with contiguous ranges of unassigned byte sequences, like
278 * Shift-JIS and especially EUC-TW, can be stored efficiently by having
279 * at least two states for the trail bytes:
280 * One trail byte state that results in code points, and one that only
281 * has "unassigned" and "illegal" terminal states.
282 *
283 * Note: partly by accident, this data structure supports simple stateful
284 * encodings without any additional logic.
285 * Currently, only simple Shift-In/Shift-Out schemes are handled with
286 * appropriate state tables (especially EBCDIC_STATEFUL!).
287 *
288 * MBCS version 2 added:
289 * unassigned and illegal action codes have U+fffe and U+ffff
290 * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
291 *
292 * Converting from Unicode to codepage bytes --------------------------------***
293 *
294 * The conversion data structure for fromUnicode is designed for the known
295 * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
296 * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
297 * a roundtrip mapping.
298 *
299 * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
300 * like in the character properties table.
301 * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
302 * with the resulting bytes is at offsetFromUBytes.
303 *
304 * Beginning with version 4, single-byte codepages have a significantly different
305 * trie compared to other codepages.
306 * In all cases, the entry in stage 1 is directly the index of the block of
307 * 64 entries in stage 2.
308 *
309 * Single-byte lookup:
310 *
311 * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
312 * Stage 3 contains one 16-bit word per result:
313 * Bits 15..8 indicate the kind of result:
314 * f roundtrip result
315 * c fallback result from private-use code point
316 * 8 fallback result from other code points
317 * 0 unassigned
318 * Bits 7..0 contain the codepage byte. A zero byte is always possible.
319 *
320 * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
321 * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
322 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
323 * ASCII code points can be looked up with a linear array access into stage 3.
324 * See maxFastUChar and other details in ucnvmbcs.h.
325 *
326 * Multi-byte lookup:
327 *
328 * Stage 2 contains a 32-bit word for each 16-block in stage 3:
329 * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
330 * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
331 * If this test is false, then a non-zero result will be interpreted as
332 * a fallback mapping.
333 * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char)
334 *
335 * Stage 3 contains 2, 3, or 4 bytes per result.
336 * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
337 * while 3 bytes are stored as bytes in big-endian order.
338 * Leading zero bytes are ignored, and the number of bytes is counted.
339 * A zero byte mapping result is possible as a roundtrip result.
340 * For some output types, the actual result is processed from this;
341 * see ucnv_MBCSFromUnicodeWithOffsets().
342 *
343 * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
344 * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
345 *
346 * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
347 * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
348 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
349 * ASCII code points can be looked up with a linear array access into stage 3.
350 * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
351 *
352 * In version 3, stage 2 blocks may overlap by multiples of the multiplier
353 * for compaction.
354 * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
355 * may overlap by any number of entries.
356 *
357 * MBCS version 2 added:
358 * the converter checks for known output types, which allows
359 * adding new ones without crashing an unaware converter
360 */
361
362 static const UConverterImpl _SBCSUTF8Impl;
363 static const UConverterImpl _DBCSUTF8Impl;
364
365 /* GB 18030 data ------------------------------------------------------------ */
366
367 /* helper macros for linear values for GB 18030 four-byte sequences */
368 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
369
370 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
371
372 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
373
374 /*
375 * Some ranges of GB 18030 where both the Unicode code points and the
376 * GB four-byte sequences are contiguous and are handled algorithmically by
377 * the special callback functions below.
378 * The values are start & end of Unicode & GB codes.
379 *
380 * Note that single surrogates are not mapped by GB 18030
381 * as of the re-released mapping tables from 2000-nov-30.
382 */
383 static const uint32_t
384 gb18030Ranges[14][4]={
385 {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
386 {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
387 {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
388 {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
389 {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
390 {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
391 {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
392 {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
393 {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
394 {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
395 {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
396 {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
397 {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
398 {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
399 };
400
401 /* bit flag for UConverter.options indicating GB 18030 special handling */
402 #define _MBCS_OPTION_GB18030 0x8000
403
404 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
405 #define _MBCS_OPTION_KEIS 0x01000
406 #define _MBCS_OPTION_JEF 0x02000
407 #define _MBCS_OPTION_JIPS 0x04000
408
409 #define KEIS_SO_CHAR_1 0x0A
410 #define KEIS_SO_CHAR_2 0x42
411 #define KEIS_SI_CHAR_1 0x0A
412 #define KEIS_SI_CHAR_2 0x41
413
414 #define JEF_SO_CHAR 0x28
415 #define JEF_SI_CHAR 0x29
416
417 #define JIPS_SO_CHAR_1 0x1A
418 #define JIPS_SO_CHAR_2 0x70
419 #define JIPS_SI_CHAR_1 0x1A
420 #define JIPS_SI_CHAR_2 0x71
421
422 enum SISO_Option {
423 SI,
424 SO
425 };
426 typedef enum SISO_Option SISO_Option;
427
getSISOBytes(SISO_Option option,uint32_t cnvOption,uint8_t * value)428 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
429 int32_t SISOLength = 0;
430
431 switch (option) {
432 case SI:
433 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
434 value[0] = KEIS_SI_CHAR_1;
435 value[1] = KEIS_SI_CHAR_2;
436 SISOLength = 2;
437 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
438 value[0] = JEF_SI_CHAR;
439 SISOLength = 1;
440 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
441 value[0] = JIPS_SI_CHAR_1;
442 value[1] = JIPS_SI_CHAR_2;
443 SISOLength = 2;
444 } else {
445 value[0] = UCNV_SI;
446 SISOLength = 1;
447 }
448 break;
449 case SO:
450 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
451 value[0] = KEIS_SO_CHAR_1;
452 value[1] = KEIS_SO_CHAR_2;
453 SISOLength = 2;
454 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
455 value[0] = JEF_SO_CHAR;
456 SISOLength = 1;
457 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
458 value[0] = JIPS_SO_CHAR_1;
459 value[1] = JIPS_SO_CHAR_2;
460 SISOLength = 2;
461 } else {
462 value[0] = UCNV_SO;
463 SISOLength = 1;
464 }
465 break;
466 default:
467 /* Should never happen. */
468 break;
469 }
470
471 return SISOLength;
472 }
473
474 /* Miscellaneous ------------------------------------------------------------ */
475
476 /**
477 * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
478 * consecutive sequences of bytes, starting from the one encoded in value,
479 * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
480 * Does not currently support m:n mappings or reverse fallbacks.
481 * This function will not be called for sequences of bytes with leading zeros.
482 *
483 * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
484 * @param value contains 1..4 bytes of the first byte sequence, right-aligned
485 * @param codePoints resulting Unicode code points, or negative if a byte sequence does
486 * not map to anything
487 * @return TRUE to continue enumeration, FALSE to stop
488 */
489 typedef UBool U_CALLCONV
490 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
491
492 /* similar to ucnv_MBCSGetNextUChar() but recursive */
493 static UBool
enumToU(UConverterMBCSTable * mbcsTable,int8_t stateProps[],int32_t state,uint32_t offset,uint32_t value,UConverterEnumToUCallback * callback,const void * context,UErrorCode * pErrorCode)494 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
495 int32_t state, uint32_t offset,
496 uint32_t value,
497 UConverterEnumToUCallback *callback, const void *context,
498 UErrorCode *pErrorCode) {
499 UChar32 codePoints[32];
500 const int32_t *row;
501 const uint16_t *unicodeCodeUnits;
502 UChar32 anyCodePoints;
503 int32_t b, limit;
504
505 row=mbcsTable->stateTable[state];
506 unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
507
508 value<<=8;
509 anyCodePoints=-1; /* becomes non-negative if there is a mapping */
510
511 b=(stateProps[state]&0x38)<<2;
512 if(b==0 && stateProps[state]>=0x40) {
513 /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
514 codePoints[0]=U_SENTINEL;
515 b=1;
516 }
517 limit=((stateProps[state]&7)+1)<<5;
518 while(b<limit) {
519 int32_t entry=row[b];
520 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
521 int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
522 if(stateProps[nextState]>=0) {
523 /* recurse to a state with non-ignorable actions */
524 if(!enumToU(
525 mbcsTable, stateProps, nextState,
526 offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
527 value|(uint32_t)b,
528 callback, context,
529 pErrorCode)) {
530 return FALSE;
531 }
532 }
533 codePoints[b&0x1f]=U_SENTINEL;
534 } else {
535 UChar32 c;
536 int32_t action;
537
538 /*
539 * An if-else-if chain provides more reliable performance for
540 * the most common cases compared to a switch.
541 */
542 action=MBCS_ENTRY_FINAL_ACTION(entry);
543 if(action==MBCS_STATE_VALID_DIRECT_16) {
544 /* output BMP code point */
545 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
546 } else if(action==MBCS_STATE_VALID_16) {
547 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
548 c=unicodeCodeUnits[finalOffset];
549 if(c<0xfffe) {
550 /* output BMP code point */
551 } else {
552 c=U_SENTINEL;
553 }
554 } else if(action==MBCS_STATE_VALID_16_PAIR) {
555 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
556 c=unicodeCodeUnits[finalOffset++];
557 if(c<0xd800) {
558 /* output BMP code point below 0xd800 */
559 } else if(c<=0xdbff) {
560 /* output roundtrip or fallback supplementary code point */
561 c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
562 } else if(c==0xe000) {
563 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
564 c=unicodeCodeUnits[finalOffset];
565 } else {
566 c=U_SENTINEL;
567 }
568 } else if(action==MBCS_STATE_VALID_DIRECT_20) {
569 /* output supplementary code point */
570 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
571 } else {
572 c=U_SENTINEL;
573 }
574
575 codePoints[b&0x1f]=c;
576 anyCodePoints&=c;
577 }
578 if(((++b)&0x1f)==0) {
579 if(anyCodePoints>=0) {
580 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
581 return FALSE;
582 }
583 anyCodePoints=-1;
584 }
585 }
586 }
587 return TRUE;
588 }
589
590 /*
591 * Only called if stateProps[state]==-1.
592 * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
593 * MBCS_STATE_CHANGE_ONLY.
594 */
595 static int8_t
getStateProp(const int32_t (* stateTable)[256],int8_t stateProps[],int state)596 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
597 const int32_t *row;
598 int32_t min, max, entry, nextState;
599
600 row=stateTable[state];
601 stateProps[state]=0;
602
603 /* find first non-ignorable state */
604 for(min=0;; ++min) {
605 entry=row[min];
606 nextState=MBCS_ENTRY_STATE(entry);
607 if(stateProps[nextState]==-1) {
608 getStateProp(stateTable, stateProps, nextState);
609 }
610 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
611 if(stateProps[nextState]>=0) {
612 break;
613 }
614 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
615 break;
616 }
617 if(min==0xff) {
618 stateProps[state]=-0x40; /* (int8_t)0xc0 */
619 return stateProps[state];
620 }
621 }
622 stateProps[state]|=(int8_t)((min>>5)<<3);
623
624 /* find last non-ignorable state */
625 for(max=0xff; min<max; --max) {
626 entry=row[max];
627 nextState=MBCS_ENTRY_STATE(entry);
628 if(stateProps[nextState]==-1) {
629 getStateProp(stateTable, stateProps, nextState);
630 }
631 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
632 if(stateProps[nextState]>=0) {
633 break;
634 }
635 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
636 break;
637 }
638 }
639 stateProps[state]|=(int8_t)(max>>5);
640
641 /* recurse further and collect direct-state information */
642 while(min<=max) {
643 entry=row[min];
644 nextState=MBCS_ENTRY_STATE(entry);
645 if(stateProps[nextState]==-1) {
646 getStateProp(stateTable, stateProps, nextState);
647 }
648 if(MBCS_ENTRY_IS_FINAL(entry)) {
649 stateProps[nextState]|=0x40;
650 if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
651 stateProps[state]|=0x40;
652 }
653 }
654 ++min;
655 }
656 return stateProps[state];
657 }
658
659 /*
660 * Internal function enumerating the toUnicode data of an MBCS converter.
661 * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
662 * table, but could also be used for a future ucnv_getUnicodeSet() option
663 * that includes reverse fallbacks (after updating this function's implementation).
664 * Currently only handles roundtrip mappings.
665 * Does not currently handle extensions.
666 */
667 static void
ucnv_MBCSEnumToUnicode(UConverterMBCSTable * mbcsTable,UConverterEnumToUCallback * callback,const void * context,UErrorCode * pErrorCode)668 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
669 UConverterEnumToUCallback *callback, const void *context,
670 UErrorCode *pErrorCode) {
671 /*
672 * Properties for each state, to speed up the enumeration.
673 * Ignorable actions are unassigned/illegal/state-change-only:
674 * They do not lead to mappings.
675 *
676 * Bits 7..6:
677 * 1 direct/initial state (stateful converters have multiple)
678 * 0 non-initial state with transitions or with non-ignorable result actions
679 * -1 final state with only ignorable actions
680 *
681 * Bits 5..3:
682 * The lowest byte value with non-ignorable actions is
683 * value<<5 (rounded down).
684 *
685 * Bits 2..0:
686 * The highest byte value with non-ignorable actions is
687 * (value<<5)&0x1f (rounded up).
688 */
689 int8_t stateProps[MBCS_MAX_STATE_COUNT];
690 int32_t state;
691
692 uprv_memset(stateProps, -1, sizeof(stateProps));
693
694 /* recurse from state 0 and set all stateProps */
695 getStateProp(mbcsTable->stateTable, stateProps, 0);
696
697 for(state=0; state<mbcsTable->countStates; ++state) {
698 /*if(stateProps[state]==-1) {
699 printf("unused/unreachable <icu:state> %d\n", state);
700 }*/
701 if(stateProps[state]>=0x40) {
702 /* start from each direct state */
703 enumToU(
704 mbcsTable, stateProps, state, 0, 0,
705 callback, context,
706 pErrorCode);
707 }
708 }
709 }
710
711 U_CFUNC void
ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData * sharedData,const USetAdder * sa,UConverterUnicodeSet which,UConverterSetFilter filter,UErrorCode * pErrorCode)712 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
713 const USetAdder *sa,
714 UConverterUnicodeSet which,
715 UConverterSetFilter filter,
716 UErrorCode *pErrorCode) {
717 const UConverterMBCSTable *mbcsTable;
718 const uint16_t *table;
719
720 uint32_t st3;
721 uint16_t st1, maxStage1, st2;
722
723 UChar32 c;
724
725 /* enumerate the from-Unicode trie table */
726 mbcsTable=&sharedData->mbcs;
727 table=mbcsTable->fromUnicodeTable;
728 if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
729 maxStage1=0x440;
730 } else {
731 maxStage1=0x40;
732 }
733
734 c=0; /* keep track of the current code point while enumerating */
735
736 if(mbcsTable->outputType==MBCS_OUTPUT_1) {
737 const uint16_t *stage2, *stage3, *results;
738 uint16_t minValue;
739
740 results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
741
742 /*
743 * Set a threshold variable for selecting which mappings to use.
744 * See ucnv_MBCSSingleFromBMPWithOffsets() and
745 * MBCS_SINGLE_RESULT_FROM_U() for details.
746 */
747 if(which==UCNV_ROUNDTRIP_SET) {
748 /* use only roundtrips */
749 minValue=0xf00;
750 } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
751 /* use all roundtrip and fallback results */
752 minValue=0x800;
753 }
754
755 for(st1=0; st1<maxStage1; ++st1) {
756 st2=table[st1];
757 if(st2>maxStage1) {
758 stage2=table+st2;
759 for(st2=0; st2<64; ++st2) {
760 if((st3=stage2[st2])!=0) {
761 /* read the stage 3 block */
762 stage3=results+st3;
763
764 do {
765 if(*stage3++>=minValue) {
766 sa->add(sa->set, c);
767 }
768 } while((++c&0xf)!=0);
769 } else {
770 c+=16; /* empty stage 3 block */
771 }
772 }
773 } else {
774 c+=1024; /* empty stage 2 block */
775 }
776 }
777 } else {
778 const uint32_t *stage2;
779 const uint8_t *stage3, *bytes;
780 uint32_t st3Multiplier;
781 uint32_t value;
782 UBool useFallback;
783
784 bytes=mbcsTable->fromUnicodeBytes;
785
786 useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
787
788 switch(mbcsTable->outputType) {
789 case MBCS_OUTPUT_3:
790 case MBCS_OUTPUT_4_EUC:
791 st3Multiplier=3;
792 break;
793 case MBCS_OUTPUT_4:
794 st3Multiplier=4;
795 break;
796 default:
797 st3Multiplier=2;
798 break;
799 }
800
801 for(st1=0; st1<maxStage1; ++st1) {
802 st2=table[st1];
803 if(st2>(maxStage1>>1)) {
804 stage2=(const uint32_t *)table+st2;
805 for(st2=0; st2<64; ++st2) {
806 if((st3=stage2[st2])!=0) {
807 /* read the stage 3 block */
808 stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
809
810 /* get the roundtrip flags for the stage 3 block */
811 st3>>=16;
812
813 /*
814 * Add code points for which the roundtrip flag is set,
815 * or which map to non-zero bytes if we use fallbacks.
816 * See ucnv_MBCSFromUnicodeWithOffsets() for details.
817 */
818 switch(filter) {
819 case UCNV_SET_FILTER_NONE:
820 do {
821 if(st3&1) {
822 sa->add(sa->set, c);
823 stage3+=st3Multiplier;
824 } else if(useFallback) {
825 uint8_t b=0;
826 switch(st3Multiplier) {
827 case 4:
828 b|=*stage3++;
829 case 3: /*fall through*/
830 b|=*stage3++;
831 case 2: /*fall through*/
832 b|=stage3[0]|stage3[1];
833 stage3+=2;
834 default:
835 break;
836 }
837 if(b!=0) {
838 sa->add(sa->set, c);
839 }
840 }
841 st3>>=1;
842 } while((++c&0xf)!=0);
843 break;
844 case UCNV_SET_FILTER_DBCS_ONLY:
845 /* Ignore single-byte results (<0x100). */
846 do {
847 if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
848 sa->add(sa->set, c);
849 }
850 st3>>=1;
851 stage3+=2; /* +=st3Multiplier */
852 } while((++c&0xf)!=0);
853 break;
854 case UCNV_SET_FILTER_2022_CN:
855 /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
856 do {
857 if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
858 sa->add(sa->set, c);
859 }
860 st3>>=1;
861 stage3+=3; /* +=st3Multiplier */
862 } while((++c&0xf)!=0);
863 break;
864 case UCNV_SET_FILTER_SJIS:
865 /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
866 do {
867 if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
868 sa->add(sa->set, c);
869 }
870 st3>>=1;
871 stage3+=2; /* +=st3Multiplier */
872 } while((++c&0xf)!=0);
873 break;
874 case UCNV_SET_FILTER_GR94DBCS:
875 /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
876 do {
877 if( ((st3&1)!=0 || useFallback) &&
878 (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
879 (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
880 ) {
881 sa->add(sa->set, c);
882 }
883 st3>>=1;
884 stage3+=2; /* +=st3Multiplier */
885 } while((++c&0xf)!=0);
886 break;
887 case UCNV_SET_FILTER_HZ:
888 /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
889 do {
890 if( ((st3&1)!=0 || useFallback) &&
891 (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
892 (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
893 ) {
894 sa->add(sa->set, c);
895 }
896 st3>>=1;
897 stage3+=2; /* +=st3Multiplier */
898 } while((++c&0xf)!=0);
899 break;
900 default:
901 *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
902 return;
903 }
904 } else {
905 c+=16; /* empty stage 3 block */
906 }
907 }
908 } else {
909 c+=1024; /* empty stage 2 block */
910 }
911 }
912 }
913
914 ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
915 }
916
917 U_CFUNC void
ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData * sharedData,const USetAdder * sa,UConverterUnicodeSet which,UErrorCode * pErrorCode)918 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
919 const USetAdder *sa,
920 UConverterUnicodeSet which,
921 UErrorCode *pErrorCode) {
922 ucnv_MBCSGetFilteredUnicodeSetForUnicode(
923 sharedData, sa, which,
924 sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
925 UCNV_SET_FILTER_DBCS_ONLY :
926 UCNV_SET_FILTER_NONE,
927 pErrorCode);
928 }
929
930 static void
ucnv_MBCSGetUnicodeSet(const UConverter * cnv,const USetAdder * sa,UConverterUnicodeSet which,UErrorCode * pErrorCode)931 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
932 const USetAdder *sa,
933 UConverterUnicodeSet which,
934 UErrorCode *pErrorCode) {
935 if(cnv->options&_MBCS_OPTION_GB18030) {
936 sa->addRange(sa->set, 0, 0xd7ff);
937 sa->addRange(sa->set, 0xe000, 0x10ffff);
938 } else {
939 ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
940 }
941 }
942
943 /* conversion extensions for input not in the main table -------------------- */
944
945 /*
946 * Hardcoded extension handling for GB 18030.
947 * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
948 *
949 * In the future, conversion extensions may handle m:n mappings and delta tables,
950 * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html
951 *
952 * If an input character cannot be mapped, then these functions set an error
953 * code. The framework will then call the callback function.
954 */
955
956 /*
957 * @return if(U_FAILURE) return the code point for cnv->fromUChar32
958 * else return 0 after output has been written to the target
959 */
960 static UChar32
_extFromU(UConverter * cnv,const UConverterSharedData * sharedData,UChar32 cp,const UChar ** source,const UChar * sourceLimit,uint8_t ** target,const uint8_t * targetLimit,int32_t ** offsets,int32_t sourceIndex,UBool flush,UErrorCode * pErrorCode)961 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
962 UChar32 cp,
963 const UChar **source, const UChar *sourceLimit,
964 uint8_t **target, const uint8_t *targetLimit,
965 int32_t **offsets, int32_t sourceIndex,
966 UBool flush,
967 UErrorCode *pErrorCode) {
968 const int32_t *cx;
969
970 cnv->useSubChar1=FALSE;
971
972 if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
973 ucnv_extInitialMatchFromU(
974 cnv, cx,
975 cp, source, sourceLimit,
976 (char **)target, (char *)targetLimit,
977 offsets, sourceIndex,
978 flush,
979 pErrorCode)
980 ) {
981 return 0; /* an extension mapping handled the input */
982 }
983
984 /* GB 18030 */
985 if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
986 const uint32_t *range;
987 int32_t i;
988
989 range=gb18030Ranges[0];
990 for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) {
991 if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
992 /* found the Unicode code point, output the four-byte sequence for it */
993 uint32_t linear;
994 char bytes[4];
995
996 /* get the linear value of the first GB 18030 code in this range */
997 linear=range[2]-LINEAR_18030_BASE;
998
999 /* add the offset from the beginning of the range */
1000 linear+=((uint32_t)cp-range[0]);
1001
1002 /* turn this into a four-byte sequence */
1003 bytes[3]=(char)(0x30+linear%10); linear/=10;
1004 bytes[2]=(char)(0x81+linear%126); linear/=126;
1005 bytes[1]=(char)(0x30+linear%10); linear/=10;
1006 bytes[0]=(char)(0x81+linear);
1007
1008 /* output this sequence */
1009 ucnv_fromUWriteBytes(cnv,
1010 bytes, 4, (char **)target, (char *)targetLimit,
1011 offsets, sourceIndex, pErrorCode);
1012 return 0;
1013 }
1014 }
1015 }
1016
1017 /* no mapping */
1018 *pErrorCode=U_INVALID_CHAR_FOUND;
1019 return cp;
1020 }
1021
1022 /*
1023 * Input sequence: cnv->toUBytes[0..length[
1024 * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
1025 * else return 0 after output has been written to the target
1026 */
1027 static int8_t
_extToU(UConverter * cnv,const UConverterSharedData * sharedData,int8_t length,const uint8_t ** source,const uint8_t * sourceLimit,UChar ** target,const UChar * targetLimit,int32_t ** offsets,int32_t sourceIndex,UBool flush,UErrorCode * pErrorCode)1028 _extToU(UConverter *cnv, const UConverterSharedData *sharedData,
1029 int8_t length,
1030 const uint8_t **source, const uint8_t *sourceLimit,
1031 UChar **target, const UChar *targetLimit,
1032 int32_t **offsets, int32_t sourceIndex,
1033 UBool flush,
1034 UErrorCode *pErrorCode) {
1035 const int32_t *cx;
1036
1037 if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1038 ucnv_extInitialMatchToU(
1039 cnv, cx,
1040 length, (const char **)source, (const char *)sourceLimit,
1041 target, targetLimit,
1042 offsets, sourceIndex,
1043 flush,
1044 pErrorCode)
1045 ) {
1046 return 0; /* an extension mapping handled the input */
1047 }
1048
1049 /* GB 18030 */
1050 if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
1051 const uint32_t *range;
1052 uint32_t linear;
1053 int32_t i;
1054
1055 linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
1056 range=gb18030Ranges[0];
1057 for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) {
1058 if(range[2]<=linear && linear<=range[3]) {
1059 /* found the sequence, output the Unicode code point for it */
1060 *pErrorCode=U_ZERO_ERROR;
1061
1062 /* add the linear difference between the input and start sequences to the start code point */
1063 linear=range[0]+(linear-range[2]);
1064
1065 /* output this code point */
1066 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
1067
1068 return 0;
1069 }
1070 }
1071 }
1072
1073 /* no mapping */
1074 *pErrorCode=U_INVALID_CHAR_FOUND;
1075 return length;
1076 }
1077
1078 /* EBCDIC swap LF<->NL ------------------------------------------------------ */
1079
1080 /*
1081 * This code modifies a standard EBCDIC<->Unicode mapping table for
1082 * OS/390 (z/OS) Unix System Services (Open Edition).
1083 * The difference is in the mapping of Line Feed and New Line control codes:
1084 * Standard EBCDIC maps
1085 *
1086 * <U000A> \x25 |0
1087 * <U0085> \x15 |0
1088 *
1089 * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
1090 * mapping
1091 *
1092 * <U000A> \x15 |0
1093 * <U0085> \x25 |0
1094 *
1095 * This code modifies a loaded standard EBCDIC<->Unicode mapping table
1096 * by copying it into allocated memory and swapping the LF and NL values.
1097 * It allows to support the same EBCDIC charset in both versions without
1098 * duplicating the entire installed table.
1099 */
1100
1101 /* standard EBCDIC codes */
1102 #define EBCDIC_LF 0x25
1103 #define EBCDIC_NL 0x15
1104
1105 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
1106 #define EBCDIC_RT_LF 0xf25
1107 #define EBCDIC_RT_NL 0xf15
1108
1109 /* Unicode code points */
1110 #define U_LF 0x0a
1111 #define U_NL 0x85
1112
1113 static UBool
_EBCDICSwapLFNL(UConverterSharedData * sharedData,UErrorCode * pErrorCode)1114 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
1115 UConverterMBCSTable *mbcsTable;
1116
1117 const uint16_t *table, *results;
1118 const uint8_t *bytes;
1119
1120 int32_t (*newStateTable)[256];
1121 uint16_t *newResults;
1122 uint8_t *p;
1123 char *name;
1124
1125 uint32_t stage2Entry;
1126 uint32_t size, sizeofFromUBytes;
1127
1128 mbcsTable=&sharedData->mbcs;
1129
1130 table=mbcsTable->fromUnicodeTable;
1131 bytes=mbcsTable->fromUnicodeBytes;
1132 results=(const uint16_t *)bytes;
1133
1134 /*
1135 * Check that this is an EBCDIC table with SBCS portion -
1136 * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
1137 *
1138 * If not, ignore the option. Options are always ignored if they do not apply.
1139 */
1140 if(!(
1141 (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
1142 mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
1143 mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
1144 )) {
1145 return FALSE;
1146 }
1147
1148 if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1149 if(!(
1150 EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
1151 EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
1152 )) {
1153 return FALSE;
1154 }
1155 } else /* MBCS_OUTPUT_2_SISO */ {
1156 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1157 if(!(
1158 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
1159 EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
1160 )) {
1161 return FALSE;
1162 }
1163
1164 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1165 if(!(
1166 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
1167 EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
1168 )) {
1169 return FALSE;
1170 }
1171 }
1172
1173 if(mbcsTable->fromUBytesLength>0) {
1174 /*
1175 * We _know_ the number of bytes in the fromUnicodeBytes array
1176 * starting with header.version 4.1.
1177 */
1178 sizeofFromUBytes=mbcsTable->fromUBytesLength;
1179 } else {
1180 /*
1181 * Otherwise:
1182 * There used to be code to enumerate the fromUnicode
1183 * trie and find the highest entry, but it was removed in ICU 3.2
1184 * because it was not tested and caused a low code coverage number.
1185 * See Jitterbug 3674.
1186 * This affects only some .cnv file formats with a header.version
1187 * below 4.1, and only when swaplfnl is requested.
1188 *
1189 * ucnvmbcs.c revision 1.99 is the last one with the
1190 * ucnv_MBCSSizeofFromUBytes() function.
1191 */
1192 *pErrorCode=U_INVALID_FORMAT_ERROR;
1193 return FALSE;
1194 }
1195
1196 /*
1197 * The table has an appropriate format.
1198 * Allocate and build
1199 * - a modified to-Unicode state table
1200 * - a modified from-Unicode output array
1201 * - a converter name string with the swap option appended
1202 */
1203 size=
1204 mbcsTable->countStates*1024+
1205 sizeofFromUBytes+
1206 UCNV_MAX_CONVERTER_NAME_LENGTH+20;
1207 p=(uint8_t *)uprv_malloc(size);
1208 if(p==NULL) {
1209 *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1210 return FALSE;
1211 }
1212
1213 /* copy and modify the to-Unicode state table */
1214 newStateTable=(int32_t (*)[256])p;
1215 uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
1216
1217 newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
1218 newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
1219
1220 /* copy and modify the from-Unicode result table */
1221 newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
1222 uprv_memcpy(newResults, bytes, sizeofFromUBytes);
1223
1224 /* conveniently, the table access macros work on the left side of expressions */
1225 if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1226 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
1227 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
1228 } else /* MBCS_OUTPUT_2_SISO */ {
1229 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1230 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
1231
1232 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1233 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
1234 }
1235
1236 /* set the canonical converter name */
1237 name=(char *)newResults+sizeofFromUBytes;
1238 uprv_strcpy(name, sharedData->staticData->name);
1239 uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
1240
1241 /* set the pointers */
1242 umtx_lock(NULL);
1243 if(mbcsTable->swapLFNLStateTable==NULL) {
1244 mbcsTable->swapLFNLStateTable=newStateTable;
1245 mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
1246 mbcsTable->swapLFNLName=name;
1247
1248 newStateTable=NULL;
1249 }
1250 umtx_unlock(NULL);
1251
1252 /* release the allocated memory if another thread beat us to it */
1253 if(newStateTable!=NULL) {
1254 uprv_free(newStateTable);
1255 }
1256 return TRUE;
1257 }
1258
1259 /* reconstitute omitted fromUnicode data ------------------------------------ */
1260
1261 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
1262 static UBool U_CALLCONV
writeStage3Roundtrip(const void * context,uint32_t value,UChar32 codePoints[32])1263 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
1264 UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
1265 const uint16_t *table;
1266 uint32_t *stage2;
1267 uint8_t *bytes, *p;
1268 UChar32 c;
1269 int32_t i, st3;
1270
1271 table=mbcsTable->fromUnicodeTable;
1272 bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
1273
1274 /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
1275 switch(mbcsTable->outputType) {
1276 case MBCS_OUTPUT_3_EUC:
1277 if(value<=0xffff) {
1278 /* short sequences are stored directly */
1279 /* code set 0 or 1 */
1280 } else if(value<=0x8effff) {
1281 /* code set 2 */
1282 value&=0x7fff;
1283 } else /* first byte is 0x8f */ {
1284 /* code set 3 */
1285 value&=0xff7f;
1286 }
1287 break;
1288 case MBCS_OUTPUT_4_EUC:
1289 if(value<=0xffffff) {
1290 /* short sequences are stored directly */
1291 /* code set 0 or 1 */
1292 } else if(value<=0x8effffff) {
1293 /* code set 2 */
1294 value&=0x7fffff;
1295 } else /* first byte is 0x8f */ {
1296 /* code set 3 */
1297 value&=0xff7fff;
1298 }
1299 break;
1300 default:
1301 break;
1302 }
1303
1304 for(i=0; i<=0x1f; ++value, ++i) {
1305 c=codePoints[i];
1306 if(c<0) {
1307 continue;
1308 }
1309
1310 /* locate the stage 2 & 3 data */
1311 stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
1312 p=bytes;
1313 st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
1314
1315 /* write the codepage bytes into stage 3 */
1316 switch(mbcsTable->outputType) {
1317 case MBCS_OUTPUT_3:
1318 case MBCS_OUTPUT_4_EUC:
1319 p+=st3*3;
1320 p[0]=(uint8_t)(value>>16);
1321 p[1]=(uint8_t)(value>>8);
1322 p[2]=(uint8_t)value;
1323 break;
1324 case MBCS_OUTPUT_4:
1325 ((uint32_t *)p)[st3]=value;
1326 break;
1327 default:
1328 /* 2 bytes per character */
1329 ((uint16_t *)p)[st3]=(uint16_t)value;
1330 break;
1331 }
1332
1333 /* set the roundtrip flag */
1334 *stage2|=(1UL<<(16+(c&0xf)));
1335 }
1336 return TRUE;
1337 }
1338
1339 static void
reconstituteData(UConverterMBCSTable * mbcsTable,uint32_t stage1Length,uint32_t stage2Length,uint32_t fullStage2Length,UErrorCode * pErrorCode)1340 reconstituteData(UConverterMBCSTable *mbcsTable,
1341 uint32_t stage1Length, uint32_t stage2Length,
1342 uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */
1343 UErrorCode *pErrorCode) {
1344 uint16_t *stage1;
1345 uint32_t *stage2;
1346 uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
1347 mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
1348 if(mbcsTable->reconstitutedData==NULL) {
1349 *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1350 return;
1351 }
1352 uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
1353
1354 /* copy existing data and reroute the pointers */
1355 stage1=(uint16_t *)mbcsTable->reconstitutedData;
1356 uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
1357
1358 stage2=(uint32_t *)(stage1+stage1Length);
1359 uprv_memcpy(stage2+(fullStage2Length-stage2Length),
1360 mbcsTable->fromUnicodeTable+stage1Length,
1361 stage2Length*4);
1362
1363 mbcsTable->fromUnicodeTable=stage1;
1364 mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
1365
1366 /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
1367 stage2=(uint32_t *)stage1;
1368
1369 /* reconstitute the initial part of stage 2 from the mbcsIndex */
1370 {
1371 int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
1372 int32_t stageUTF8Index=0;
1373 int32_t st1, st2, st3, i;
1374
1375 for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
1376 st2=stage1[st1];
1377 if(st2!=stage1Length/2) {
1378 /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
1379 for(i=0; i<16; ++i) {
1380 st3=mbcsTable->mbcsIndex[stageUTF8Index++];
1381 if(st3!=0) {
1382 /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
1383 st3>>=4;
1384 /*
1385 * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
1386 * allocated together as a single 64-block for access from the mbcsIndex
1387 */
1388 stage2[st2++]=st3++;
1389 stage2[st2++]=st3++;
1390 stage2[st2++]=st3++;
1391 stage2[st2++]=st3;
1392 } else {
1393 /* no stage 3 block, skip */
1394 st2+=4;
1395 }
1396 }
1397 } else {
1398 /* no stage 2 block, skip */
1399 stageUTF8Index+=16;
1400 }
1401 }
1402 }
1403
1404 /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
1405 ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
1406 }
1407
1408 /* MBCS setup functions ----------------------------------------------------- */
1409
1410 static void
ucnv_MBCSLoad(UConverterSharedData * sharedData,UConverterLoadArgs * pArgs,const uint8_t * raw,UErrorCode * pErrorCode)1411 ucnv_MBCSLoad(UConverterSharedData *sharedData,
1412 UConverterLoadArgs *pArgs,
1413 const uint8_t *raw,
1414 UErrorCode *pErrorCode) {
1415 UDataInfo info;
1416 UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1417 _MBCSHeader *header=(_MBCSHeader *)raw;
1418 uint32_t offset;
1419 uint32_t headerLength;
1420 UBool noFromU=FALSE;
1421
1422 if(header->version[0]==4) {
1423 headerLength=MBCS_HEADER_V4_LENGTH;
1424 } else if(header->version[0]==5 && header->version[1]>=3 &&
1425 (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
1426 headerLength=header->options&MBCS_OPT_LENGTH_MASK;
1427 noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
1428 } else {
1429 *pErrorCode=U_INVALID_TABLE_FORMAT;
1430 return;
1431 }
1432
1433 mbcsTable->outputType=(uint8_t)header->flags;
1434 if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
1435 *pErrorCode=U_INVALID_TABLE_FORMAT;
1436 return;
1437 }
1438
1439 /* extension data, header version 4.2 and higher */
1440 offset=header->flags>>8;
1441 if(offset!=0) {
1442 mbcsTable->extIndexes=(const int32_t *)(raw+offset);
1443 }
1444
1445 if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
1446 UConverterLoadArgs args={ 0 };
1447 UConverterSharedData *baseSharedData;
1448 const int32_t *extIndexes;
1449 const char *baseName;
1450
1451 /* extension-only file, load the base table and set values appropriately */
1452 if((extIndexes=mbcsTable->extIndexes)==NULL) {
1453 /* extension-only file without extension */
1454 *pErrorCode=U_INVALID_TABLE_FORMAT;
1455 return;
1456 }
1457
1458 if(pArgs->nestedLoads!=1) {
1459 /* an extension table must not be loaded as a base table */
1460 *pErrorCode=U_INVALID_TABLE_FILE;
1461 return;
1462 }
1463
1464 /* load the base table */
1465 baseName=(const char *)header+headerLength*4;
1466 if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
1467 /* forbid loading this same extension-only file */
1468 *pErrorCode=U_INVALID_TABLE_FORMAT;
1469 return;
1470 }
1471
1472 /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
1473 args.size=sizeof(UConverterLoadArgs);
1474 args.nestedLoads=2;
1475 args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
1476 args.reserved=pArgs->reserved;
1477 args.options=pArgs->options;
1478 args.pkg=pArgs->pkg;
1479 args.name=baseName;
1480 baseSharedData=ucnv_load(&args, pErrorCode);
1481 if(U_FAILURE(*pErrorCode)) {
1482 return;
1483 }
1484 if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
1485 baseSharedData->mbcs.baseSharedData!=NULL
1486 ) {
1487 ucnv_unload(baseSharedData);
1488 *pErrorCode=U_INVALID_TABLE_FORMAT;
1489 return;
1490 }
1491 if(pArgs->onlyTestIsLoadable) {
1492 /*
1493 * Exit as soon as we know that we can load the converter
1494 * and the format is valid and supported.
1495 * The worst that can happen in the following code is a memory
1496 * allocation error.
1497 */
1498 ucnv_unload(baseSharedData);
1499 return;
1500 }
1501
1502 /* copy the base table data */
1503 uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
1504
1505 /* overwrite values with relevant ones for the extension converter */
1506 mbcsTable->baseSharedData=baseSharedData;
1507 mbcsTable->extIndexes=extIndexes;
1508
1509 /*
1510 * It would be possible to share the swapLFNL data with a base converter,
1511 * but the generated name would have to be different, and the memory
1512 * would have to be free'd only once.
1513 * It is easier to just create the data for the extension converter
1514 * separately when it is requested.
1515 */
1516 mbcsTable->swapLFNLStateTable=NULL;
1517 mbcsTable->swapLFNLFromUnicodeBytes=NULL;
1518 mbcsTable->swapLFNLName=NULL;
1519
1520 /*
1521 * The reconstitutedData must be deleted only when the base converter
1522 * is unloaded.
1523 */
1524 mbcsTable->reconstitutedData=NULL;
1525
1526 /*
1527 * Set a special, runtime-only outputType if the extension converter
1528 * is a DBCS version of a base converter that also maps single bytes.
1529 */
1530 if( sharedData->staticData->conversionType==UCNV_DBCS ||
1531 (sharedData->staticData->conversionType==UCNV_MBCS &&
1532 sharedData->staticData->minBytesPerChar>=2)
1533 ) {
1534 if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
1535 /* the base converter is SI/SO-stateful */
1536 int32_t entry;
1537
1538 /* get the dbcs state from the state table entry for SO=0x0e */
1539 entry=mbcsTable->stateTable[0][0xe];
1540 if( MBCS_ENTRY_IS_FINAL(entry) &&
1541 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
1542 MBCS_ENTRY_FINAL_STATE(entry)!=0
1543 ) {
1544 mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
1545
1546 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1547 }
1548 } else if(
1549 baseSharedData->staticData->conversionType==UCNV_MBCS &&
1550 baseSharedData->staticData->minBytesPerChar==1 &&
1551 baseSharedData->staticData->maxBytesPerChar==2 &&
1552 mbcsTable->countStates<=127
1553 ) {
1554 /* non-stateful base converter, need to modify the state table */
1555 int32_t (*newStateTable)[256];
1556 int32_t *state;
1557 int32_t i, count;
1558
1559 /* allocate a new state table and copy the base state table contents */
1560 count=mbcsTable->countStates;
1561 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
1562 if(newStateTable==NULL) {
1563 ucnv_unload(baseSharedData);
1564 *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1565 return;
1566 }
1567
1568 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
1569
1570 /* change all final single-byte entries to go to a new all-illegal state */
1571 state=newStateTable[0];
1572 for(i=0; i<256; ++i) {
1573 if(MBCS_ENTRY_IS_FINAL(state[i])) {
1574 state[i]=MBCS_ENTRY_TRANSITION(count, 0);
1575 }
1576 }
1577
1578 /* build the new all-illegal state */
1579 state=newStateTable[count];
1580 for(i=0; i<256; ++i) {
1581 state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
1582 }
1583 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
1584 mbcsTable->countStates=(uint8_t)(count+1);
1585 mbcsTable->stateTableOwned=TRUE;
1586
1587 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1588 }
1589 }
1590
1591 /*
1592 * unlike below for files with base tables, do not get the unicodeMask
1593 * from the sharedData; instead, use the base table's unicodeMask,
1594 * which we copied in the memcpy above;
1595 * this is necessary because the static data unicodeMask, especially
1596 * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
1597 */
1598 } else {
1599 /* conversion file with a base table; an additional extension table is optional */
1600 /* make sure that the output type is known */
1601 switch(mbcsTable->outputType) {
1602 case MBCS_OUTPUT_1:
1603 case MBCS_OUTPUT_2:
1604 case MBCS_OUTPUT_3:
1605 case MBCS_OUTPUT_4:
1606 case MBCS_OUTPUT_3_EUC:
1607 case MBCS_OUTPUT_4_EUC:
1608 case MBCS_OUTPUT_2_SISO:
1609 /* OK */
1610 break;
1611 default:
1612 *pErrorCode=U_INVALID_TABLE_FORMAT;
1613 return;
1614 }
1615 if(pArgs->onlyTestIsLoadable) {
1616 /*
1617 * Exit as soon as we know that we can load the converter
1618 * and the format is valid and supported.
1619 * The worst that can happen in the following code is a memory
1620 * allocation error.
1621 */
1622 return;
1623 }
1624
1625 mbcsTable->countStates=(uint8_t)header->countStates;
1626 mbcsTable->countToUFallbacks=header->countToUFallbacks;
1627 mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
1628 mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
1629 mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
1630
1631 mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
1632 mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
1633 mbcsTable->fromUBytesLength=header->fromUBytesLength;
1634
1635 /*
1636 * converter versions 6.1 and up contain a unicodeMask that is
1637 * used here to select the most efficient function implementations
1638 */
1639 info.size=sizeof(UDataInfo);
1640 udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
1641 if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
1642 /* mask off possible future extensions to be safe */
1643 mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
1644 } else {
1645 /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
1646 mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
1647 }
1648
1649 /*
1650 * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
1651 * Check for the header version, SBCS vs. MBCS, and for whether the
1652 * data structures are optimized for code points as high as what the
1653 * runtime code is designed for.
1654 * The implementation does not handle mapping tables with entries for
1655 * unpaired surrogates.
1656 */
1657 if( header->version[1]>=3 &&
1658 (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
1659 (mbcsTable->countStates==1 ?
1660 (header->version[2]>=(SBCS_FAST_MAX>>8)) :
1661 (header->version[2]>=(MBCS_FAST_MAX>>8))
1662 )
1663 ) {
1664 mbcsTable->utf8Friendly=TRUE;
1665
1666 if(mbcsTable->countStates==1) {
1667 /*
1668 * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
1669 * Build a table with indexes to each block, to be used instead of
1670 * the regular stage 1/2 table.
1671 */
1672 int32_t i;
1673 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
1674 mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
1675 }
1676 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
1677 mbcsTable->maxFastUChar=SBCS_FAST_MAX;
1678 } else {
1679 /*
1680 * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
1681 * The .cnv file is prebuilt with an additional stage table with indexes
1682 * to each block.
1683 */
1684 mbcsTable->mbcsIndex=(const uint16_t *)
1685 (mbcsTable->fromUnicodeBytes+
1686 (noFromU ? 0 : mbcsTable->fromUBytesLength));
1687 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
1688 }
1689 }
1690
1691 /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
1692 {
1693 uint32_t asciiRoundtrips=0xffffffff;
1694 int32_t i;
1695
1696 for(i=0; i<0x80; ++i) {
1697 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
1698 asciiRoundtrips&=~((uint32_t)1<<(i>>2));
1699 }
1700 }
1701 mbcsTable->asciiRoundtrips=asciiRoundtrips;
1702 }
1703
1704 if(noFromU) {
1705 uint32_t stage1Length=
1706 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
1707 0x440 : 0x40;
1708 uint32_t stage2Length=
1709 (header->offsetFromUBytes-header->offsetFromUTable)/4-
1710 stage1Length/2;
1711 reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
1712 }
1713 }
1714
1715 /* Set the impl pointer here so that it is set for both extension-only and base tables. */
1716 if(mbcsTable->utf8Friendly) {
1717 if(mbcsTable->countStates==1) {
1718 sharedData->impl=&_SBCSUTF8Impl;
1719 } else {
1720 if(mbcsTable->outputType==MBCS_OUTPUT_2) {
1721 sharedData->impl=&_DBCSUTF8Impl;
1722 }
1723 }
1724 }
1725
1726 if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
1727 /*
1728 * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
1729 * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
1730 */
1731 mbcsTable->asciiRoundtrips=0;
1732 }
1733 }
1734
1735 static void
ucnv_MBCSUnload(UConverterSharedData * sharedData)1736 ucnv_MBCSUnload(UConverterSharedData *sharedData) {
1737 UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1738
1739 if(mbcsTable->swapLFNLStateTable!=NULL) {
1740 uprv_free(mbcsTable->swapLFNLStateTable);
1741 }
1742 if(mbcsTable->stateTableOwned) {
1743 uprv_free((void *)mbcsTable->stateTable);
1744 }
1745 if(mbcsTable->baseSharedData!=NULL) {
1746 ucnv_unload(mbcsTable->baseSharedData);
1747 }
1748 if(mbcsTable->reconstitutedData!=NULL) {
1749 uprv_free(mbcsTable->reconstitutedData);
1750 }
1751 }
1752
1753 static void
ucnv_MBCSOpen(UConverter * cnv,UConverterLoadArgs * pArgs,UErrorCode * pErrorCode)1754 ucnv_MBCSOpen(UConverter *cnv,
1755 UConverterLoadArgs *pArgs,
1756 UErrorCode *pErrorCode) {
1757 UConverterMBCSTable *mbcsTable;
1758 const int32_t *extIndexes;
1759 uint8_t outputType;
1760 int8_t maxBytesPerUChar;
1761
1762 if(pArgs->onlyTestIsLoadable) {
1763 return;
1764 }
1765
1766 mbcsTable=&cnv->sharedData->mbcs;
1767 outputType=mbcsTable->outputType;
1768
1769 if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
1770 /* the swaplfnl option does not apply, remove it */
1771 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1772 }
1773
1774 if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1775 /* do this because double-checked locking is broken */
1776 UBool isCached;
1777
1778 umtx_lock(NULL);
1779 isCached=mbcsTable->swapLFNLStateTable!=NULL;
1780 umtx_unlock(NULL);
1781
1782 if(!isCached) {
1783 if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
1784 if(U_FAILURE(*pErrorCode)) {
1785 return; /* something went wrong */
1786 }
1787
1788 /* the option does not apply, remove it */
1789 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1790 }
1791 }
1792 }
1793
1794 if(uprv_strstr(pArgs->name, "18030")!=NULL) {
1795 if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
1796 /* set a flag for GB 18030 mode, which changes the callback behavior */
1797 cnv->options|=_MBCS_OPTION_GB18030;
1798 }
1799 } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
1800 /* set a flag for KEIS converter, which changes the SI/SO character sequence */
1801 cnv->options|=_MBCS_OPTION_KEIS;
1802 } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
1803 /* set a flag for JEF converter, which changes the SI/SO character sequence */
1804 cnv->options|=_MBCS_OPTION_JEF;
1805 } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
1806 /* set a flag for JIPS converter, which changes the SI/SO character sequence */
1807 cnv->options|=_MBCS_OPTION_JIPS;
1808 }
1809
1810 /* fix maxBytesPerUChar depending on outputType and options etc. */
1811 if(outputType==MBCS_OUTPUT_2_SISO) {
1812 cnv->maxBytesPerUChar=3; /* SO+DBCS */
1813 }
1814
1815 extIndexes=mbcsTable->extIndexes;
1816 if(extIndexes!=NULL) {
1817 maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
1818 if(outputType==MBCS_OUTPUT_2_SISO) {
1819 ++maxBytesPerUChar; /* SO + multiple DBCS */
1820 }
1821
1822 if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
1823 cnv->maxBytesPerUChar=maxBytesPerUChar;
1824 }
1825 }
1826
1827 #if 0
1828 /*
1829 * documentation of UConverter fields used for status
1830 * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
1831 */
1832
1833 /* toUnicode */
1834 cnv->toUnicodeStatus=0; /* offset */
1835 cnv->mode=0; /* state */
1836 cnv->toULength=0; /* byteIndex */
1837
1838 /* fromUnicode */
1839 cnv->fromUChar32=0;
1840 cnv->fromUnicodeStatus=1; /* prevLength */
1841 #endif
1842 }
1843
1844 static const char *
ucnv_MBCSGetName(const UConverter * cnv)1845 ucnv_MBCSGetName(const UConverter *cnv) {
1846 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
1847 return cnv->sharedData->mbcs.swapLFNLName;
1848 } else {
1849 return cnv->sharedData->staticData->name;
1850 }
1851 }
1852
1853 /* MBCS-to-Unicode conversion functions ------------------------------------- */
1854
1855 static UChar32
ucnv_MBCSGetFallback(UConverterMBCSTable * mbcsTable,uint32_t offset)1856 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
1857 const _MBCSToUFallback *toUFallbacks;
1858 uint32_t i, start, limit;
1859
1860 limit=mbcsTable->countToUFallbacks;
1861 if(limit>0) {
1862 /* do a binary search for the fallback mapping */
1863 toUFallbacks=mbcsTable->toUFallbacks;
1864 start=0;
1865 while(start<limit-1) {
1866 i=(start+limit)/2;
1867 if(offset<toUFallbacks[i].offset) {
1868 limit=i;
1869 } else {
1870 start=i;
1871 }
1872 }
1873
1874 /* did we really find it? */
1875 if(offset==toUFallbacks[start].offset) {
1876 return toUFallbacks[start].codePoint;
1877 }
1878 }
1879
1880 return 0xfffe;
1881 }
1882
1883 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
1884 static void
ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)1885 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
1886 UErrorCode *pErrorCode) {
1887 UConverter *cnv;
1888 const uint8_t *source, *sourceLimit;
1889 UChar *target;
1890 const UChar *targetLimit;
1891 int32_t *offsets;
1892
1893 const int32_t (*stateTable)[256];
1894
1895 int32_t sourceIndex;
1896
1897 int32_t entry;
1898 UChar c;
1899 uint8_t action;
1900
1901 /* set up the local pointers */
1902 cnv=pArgs->converter;
1903 source=(const uint8_t *)pArgs->source;
1904 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
1905 target=pArgs->target;
1906 targetLimit=pArgs->targetLimit;
1907 offsets=pArgs->offsets;
1908
1909 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1910 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
1911 } else {
1912 stateTable=cnv->sharedData->mbcs.stateTable;
1913 }
1914
1915 /* sourceIndex=-1 if the current character began in the previous buffer */
1916 sourceIndex=0;
1917
1918 /* conversion loop */
1919 while(source<sourceLimit) {
1920 /*
1921 * This following test is to see if available input would overflow the output.
1922 * It does not catch output of more than one code unit that
1923 * overflows as a result of a surrogate pair or callback output
1924 * from the last source byte.
1925 * Therefore, those situations also test for overflows and will
1926 * then break the loop, too.
1927 */
1928 if(target>=targetLimit) {
1929 /* target is full */
1930 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
1931 break;
1932 }
1933
1934 entry=stateTable[0][*source++];
1935 /* MBCS_ENTRY_IS_FINAL(entry) */
1936
1937 /* test the most common case first */
1938 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
1939 /* output BMP code point */
1940 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
1941 if(offsets!=NULL) {
1942 *offsets++=sourceIndex;
1943 }
1944
1945 /* normal end of action codes: prepare for a new character */
1946 ++sourceIndex;
1947 continue;
1948 }
1949
1950 /*
1951 * An if-else-if chain provides more reliable performance for
1952 * the most common cases compared to a switch.
1953 */
1954 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
1955 if(action==MBCS_STATE_VALID_DIRECT_20 ||
1956 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
1957 ) {
1958 entry=MBCS_ENTRY_FINAL_VALUE(entry);
1959 /* output surrogate pair */
1960 *target++=(UChar)(0xd800|(UChar)(entry>>10));
1961 if(offsets!=NULL) {
1962 *offsets++=sourceIndex;
1963 }
1964 c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
1965 if(target<targetLimit) {
1966 *target++=c;
1967 if(offsets!=NULL) {
1968 *offsets++=sourceIndex;
1969 }
1970 } else {
1971 /* target overflow */
1972 cnv->UCharErrorBuffer[0]=c;
1973 cnv->UCharErrorBufferLength=1;
1974 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
1975 break;
1976 }
1977
1978 ++sourceIndex;
1979 continue;
1980 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
1981 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
1982 /* output BMP code point */
1983 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
1984 if(offsets!=NULL) {
1985 *offsets++=sourceIndex;
1986 }
1987
1988 ++sourceIndex;
1989 continue;
1990 }
1991 } else if(action==MBCS_STATE_UNASSIGNED) {
1992 /* just fall through */
1993 } else if(action==MBCS_STATE_ILLEGAL) {
1994 /* callback(illegal) */
1995 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
1996 } else {
1997 /* reserved, must never occur */
1998 ++sourceIndex;
1999 continue;
2000 }
2001
2002 if(U_FAILURE(*pErrorCode)) {
2003 /* callback(illegal) */
2004 break;
2005 } else /* unassigned sequences indicated with byteIndex>0 */ {
2006 /* try an extension mapping */
2007 pArgs->source=(const char *)source;
2008 cnv->toUBytes[0]=*(source-1);
2009 cnv->toULength=_extToU(cnv, cnv->sharedData,
2010 1, &source, sourceLimit,
2011 &target, targetLimit,
2012 &offsets, sourceIndex,
2013 pArgs->flush,
2014 pErrorCode);
2015 sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
2016
2017 if(U_FAILURE(*pErrorCode)) {
2018 /* not mappable or buffer overflow */
2019 break;
2020 }
2021 }
2022 }
2023
2024 /* write back the updated pointers */
2025 pArgs->source=(const char *)source;
2026 pArgs->target=target;
2027 pArgs->offsets=offsets;
2028 }
2029
2030 /*
2031 * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
2032 * that only map to and from the BMP.
2033 * In addition to single-byte optimizations, the offset calculations
2034 * become much easier.
2035 */
2036 static void
ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2037 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
2038 UErrorCode *pErrorCode) {
2039 UConverter *cnv;
2040 const uint8_t *source, *sourceLimit, *lastSource;
2041 UChar *target;
2042 int32_t targetCapacity, length;
2043 int32_t *offsets;
2044
2045 const int32_t (*stateTable)[256];
2046
2047 int32_t sourceIndex;
2048
2049 int32_t entry;
2050 uint8_t action;
2051
2052 /* set up the local pointers */
2053 cnv=pArgs->converter;
2054 source=(const uint8_t *)pArgs->source;
2055 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2056 target=pArgs->target;
2057 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
2058 offsets=pArgs->offsets;
2059
2060 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2061 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2062 } else {
2063 stateTable=cnv->sharedData->mbcs.stateTable;
2064 }
2065
2066 /* sourceIndex=-1 if the current character began in the previous buffer */
2067 sourceIndex=0;
2068 lastSource=source;
2069
2070 /*
2071 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
2072 * for the minimum of the sourceLength and targetCapacity
2073 */
2074 length=(int32_t)(sourceLimit-source);
2075 if(length<targetCapacity) {
2076 targetCapacity=length;
2077 }
2078
2079 #if MBCS_UNROLL_SINGLE_TO_BMP
2080 /* unrolling makes it faster on Pentium III/Windows 2000 */
2081 /* unroll the loop with the most common case */
2082 unrolled:
2083 if(targetCapacity>=16) {
2084 int32_t count, loops, oredEntries;
2085
2086 loops=count=targetCapacity>>4;
2087 do {
2088 oredEntries=entry=stateTable[0][*source++];
2089 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2090 oredEntries|=entry=stateTable[0][*source++];
2091 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2092 oredEntries|=entry=stateTable[0][*source++];
2093 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2094 oredEntries|=entry=stateTable[0][*source++];
2095 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2096 oredEntries|=entry=stateTable[0][*source++];
2097 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2098 oredEntries|=entry=stateTable[0][*source++];
2099 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2100 oredEntries|=entry=stateTable[0][*source++];
2101 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2102 oredEntries|=entry=stateTable[0][*source++];
2103 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2104 oredEntries|=entry=stateTable[0][*source++];
2105 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2106 oredEntries|=entry=stateTable[0][*source++];
2107 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2108 oredEntries|=entry=stateTable[0][*source++];
2109 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2110 oredEntries|=entry=stateTable[0][*source++];
2111 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2112 oredEntries|=entry=stateTable[0][*source++];
2113 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2114 oredEntries|=entry=stateTable[0][*source++];
2115 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2116 oredEntries|=entry=stateTable[0][*source++];
2117 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2118 oredEntries|=entry=stateTable[0][*source++];
2119 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2120
2121 /* were all 16 entries really valid? */
2122 if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
2123 /* no, return to the first of these 16 */
2124 source-=16;
2125 target-=16;
2126 break;
2127 }
2128 } while(--count>0);
2129 count=loops-count;
2130 targetCapacity-=16*count;
2131
2132 if(offsets!=NULL) {
2133 lastSource+=16*count;
2134 while(count>0) {
2135 *offsets++=sourceIndex++;
2136 *offsets++=sourceIndex++;
2137 *offsets++=sourceIndex++;
2138 *offsets++=sourceIndex++;
2139 *offsets++=sourceIndex++;
2140 *offsets++=sourceIndex++;
2141 *offsets++=sourceIndex++;
2142 *offsets++=sourceIndex++;
2143 *offsets++=sourceIndex++;
2144 *offsets++=sourceIndex++;
2145 *offsets++=sourceIndex++;
2146 *offsets++=sourceIndex++;
2147 *offsets++=sourceIndex++;
2148 *offsets++=sourceIndex++;
2149 *offsets++=sourceIndex++;
2150 *offsets++=sourceIndex++;
2151 --count;
2152 }
2153 }
2154 }
2155 #endif
2156
2157 /* conversion loop */
2158 while(targetCapacity > 0 && source < sourceLimit) {
2159 entry=stateTable[0][*source++];
2160 /* MBCS_ENTRY_IS_FINAL(entry) */
2161
2162 /* test the most common case first */
2163 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2164 /* output BMP code point */
2165 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2166 --targetCapacity;
2167 continue;
2168 }
2169
2170 /*
2171 * An if-else-if chain provides more reliable performance for
2172 * the most common cases compared to a switch.
2173 */
2174 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2175 if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2176 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2177 /* output BMP code point */
2178 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2179 --targetCapacity;
2180 continue;
2181 }
2182 } else if(action==MBCS_STATE_UNASSIGNED) {
2183 /* just fall through */
2184 } else if(action==MBCS_STATE_ILLEGAL) {
2185 /* callback(illegal) */
2186 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2187 } else {
2188 /* reserved, must never occur */
2189 continue;
2190 }
2191
2192 /* set offsets since the start or the last extension */
2193 if(offsets!=NULL) {
2194 int32_t count=(int32_t)(source-lastSource);
2195
2196 /* predecrement: do not set the offset for the callback-causing character */
2197 while(--count>0) {
2198 *offsets++=sourceIndex++;
2199 }
2200 /* offset and sourceIndex are now set for the current character */
2201 }
2202
2203 if(U_FAILURE(*pErrorCode)) {
2204 /* callback(illegal) */
2205 break;
2206 } else /* unassigned sequences indicated with byteIndex>0 */ {
2207 /* try an extension mapping */
2208 lastSource=source;
2209 cnv->toUBytes[0]=*(source-1);
2210 cnv->toULength=_extToU(cnv, cnv->sharedData,
2211 1, &source, sourceLimit,
2212 &target, pArgs->targetLimit,
2213 &offsets, sourceIndex,
2214 pArgs->flush,
2215 pErrorCode);
2216 sourceIndex+=1+(int32_t)(source-lastSource);
2217
2218 if(U_FAILURE(*pErrorCode)) {
2219 /* not mappable or buffer overflow */
2220 break;
2221 }
2222
2223 /* recalculate the targetCapacity after an extension mapping */
2224 targetCapacity=(int32_t)(pArgs->targetLimit-target);
2225 length=(int32_t)(sourceLimit-source);
2226 if(length<targetCapacity) {
2227 targetCapacity=length;
2228 }
2229 }
2230
2231 #if MBCS_UNROLL_SINGLE_TO_BMP
2232 /* unrolling makes it faster on Pentium III/Windows 2000 */
2233 goto unrolled;
2234 #endif
2235 }
2236
2237 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
2238 /* target is full */
2239 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2240 }
2241
2242 /* set offsets since the start or the last callback */
2243 if(offsets!=NULL) {
2244 size_t count=source-lastSource;
2245 while(count>0) {
2246 *offsets++=sourceIndex++;
2247 --count;
2248 }
2249 }
2250
2251 /* write back the updated pointers */
2252 pArgs->source=(const char *)source;
2253 pArgs->target=target;
2254 pArgs->offsets=offsets;
2255 }
2256
2257 static UBool
hasValidTrailBytes(const int32_t (* stateTable)[256],uint8_t state)2258 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
2259 const int32_t *row=stateTable[state];
2260 int32_t b, entry;
2261 /* First test for final entries in this state for some commonly valid byte values. */
2262 entry=row[0xa1];
2263 if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2264 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2265 ) {
2266 return TRUE;
2267 }
2268 entry=row[0x41];
2269 if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2270 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2271 ) {
2272 return TRUE;
2273 }
2274 /* Then test for final entries in this state. */
2275 for(b=0; b<=0xff; ++b) {
2276 entry=row[b];
2277 if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2278 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2279 ) {
2280 return TRUE;
2281 }
2282 }
2283 /* Then recurse for transition entries. */
2284 for(b=0; b<=0xff; ++b) {
2285 entry=row[b];
2286 if( MBCS_ENTRY_IS_TRANSITION(entry) &&
2287 hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
2288 ) {
2289 return TRUE;
2290 }
2291 }
2292 return FALSE;
2293 }
2294
2295 /*
2296 * Is byte b a single/lead byte in this state?
2297 * Recurse for transition states, because here we don't want to say that
2298 * b is a lead byte if all byte sequences that start with b are illegal.
2299 */
2300 static UBool
isSingleOrLead(const int32_t (* stateTable)[256],uint8_t state,UBool isDBCSOnly,uint8_t b)2301 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
2302 const int32_t *row=stateTable[state];
2303 int32_t entry=row[b];
2304 if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */
2305 return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
2306 } else {
2307 uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2308 if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
2309 return FALSE; /* SI/SO are illegal for DBCS-only conversion */
2310 } else {
2311 return action!=MBCS_STATE_ILLEGAL;
2312 }
2313 }
2314 }
2315
2316 U_CFUNC void
ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2317 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2318 UErrorCode *pErrorCode) {
2319 UConverter *cnv;
2320 const uint8_t *source, *sourceLimit;
2321 UChar *target;
2322 const UChar *targetLimit;
2323 int32_t *offsets;
2324
2325 const int32_t (*stateTable)[256];
2326 const uint16_t *unicodeCodeUnits;
2327
2328 uint32_t offset;
2329 uint8_t state;
2330 int8_t byteIndex;
2331 uint8_t *bytes;
2332
2333 int32_t sourceIndex, nextSourceIndex;
2334
2335 int32_t entry;
2336 UChar c;
2337 uint8_t action;
2338
2339 /* use optimized function if possible */
2340 cnv=pArgs->converter;
2341
2342 if(cnv->preToULength>0) {
2343 /*
2344 * pass sourceIndex=-1 because we continue from an earlier buffer
2345 * in the future, this may change with continuous offsets
2346 */
2347 ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
2348
2349 if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
2350 return;
2351 }
2352 }
2353
2354 if(cnv->sharedData->mbcs.countStates==1) {
2355 if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
2356 ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
2357 } else {
2358 ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
2359 }
2360 return;
2361 }
2362
2363 /* set up the local pointers */
2364 source=(const uint8_t *)pArgs->source;
2365 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2366 target=pArgs->target;
2367 targetLimit=pArgs->targetLimit;
2368 offsets=pArgs->offsets;
2369
2370 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2371 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2372 } else {
2373 stateTable=cnv->sharedData->mbcs.stateTable;
2374 }
2375 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2376
2377 /* get the converter state from UConverter */
2378 offset=cnv->toUnicodeStatus;
2379 byteIndex=cnv->toULength;
2380 bytes=cnv->toUBytes;
2381
2382 /*
2383 * if we are in the SBCS state for a DBCS-only converter,
2384 * then load the DBCS state from the MBCS data
2385 * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2386 */
2387 if((state=(uint8_t)(cnv->mode))==0) {
2388 state=cnv->sharedData->mbcs.dbcsOnlyState;
2389 }
2390
2391 /* sourceIndex=-1 if the current character began in the previous buffer */
2392 sourceIndex=byteIndex==0 ? 0 : -1;
2393 nextSourceIndex=0;
2394
2395 /* conversion loop */
2396 while(source<sourceLimit) {
2397 /*
2398 * This following test is to see if available input would overflow the output.
2399 * It does not catch output of more than one code unit that
2400 * overflows as a result of a surrogate pair or callback output
2401 * from the last source byte.
2402 * Therefore, those situations also test for overflows and will
2403 * then break the loop, too.
2404 */
2405 if(target>=targetLimit) {
2406 /* target is full */
2407 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2408 break;
2409 }
2410
2411 if(byteIndex==0) {
2412 /* optimized loop for 1/2-byte input and BMP output */
2413 if(offsets==NULL) {
2414 do {
2415 entry=stateTable[state][*source];
2416 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2417 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2418 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2419
2420 ++source;
2421 if( source<sourceLimit &&
2422 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2423 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2424 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2425 ) {
2426 ++source;
2427 *target++=c;
2428 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2429 offset=0;
2430 } else {
2431 /* set the state and leave the optimized loop */
2432 bytes[0]=*(source-1);
2433 byteIndex=1;
2434 break;
2435 }
2436 } else {
2437 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2438 /* output BMP code point */
2439 ++source;
2440 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2441 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2442 } else {
2443 /* leave the optimized loop */
2444 break;
2445 }
2446 }
2447 } while(source<sourceLimit && target<targetLimit);
2448 } else /* offsets!=NULL */ {
2449 do {
2450 entry=stateTable[state][*source];
2451 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2452 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2453 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2454
2455 ++source;
2456 if( source<sourceLimit &&
2457 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2458 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2459 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2460 ) {
2461 ++source;
2462 *target++=c;
2463 if(offsets!=NULL) {
2464 *offsets++=sourceIndex;
2465 sourceIndex=(nextSourceIndex+=2);
2466 }
2467 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2468 offset=0;
2469 } else {
2470 /* set the state and leave the optimized loop */
2471 ++nextSourceIndex;
2472 bytes[0]=*(source-1);
2473 byteIndex=1;
2474 break;
2475 }
2476 } else {
2477 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2478 /* output BMP code point */
2479 ++source;
2480 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2481 if(offsets!=NULL) {
2482 *offsets++=sourceIndex;
2483 sourceIndex=++nextSourceIndex;
2484 }
2485 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2486 } else {
2487 /* leave the optimized loop */
2488 break;
2489 }
2490 }
2491 } while(source<sourceLimit && target<targetLimit);
2492 }
2493
2494 /*
2495 * these tests and break statements could be put inside the loop
2496 * if C had "break outerLoop" like Java
2497 */
2498 if(source>=sourceLimit) {
2499 break;
2500 }
2501 if(target>=targetLimit) {
2502 /* target is full */
2503 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2504 break;
2505 }
2506
2507 ++nextSourceIndex;
2508 bytes[byteIndex++]=*source++;
2509 } else /* byteIndex>0 */ {
2510 ++nextSourceIndex;
2511 entry=stateTable[state][bytes[byteIndex++]=*source++];
2512 }
2513
2514 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2515 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2516 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2517 continue;
2518 }
2519
2520 /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2521 cnv->mode=state;
2522
2523 /* set the next state early so that we can reuse the entry variable */
2524 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2525
2526 /*
2527 * An if-else-if chain provides more reliable performance for
2528 * the most common cases compared to a switch.
2529 */
2530 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2531 if(action==MBCS_STATE_VALID_16) {
2532 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2533 c=unicodeCodeUnits[offset];
2534 if(c<0xfffe) {
2535 /* output BMP code point */
2536 *target++=c;
2537 if(offsets!=NULL) {
2538 *offsets++=sourceIndex;
2539 }
2540 byteIndex=0;
2541 } else if(c==0xfffe) {
2542 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2543 /* output fallback BMP code point */
2544 *target++=(UChar)entry;
2545 if(offsets!=NULL) {
2546 *offsets++=sourceIndex;
2547 }
2548 byteIndex=0;
2549 }
2550 } else {
2551 /* callback(illegal) */
2552 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2553 }
2554 } else if(action==MBCS_STATE_VALID_DIRECT_16) {
2555 /* output BMP code point */
2556 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2557 if(offsets!=NULL) {
2558 *offsets++=sourceIndex;
2559 }
2560 byteIndex=0;
2561 } else if(action==MBCS_STATE_VALID_16_PAIR) {
2562 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2563 c=unicodeCodeUnits[offset++];
2564 if(c<0xd800) {
2565 /* output BMP code point below 0xd800 */
2566 *target++=c;
2567 if(offsets!=NULL) {
2568 *offsets++=sourceIndex;
2569 }
2570 byteIndex=0;
2571 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2572 /* output roundtrip or fallback surrogate pair */
2573 *target++=(UChar)(c&0xdbff);
2574 if(offsets!=NULL) {
2575 *offsets++=sourceIndex;
2576 }
2577 byteIndex=0;
2578 if(target<targetLimit) {
2579 *target++=unicodeCodeUnits[offset];
2580 if(offsets!=NULL) {
2581 *offsets++=sourceIndex;
2582 }
2583 } else {
2584 /* target overflow */
2585 cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
2586 cnv->UCharErrorBufferLength=1;
2587 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2588
2589 offset=0;
2590 break;
2591 }
2592 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2593 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2594 *target++=unicodeCodeUnits[offset];
2595 if(offsets!=NULL) {
2596 *offsets++=sourceIndex;
2597 }
2598 byteIndex=0;
2599 } else if(c==0xffff) {
2600 /* callback(illegal) */
2601 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2602 }
2603 } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2604 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2605 ) {
2606 entry=MBCS_ENTRY_FINAL_VALUE(entry);
2607 /* output surrogate pair */
2608 *target++=(UChar)(0xd800|(UChar)(entry>>10));
2609 if(offsets!=NULL) {
2610 *offsets++=sourceIndex;
2611 }
2612 byteIndex=0;
2613 c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2614 if(target<targetLimit) {
2615 *target++=c;
2616 if(offsets!=NULL) {
2617 *offsets++=sourceIndex;
2618 }
2619 } else {
2620 /* target overflow */
2621 cnv->UCharErrorBuffer[0]=c;
2622 cnv->UCharErrorBufferLength=1;
2623 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2624
2625 offset=0;
2626 break;
2627 }
2628 } else if(action==MBCS_STATE_CHANGE_ONLY) {
2629 /*
2630 * This serves as a state change without any output.
2631 * It is useful for reading simple stateful encodings,
2632 * for example using just Shift-In/Shift-Out codes.
2633 * The 21 unused bits may later be used for more sophisticated
2634 * state transitions.
2635 */
2636 if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
2637 byteIndex=0;
2638 } else {
2639 /* SI/SO are illegal for DBCS-only conversion */
2640 state=(uint8_t)(cnv->mode); /* restore the previous state */
2641
2642 /* callback(illegal) */
2643 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2644 }
2645 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2646 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2647 /* output BMP code point */
2648 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2649 if(offsets!=NULL) {
2650 *offsets++=sourceIndex;
2651 }
2652 byteIndex=0;
2653 }
2654 } else if(action==MBCS_STATE_UNASSIGNED) {
2655 /* just fall through */
2656 } else if(action==MBCS_STATE_ILLEGAL) {
2657 /* callback(illegal) */
2658 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2659 } else {
2660 /* reserved, must never occur */
2661 byteIndex=0;
2662 }
2663
2664 /* end of action codes: prepare for a new character */
2665 offset=0;
2666
2667 if(byteIndex==0) {
2668 sourceIndex=nextSourceIndex;
2669 } else if(U_FAILURE(*pErrorCode)) {
2670 /* callback(illegal) */
2671 if(byteIndex>1) {
2672 /*
2673 * Ticket 5691: consistent illegal sequences:
2674 * - We include at least the first byte in the illegal sequence.
2675 * - If any of the non-initial bytes could be the start of a character,
2676 * we stop the illegal sequence before the first one of those.
2677 */
2678 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
2679 int8_t i;
2680 for(i=1;
2681 i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
2682 ++i) {}
2683 if(i<byteIndex) {
2684 /* Back out some bytes. */
2685 int8_t backOutDistance=byteIndex-i;
2686 int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
2687 byteIndex=i; /* length of reported illegal byte sequence */
2688 if(backOutDistance<=bytesFromThisBuffer) {
2689 source-=backOutDistance;
2690 } else {
2691 /* Back out bytes from the previous buffer: Need to replay them. */
2692 cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
2693 /* preToULength is negative! */
2694 uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
2695 source=(const uint8_t *)pArgs->source;
2696 }
2697 }
2698 }
2699 break;
2700 } else /* unassigned sequences indicated with byteIndex>0 */ {
2701 /* try an extension mapping */
2702 pArgs->source=(const char *)source;
2703 byteIndex=_extToU(cnv, cnv->sharedData,
2704 byteIndex, &source, sourceLimit,
2705 &target, targetLimit,
2706 &offsets, sourceIndex,
2707 pArgs->flush,
2708 pErrorCode);
2709 sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
2710
2711 if(U_FAILURE(*pErrorCode)) {
2712 /* not mappable or buffer overflow */
2713 break;
2714 }
2715 }
2716 }
2717
2718 /* set the converter state back into UConverter */
2719 cnv->toUnicodeStatus=offset;
2720 cnv->mode=state;
2721 cnv->toULength=byteIndex;
2722
2723 /* write back the updated pointers */
2724 pArgs->source=(const char *)source;
2725 pArgs->target=target;
2726 pArgs->offsets=offsets;
2727 }
2728
2729 /*
2730 * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
2731 * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
2732 */
2733 static UChar32
ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2734 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
2735 UErrorCode *pErrorCode) {
2736 UConverter *cnv;
2737 const int32_t (*stateTable)[256];
2738 const uint8_t *source, *sourceLimit;
2739
2740 int32_t entry;
2741 uint8_t action;
2742
2743 /* set up the local pointers */
2744 cnv=pArgs->converter;
2745 source=(const uint8_t *)pArgs->source;
2746 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2747 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2748 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2749 } else {
2750 stateTable=cnv->sharedData->mbcs.stateTable;
2751 }
2752
2753 /* conversion loop */
2754 while(source<sourceLimit) {
2755 entry=stateTable[0][*source++];
2756 /* MBCS_ENTRY_IS_FINAL(entry) */
2757
2758 /* write back the updated pointer early so that we can return directly */
2759 pArgs->source=(const char *)source;
2760
2761 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2762 /* output BMP code point */
2763 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2764 }
2765
2766 /*
2767 * An if-else-if chain provides more reliable performance for
2768 * the most common cases compared to a switch.
2769 */
2770 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2771 if( action==MBCS_STATE_VALID_DIRECT_20 ||
2772 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2773 ) {
2774 /* output supplementary code point */
2775 return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2776 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2777 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2778 /* output BMP code point */
2779 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2780 }
2781 } else if(action==MBCS_STATE_UNASSIGNED) {
2782 /* just fall through */
2783 } else if(action==MBCS_STATE_ILLEGAL) {
2784 /* callback(illegal) */
2785 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2786 } else {
2787 /* reserved, must never occur */
2788 continue;
2789 }
2790
2791 if(U_FAILURE(*pErrorCode)) {
2792 /* callback(illegal) */
2793 break;
2794 } else /* unassigned sequence */ {
2795 /* defer to the generic implementation */
2796 pArgs->source=(const char *)source-1;
2797 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2798 }
2799 }
2800
2801 /* no output because of empty input or only state changes */
2802 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2803 return 0xffff;
2804 }
2805
2806 /*
2807 * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
2808 * conversion without offset handling.
2809 *
2810 * When a character does not have a mapping to Unicode, then we return to the
2811 * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
2812 * handling.
2813 * We also defer to the generic code in other complicated cases and have them
2814 * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
2815 *
2816 * All normal mappings and errors are handled here.
2817 */
2818 static UChar32
ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2819 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
2820 UErrorCode *pErrorCode) {
2821 UConverter *cnv;
2822 const uint8_t *source, *sourceLimit, *lastSource;
2823
2824 const int32_t (*stateTable)[256];
2825 const uint16_t *unicodeCodeUnits;
2826
2827 uint32_t offset;
2828 uint8_t state;
2829
2830 int32_t entry;
2831 UChar32 c;
2832 uint8_t action;
2833
2834 /* use optimized function if possible */
2835 cnv=pArgs->converter;
2836
2837 if(cnv->preToULength>0) {
2838 /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
2839 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2840 }
2841
2842 if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
2843 /*
2844 * Using the generic ucnv_getNextUChar() code lets us deal correctly
2845 * with the rare case of a codepage that maps single surrogates
2846 * without adding the complexity to this already complicated function here.
2847 */
2848 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2849 } else if(cnv->sharedData->mbcs.countStates==1) {
2850 return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
2851 }
2852
2853 /* set up the local pointers */
2854 source=lastSource=(const uint8_t *)pArgs->source;
2855 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2856
2857 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2858 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2859 } else {
2860 stateTable=cnv->sharedData->mbcs.stateTable;
2861 }
2862 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2863
2864 /* get the converter state from UConverter */
2865 offset=cnv->toUnicodeStatus;
2866
2867 /*
2868 * if we are in the SBCS state for a DBCS-only converter,
2869 * then load the DBCS state from the MBCS data
2870 * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2871 */
2872 if((state=(uint8_t)(cnv->mode))==0) {
2873 state=cnv->sharedData->mbcs.dbcsOnlyState;
2874 }
2875
2876 /* conversion loop */
2877 c=U_SENTINEL;
2878 while(source<sourceLimit) {
2879 entry=stateTable[state][*source++];
2880 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2881 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2882 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2883
2884 /* optimization for 1/2-byte input and BMP output */
2885 if( source<sourceLimit &&
2886 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2887 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2888 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2889 ) {
2890 ++source;
2891 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2892 /* output BMP code point */
2893 break;
2894 }
2895 } else {
2896 /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2897 cnv->mode=state;
2898
2899 /* set the next state early so that we can reuse the entry variable */
2900 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2901
2902 /*
2903 * An if-else-if chain provides more reliable performance for
2904 * the most common cases compared to a switch.
2905 */
2906 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2907 if(action==MBCS_STATE_VALID_DIRECT_16) {
2908 /* output BMP code point */
2909 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2910 break;
2911 } else if(action==MBCS_STATE_VALID_16) {
2912 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2913 c=unicodeCodeUnits[offset];
2914 if(c<0xfffe) {
2915 /* output BMP code point */
2916 break;
2917 } else if(c==0xfffe) {
2918 if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2919 break;
2920 }
2921 } else {
2922 /* callback(illegal) */
2923 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2924 }
2925 } else if(action==MBCS_STATE_VALID_16_PAIR) {
2926 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2927 c=unicodeCodeUnits[offset++];
2928 if(c<0xd800) {
2929 /* output BMP code point below 0xd800 */
2930 break;
2931 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2932 /* output roundtrip or fallback supplementary code point */
2933 c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
2934 break;
2935 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2936 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2937 c=unicodeCodeUnits[offset];
2938 break;
2939 } else if(c==0xffff) {
2940 /* callback(illegal) */
2941 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2942 }
2943 } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2944 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2945 ) {
2946 /* output supplementary code point */
2947 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2948 break;
2949 } else if(action==MBCS_STATE_CHANGE_ONLY) {
2950 /*
2951 * This serves as a state change without any output.
2952 * It is useful for reading simple stateful encodings,
2953 * for example using just Shift-In/Shift-Out codes.
2954 * The 21 unused bits may later be used for more sophisticated
2955 * state transitions.
2956 */
2957 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
2958 /* SI/SO are illegal for DBCS-only conversion */
2959 state=(uint8_t)(cnv->mode); /* restore the previous state */
2960
2961 /* callback(illegal) */
2962 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2963 }
2964 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2965 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2966 /* output BMP code point */
2967 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2968 break;
2969 }
2970 } else if(action==MBCS_STATE_UNASSIGNED) {
2971 /* just fall through */
2972 } else if(action==MBCS_STATE_ILLEGAL) {
2973 /* callback(illegal) */
2974 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2975 } else {
2976 /* reserved (must never occur), or only state change */
2977 offset=0;
2978 lastSource=source;
2979 continue;
2980 }
2981
2982 /* end of action codes: prepare for a new character */
2983 offset=0;
2984
2985 if(U_FAILURE(*pErrorCode)) {
2986 /* callback(illegal) */
2987 break;
2988 } else /* unassigned sequence */ {
2989 /* defer to the generic implementation */
2990 cnv->toUnicodeStatus=0;
2991 cnv->mode=state;
2992 pArgs->source=(const char *)lastSource;
2993 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2994 }
2995 }
2996 }
2997
2998 if(c<0) {
2999 if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
3000 /* incomplete character byte sequence */
3001 uint8_t *bytes=cnv->toUBytes;
3002 cnv->toULength=(int8_t)(source-lastSource);
3003 do {
3004 *bytes++=*lastSource++;
3005 } while(lastSource<source);
3006 *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3007 } else if(U_FAILURE(*pErrorCode)) {
3008 /* callback(illegal) */
3009 /*
3010 * Ticket 5691: consistent illegal sequences:
3011 * - We include at least the first byte in the illegal sequence.
3012 * - If any of the non-initial bytes could be the start of a character,
3013 * we stop the illegal sequence before the first one of those.
3014 */
3015 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
3016 uint8_t *bytes=cnv->toUBytes;
3017 *bytes++=*lastSource++; /* first byte */
3018 if(lastSource==source) {
3019 cnv->toULength=1;
3020 } else /* lastSource<source: multi-byte character */ {
3021 int8_t i;
3022 for(i=1;
3023 lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
3024 ++i
3025 ) {
3026 *bytes++=*lastSource++;
3027 }
3028 cnv->toULength=i;
3029 source=lastSource;
3030 }
3031 } else {
3032 /* no output because of empty input or only state changes */
3033 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
3034 }
3035 c=0xffff;
3036 }
3037
3038 /* set the converter state back into UConverter, ready for a new character */
3039 cnv->toUnicodeStatus=0;
3040 cnv->mode=state;
3041
3042 /* write back the updated pointer */
3043 pArgs->source=(const char *)source;
3044 return c;
3045 }
3046
3047 #if 0
3048 /*
3049 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3050 * Removal improves code coverage.
3051 */
3052 /**
3053 * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
3054 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3055 * It does not handle conversion extensions (_extToU()).
3056 */
3057 U_CFUNC UChar32
3058 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
3059 uint8_t b, UBool useFallback) {
3060 int32_t entry;
3061 uint8_t action;
3062
3063 entry=sharedData->mbcs.stateTable[0][b];
3064 /* MBCS_ENTRY_IS_FINAL(entry) */
3065
3066 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
3067 /* output BMP code point */
3068 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3069 }
3070
3071 /*
3072 * An if-else-if chain provides more reliable performance for
3073 * the most common cases compared to a switch.
3074 */
3075 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3076 if(action==MBCS_STATE_VALID_DIRECT_20) {
3077 /* output supplementary code point */
3078 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3079 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3080 if(!TO_U_USE_FALLBACK(useFallback)) {
3081 return 0xfffe;
3082 }
3083 /* output BMP code point */
3084 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3085 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3086 if(!TO_U_USE_FALLBACK(useFallback)) {
3087 return 0xfffe;
3088 }
3089 /* output supplementary code point */
3090 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3091 } else if(action==MBCS_STATE_UNASSIGNED) {
3092 return 0xfffe;
3093 } else if(action==MBCS_STATE_ILLEGAL) {
3094 return 0xffff;
3095 } else {
3096 /* reserved, must never occur */
3097 return 0xffff;
3098 }
3099 }
3100 #endif
3101
3102 /*
3103 * This is a simple version of _MBCSGetNextUChar() that is used
3104 * by other converter implementations.
3105 * It only returns an "assigned" result if it consumes the entire input.
3106 * It does not use state from the converter, nor error codes.
3107 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3108 * It handles conversion extensions but not GB 18030.
3109 *
3110 * Return value:
3111 * U+fffe unassigned
3112 * U+ffff illegal
3113 * otherwise the Unicode code point
3114 */
3115 U_CFUNC UChar32
ucnv_MBCSSimpleGetNextUChar(UConverterSharedData * sharedData,const char * source,int32_t length,UBool useFallback)3116 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
3117 const char *source, int32_t length,
3118 UBool useFallback) {
3119 const int32_t (*stateTable)[256];
3120 const uint16_t *unicodeCodeUnits;
3121
3122 uint32_t offset;
3123 uint8_t state, action;
3124
3125 UChar32 c;
3126 int32_t i, entry;
3127
3128 if(length<=0) {
3129 /* no input at all: "illegal" */
3130 return 0xffff;
3131 }
3132
3133 #if 0
3134 /*
3135 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3136 * TODO In future releases, verify that this function is never called for SBCS
3137 * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
3138 * Removal improves code coverage.
3139 */
3140 /* use optimized function if possible */
3141 if(sharedData->mbcs.countStates==1) {
3142 if(length==1) {
3143 return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
3144 } else {
3145 return 0xffff; /* illegal: more than a single byte for an SBCS converter */
3146 }
3147 }
3148 #endif
3149
3150 /* set up the local pointers */
3151 stateTable=sharedData->mbcs.stateTable;
3152 unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
3153
3154 /* converter state */
3155 offset=0;
3156 state=sharedData->mbcs.dbcsOnlyState;
3157
3158 /* conversion loop */
3159 for(i=0;;) {
3160 entry=stateTable[state][(uint8_t)source[i++]];
3161 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3162 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3163 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3164
3165 if(i==length) {
3166 return 0xffff; /* truncated character */
3167 }
3168 } else {
3169 /*
3170 * An if-else-if chain provides more reliable performance for
3171 * the most common cases compared to a switch.
3172 */
3173 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3174 if(action==MBCS_STATE_VALID_16) {
3175 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3176 c=unicodeCodeUnits[offset];
3177 if(c!=0xfffe) {
3178 /* done */
3179 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3180 c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
3181 /* else done with 0xfffe */
3182 }
3183 break;
3184 } else if(action==MBCS_STATE_VALID_DIRECT_16) {
3185 /* output BMP code point */
3186 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3187 break;
3188 } else if(action==MBCS_STATE_VALID_16_PAIR) {
3189 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3190 c=unicodeCodeUnits[offset++];
3191 if(c<0xd800) {
3192 /* output BMP code point below 0xd800 */
3193 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3194 /* output roundtrip or fallback supplementary code point */
3195 c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
3196 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3197 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3198 c=unicodeCodeUnits[offset];
3199 } else if(c==0xffff) {
3200 return 0xffff;
3201 } else {
3202 c=0xfffe;
3203 }
3204 break;
3205 } else if(action==MBCS_STATE_VALID_DIRECT_20) {
3206 /* output supplementary code point */
3207 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3208 break;
3209 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3210 if(!TO_U_USE_FALLBACK(useFallback)) {
3211 c=0xfffe;
3212 break;
3213 }
3214 /* output BMP code point */
3215 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3216 break;
3217 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3218 if(!TO_U_USE_FALLBACK(useFallback)) {
3219 c=0xfffe;
3220 break;
3221 }
3222 /* output supplementary code point */
3223 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3224 break;
3225 } else if(action==MBCS_STATE_UNASSIGNED) {
3226 c=0xfffe;
3227 break;
3228 }
3229
3230 /*
3231 * forbid MBCS_STATE_CHANGE_ONLY for this function,
3232 * and MBCS_STATE_ILLEGAL and reserved action codes
3233 */
3234 return 0xffff;
3235 }
3236 }
3237
3238 if(i!=length) {
3239 /* illegal for this function: not all input consumed */
3240 return 0xffff;
3241 }
3242
3243 if(c==0xfffe) {
3244 /* try an extension mapping */
3245 const int32_t *cx=sharedData->mbcs.extIndexes;
3246 if(cx!=NULL) {
3247 return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
3248 }
3249 }
3250
3251 return c;
3252 }
3253
3254 /* MBCS-from-Unicode conversion functions ----------------------------------- */
3255
3256 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
3257 static void
ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3258 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3259 UErrorCode *pErrorCode) {
3260 UConverter *cnv;
3261 const UChar *source, *sourceLimit;
3262 uint8_t *target;
3263 int32_t targetCapacity;
3264 int32_t *offsets;
3265
3266 const uint16_t *table;
3267 const uint16_t *mbcsIndex;
3268 const uint8_t *bytes;
3269
3270 UChar32 c;
3271
3272 int32_t sourceIndex, nextSourceIndex;
3273
3274 uint32_t stage2Entry;
3275 uint32_t asciiRoundtrips;
3276 uint32_t value;
3277 uint8_t unicodeMask;
3278
3279 /* use optimized function if possible */
3280 cnv=pArgs->converter;
3281 unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3282
3283 /* set up the local pointers */
3284 source=pArgs->source;
3285 sourceLimit=pArgs->sourceLimit;
3286 target=(uint8_t *)pArgs->target;
3287 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3288 offsets=pArgs->offsets;
3289
3290 table=cnv->sharedData->mbcs.fromUnicodeTable;
3291 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3292 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3293 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3294 } else {
3295 bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3296 }
3297 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3298
3299 /* get the converter state from UConverter */
3300 c=cnv->fromUChar32;
3301
3302 /* sourceIndex=-1 if the current character began in the previous buffer */
3303 sourceIndex= c==0 ? 0 : -1;
3304 nextSourceIndex=0;
3305
3306 /* conversion loop */
3307 if(c!=0 && targetCapacity>0) {
3308 goto getTrail;
3309 }
3310
3311 while(source<sourceLimit) {
3312 /*
3313 * This following test is to see if available input would overflow the output.
3314 * It does not catch output of more than one byte that
3315 * overflows as a result of a multi-byte character or callback output
3316 * from the last source character.
3317 * Therefore, those situations also test for overflows and will
3318 * then break the loop, too.
3319 */
3320 if(targetCapacity>0) {
3321 /*
3322 * Get a correct Unicode code point:
3323 * a single UChar for a BMP code point or
3324 * a matched surrogate pair for a "supplementary code point".
3325 */
3326 c=*source++;
3327 ++nextSourceIndex;
3328 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3329 *target++=(uint8_t)c;
3330 if(offsets!=NULL) {
3331 *offsets++=sourceIndex;
3332 sourceIndex=nextSourceIndex;
3333 }
3334 --targetCapacity;
3335 c=0;
3336 continue;
3337 }
3338 /*
3339 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
3340 * to avoid dealing with surrogates.
3341 * MBCS_FAST_MAX must be >=0xd7ff.
3342 */
3343 if(c<=0xd7ff) {
3344 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
3345 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
3346 if(value==0) {
3347 goto unassigned;
3348 }
3349 /* output the value */
3350 } else {
3351 /*
3352 * This also tests if the codepage maps single surrogates.
3353 * If it does, then surrogates are not paired but mapped separately.
3354 * Note that in this case unmatched surrogates are not detected.
3355 */
3356 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3357 if(U16_IS_SURROGATE_LEAD(c)) {
3358 getTrail:
3359 if(source<sourceLimit) {
3360 /* test the following code unit */
3361 UChar trail=*source;
3362 if(U16_IS_TRAIL(trail)) {
3363 ++source;
3364 ++nextSourceIndex;
3365 c=U16_GET_SUPPLEMENTARY(c, trail);
3366 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3367 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3368 /* callback(unassigned) */
3369 goto unassigned;
3370 }
3371 /* convert this supplementary code point */
3372 /* exit this condition tree */
3373 } else {
3374 /* this is an unmatched lead code unit (1st surrogate) */
3375 /* callback(illegal) */
3376 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3377 break;
3378 }
3379 } else {
3380 /* no more input */
3381 break;
3382 }
3383 } else {
3384 /* this is an unmatched trail code unit (2nd surrogate) */
3385 /* callback(illegal) */
3386 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3387 break;
3388 }
3389 }
3390
3391 /* convert the Unicode code point in c into codepage bytes */
3392 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
3393
3394 /* get the bytes and the length for the output */
3395 /* MBCS_OUTPUT_2 */
3396 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
3397
3398 /* is this code point assigned, or do we use fallbacks? */
3399 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
3400 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
3401 ) {
3402 /*
3403 * We allow a 0 byte output if the "assigned" bit is set for this entry.
3404 * There is no way with this data structure for fallback output
3405 * to be a zero byte.
3406 */
3407
3408 unassigned:
3409 /* try an extension mapping */
3410 pArgs->source=source;
3411 c=_extFromU(cnv, cnv->sharedData,
3412 c, &source, sourceLimit,
3413 &target, target+targetCapacity,
3414 &offsets, sourceIndex,
3415 pArgs->flush,
3416 pErrorCode);
3417 nextSourceIndex+=(int32_t)(source-pArgs->source);
3418
3419 if(U_FAILURE(*pErrorCode)) {
3420 /* not mappable or buffer overflow */
3421 break;
3422 } else {
3423 /* a mapping was written to the target, continue */
3424
3425 /* recalculate the targetCapacity after an extension mapping */
3426 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3427
3428 /* normal end of conversion: prepare for a new character */
3429 sourceIndex=nextSourceIndex;
3430 continue;
3431 }
3432 }
3433 }
3434
3435 /* write the output character bytes from value and length */
3436 /* from the first if in the loop we know that targetCapacity>0 */
3437 if(value<=0xff) {
3438 /* this is easy because we know that there is enough space */
3439 *target++=(uint8_t)value;
3440 if(offsets!=NULL) {
3441 *offsets++=sourceIndex;
3442 }
3443 --targetCapacity;
3444 } else /* length==2 */ {
3445 *target++=(uint8_t)(value>>8);
3446 if(2<=targetCapacity) {
3447 *target++=(uint8_t)value;
3448 if(offsets!=NULL) {
3449 *offsets++=sourceIndex;
3450 *offsets++=sourceIndex;
3451 }
3452 targetCapacity-=2;
3453 } else {
3454 if(offsets!=NULL) {
3455 *offsets++=sourceIndex;
3456 }
3457 cnv->charErrorBuffer[0]=(char)value;
3458 cnv->charErrorBufferLength=1;
3459
3460 /* target overflow */
3461 targetCapacity=0;
3462 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3463 c=0;
3464 break;
3465 }
3466 }
3467
3468 /* normal end of conversion: prepare for a new character */
3469 c=0;
3470 sourceIndex=nextSourceIndex;
3471 continue;
3472 } else {
3473 /* target is full */
3474 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3475 break;
3476 }
3477 }
3478
3479 /* set the converter state back into UConverter */
3480 cnv->fromUChar32=c;
3481
3482 /* write back the updated pointers */
3483 pArgs->source=source;
3484 pArgs->target=(char *)target;
3485 pArgs->offsets=offsets;
3486 }
3487
3488 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
3489 static void
ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3490 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3491 UErrorCode *pErrorCode) {
3492 UConverter *cnv;
3493 const UChar *source, *sourceLimit;
3494 uint8_t *target;
3495 int32_t targetCapacity;
3496 int32_t *offsets;
3497
3498 const uint16_t *table;
3499 const uint16_t *results;
3500
3501 UChar32 c;
3502
3503 int32_t sourceIndex, nextSourceIndex;
3504
3505 uint16_t value, minValue;
3506 UBool hasSupplementary;
3507
3508 /* set up the local pointers */
3509 cnv=pArgs->converter;
3510 source=pArgs->source;
3511 sourceLimit=pArgs->sourceLimit;
3512 target=(uint8_t *)pArgs->target;
3513 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3514 offsets=pArgs->offsets;
3515
3516 table=cnv->sharedData->mbcs.fromUnicodeTable;
3517 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3518 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3519 } else {
3520 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3521 }
3522
3523 if(cnv->useFallback) {
3524 /* use all roundtrip and fallback results */
3525 minValue=0x800;
3526 } else {
3527 /* use only roundtrips and fallbacks from private-use characters */
3528 minValue=0xc00;
3529 }
3530 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
3531
3532 /* get the converter state from UConverter */
3533 c=cnv->fromUChar32;
3534
3535 /* sourceIndex=-1 if the current character began in the previous buffer */
3536 sourceIndex= c==0 ? 0 : -1;
3537 nextSourceIndex=0;
3538
3539 /* conversion loop */
3540 if(c!=0 && targetCapacity>0) {
3541 goto getTrail;
3542 }
3543
3544 while(source<sourceLimit) {
3545 /*
3546 * This following test is to see if available input would overflow the output.
3547 * It does not catch output of more than one byte that
3548 * overflows as a result of a multi-byte character or callback output
3549 * from the last source character.
3550 * Therefore, those situations also test for overflows and will
3551 * then break the loop, too.
3552 */
3553 if(targetCapacity>0) {
3554 /*
3555 * Get a correct Unicode code point:
3556 * a single UChar for a BMP code point or
3557 * a matched surrogate pair for a "supplementary code point".
3558 */
3559 c=*source++;
3560 ++nextSourceIndex;
3561 if(U16_IS_SURROGATE(c)) {
3562 if(U16_IS_SURROGATE_LEAD(c)) {
3563 getTrail:
3564 if(source<sourceLimit) {
3565 /* test the following code unit */
3566 UChar trail=*source;
3567 if(U16_IS_TRAIL(trail)) {
3568 ++source;
3569 ++nextSourceIndex;
3570 c=U16_GET_SUPPLEMENTARY(c, trail);
3571 if(!hasSupplementary) {
3572 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3573 /* callback(unassigned) */
3574 goto unassigned;
3575 }
3576 /* convert this supplementary code point */
3577 /* exit this condition tree */
3578 } else {
3579 /* this is an unmatched lead code unit (1st surrogate) */
3580 /* callback(illegal) */
3581 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3582 break;
3583 }
3584 } else {
3585 /* no more input */
3586 break;
3587 }
3588 } else {
3589 /* this is an unmatched trail code unit (2nd surrogate) */
3590 /* callback(illegal) */
3591 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3592 break;
3593 }
3594 }
3595
3596 /* convert the Unicode code point in c into codepage bytes */
3597 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3598
3599 /* is this code point assigned, or do we use fallbacks? */
3600 if(value>=minValue) {
3601 /* assigned, write the output character bytes from value and length */
3602 /* length==1 */
3603 /* this is easy because we know that there is enough space */
3604 *target++=(uint8_t)value;
3605 if(offsets!=NULL) {
3606 *offsets++=sourceIndex;
3607 }
3608 --targetCapacity;
3609
3610 /* normal end of conversion: prepare for a new character */
3611 c=0;
3612 sourceIndex=nextSourceIndex;
3613 } else { /* unassigned */
3614 unassigned:
3615 /* try an extension mapping */
3616 pArgs->source=source;
3617 c=_extFromU(cnv, cnv->sharedData,
3618 c, &source, sourceLimit,
3619 &target, target+targetCapacity,
3620 &offsets, sourceIndex,
3621 pArgs->flush,
3622 pErrorCode);
3623 nextSourceIndex+=(int32_t)(source-pArgs->source);
3624
3625 if(U_FAILURE(*pErrorCode)) {
3626 /* not mappable or buffer overflow */
3627 break;
3628 } else {
3629 /* a mapping was written to the target, continue */
3630
3631 /* recalculate the targetCapacity after an extension mapping */
3632 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3633
3634 /* normal end of conversion: prepare for a new character */
3635 sourceIndex=nextSourceIndex;
3636 }
3637 }
3638 } else {
3639 /* target is full */
3640 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3641 break;
3642 }
3643 }
3644
3645 /* set the converter state back into UConverter */
3646 cnv->fromUChar32=c;
3647
3648 /* write back the updated pointers */
3649 pArgs->source=source;
3650 pArgs->target=(char *)target;
3651 pArgs->offsets=offsets;
3652 }
3653
3654 /*
3655 * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
3656 * that map only to and from the BMP.
3657 * In addition to single-byte/state optimizations, the offset calculations
3658 * become much easier.
3659 * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
3660 * but measurements have shown that this diminishes performance
3661 * in more cases than it improves it.
3662 * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
3663 * for various MBCS and SBCS optimizations.
3664 */
3665 static void
ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3666 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
3667 UErrorCode *pErrorCode) {
3668 UConverter *cnv;
3669 const UChar *source, *sourceLimit, *lastSource;
3670 uint8_t *target;
3671 int32_t targetCapacity, length;
3672 int32_t *offsets;
3673
3674 const uint16_t *table;
3675 const uint16_t *results;
3676
3677 UChar32 c;
3678
3679 int32_t sourceIndex;
3680
3681 uint32_t asciiRoundtrips;
3682 uint16_t value, minValue;
3683
3684 /* set up the local pointers */
3685 cnv=pArgs->converter;
3686 source=pArgs->source;
3687 sourceLimit=pArgs->sourceLimit;
3688 target=(uint8_t *)pArgs->target;
3689 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3690 offsets=pArgs->offsets;
3691
3692 table=cnv->sharedData->mbcs.fromUnicodeTable;
3693 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3694 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3695 } else {
3696 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3697 }
3698 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3699
3700 if(cnv->useFallback) {
3701 /* use all roundtrip and fallback results */
3702 minValue=0x800;
3703 } else {
3704 /* use only roundtrips and fallbacks from private-use characters */
3705 minValue=0xc00;
3706 }
3707
3708 /* get the converter state from UConverter */
3709 c=cnv->fromUChar32;
3710
3711 /* sourceIndex=-1 if the current character began in the previous buffer */
3712 sourceIndex= c==0 ? 0 : -1;
3713 lastSource=source;
3714
3715 /*
3716 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
3717 * for the minimum of the sourceLength and targetCapacity
3718 */
3719 length=(int32_t)(sourceLimit-source);
3720 if(length<targetCapacity) {
3721 targetCapacity=length;
3722 }
3723
3724 /* conversion loop */
3725 if(c!=0 && targetCapacity>0) {
3726 goto getTrail;
3727 }
3728
3729 #if MBCS_UNROLL_SINGLE_FROM_BMP
3730 /* unrolling makes it slower on Pentium III/Windows 2000?! */
3731 /* unroll the loop with the most common case */
3732 unrolled:
3733 if(targetCapacity>=4) {
3734 int32_t count, loops;
3735 uint16_t andedValues;
3736
3737 loops=count=targetCapacity>>2;
3738 do {
3739 c=*source++;
3740 andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3741 *target++=(uint8_t)value;
3742 c=*source++;
3743 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3744 *target++=(uint8_t)value;
3745 c=*source++;
3746 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3747 *target++=(uint8_t)value;
3748 c=*source++;
3749 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3750 *target++=(uint8_t)value;
3751
3752 /* were all 4 entries really valid? */
3753 if(andedValues<minValue) {
3754 /* no, return to the first of these 4 */
3755 source-=4;
3756 target-=4;
3757 break;
3758 }
3759 } while(--count>0);
3760 count=loops-count;
3761 targetCapacity-=4*count;
3762
3763 if(offsets!=NULL) {
3764 lastSource+=4*count;
3765 while(count>0) {
3766 *offsets++=sourceIndex++;
3767 *offsets++=sourceIndex++;
3768 *offsets++=sourceIndex++;
3769 *offsets++=sourceIndex++;
3770 --count;
3771 }
3772 }
3773
3774 c=0;
3775 }
3776 #endif
3777
3778 while(targetCapacity>0) {
3779 /*
3780 * Get a correct Unicode code point:
3781 * a single UChar for a BMP code point or
3782 * a matched surrogate pair for a "supplementary code point".
3783 */
3784 c=*source++;
3785 /*
3786 * Do not immediately check for single surrogates:
3787 * Assume that they are unassigned and check for them in that case.
3788 * This speeds up the conversion of assigned characters.
3789 */
3790 /* convert the Unicode code point in c into codepage bytes */
3791 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3792 *target++=(uint8_t)c;
3793 --targetCapacity;
3794 c=0;
3795 continue;
3796 }
3797 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3798 /* is this code point assigned, or do we use fallbacks? */
3799 if(value>=minValue) {
3800 /* assigned, write the output character bytes from value and length */
3801 /* length==1 */
3802 /* this is easy because we know that there is enough space */
3803 *target++=(uint8_t)value;
3804 --targetCapacity;
3805
3806 /* normal end of conversion: prepare for a new character */
3807 c=0;
3808 continue;
3809 } else if(!U16_IS_SURROGATE(c)) {
3810 /* normal, unassigned BMP character */
3811 } else if(U16_IS_SURROGATE_LEAD(c)) {
3812 getTrail:
3813 if(source<sourceLimit) {
3814 /* test the following code unit */
3815 UChar trail=*source;
3816 if(U16_IS_TRAIL(trail)) {
3817 ++source;
3818 c=U16_GET_SUPPLEMENTARY(c, trail);
3819 /* this codepage does not map supplementary code points */
3820 /* callback(unassigned) */
3821 } else {
3822 /* this is an unmatched lead code unit (1st surrogate) */
3823 /* callback(illegal) */
3824 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3825 break;
3826 }
3827 } else {
3828 /* no more input */
3829 if (pArgs->flush) {
3830 *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3831 }
3832 break;
3833 }
3834 } else {
3835 /* this is an unmatched trail code unit (2nd surrogate) */
3836 /* callback(illegal) */
3837 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3838 break;
3839 }
3840
3841 /* c does not have a mapping */
3842
3843 /* get the number of code units for c to correctly advance sourceIndex */
3844 length=U16_LENGTH(c);
3845
3846 /* set offsets since the start or the last extension */
3847 if(offsets!=NULL) {
3848 int32_t count=(int32_t)(source-lastSource);
3849
3850 /* do not set the offset for this character */
3851 count-=length;
3852
3853 while(count>0) {
3854 *offsets++=sourceIndex++;
3855 --count;
3856 }
3857 /* offsets and sourceIndex are now set for the current character */
3858 }
3859
3860 /* try an extension mapping */
3861 lastSource=source;
3862 c=_extFromU(cnv, cnv->sharedData,
3863 c, &source, sourceLimit,
3864 &target, (const uint8_t *)(pArgs->targetLimit),
3865 &offsets, sourceIndex,
3866 pArgs->flush,
3867 pErrorCode);
3868 sourceIndex+=length+(int32_t)(source-lastSource);
3869 lastSource=source;
3870
3871 if(U_FAILURE(*pErrorCode)) {
3872 /* not mappable or buffer overflow */
3873 break;
3874 } else {
3875 /* a mapping was written to the target, continue */
3876
3877 /* recalculate the targetCapacity after an extension mapping */
3878 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3879 length=(int32_t)(sourceLimit-source);
3880 if(length<targetCapacity) {
3881 targetCapacity=length;
3882 }
3883 }
3884
3885 #if MBCS_UNROLL_SINGLE_FROM_BMP
3886 /* unrolling makes it slower on Pentium III/Windows 2000?! */
3887 goto unrolled;
3888 #endif
3889 }
3890
3891 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
3892 /* target is full */
3893 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3894 }
3895
3896 /* set offsets since the start or the last callback */
3897 if(offsets!=NULL) {
3898 size_t count=source-lastSource;
3899 if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
3900 /*
3901 Caller gave us a partial supplementary character,
3902 which this function couldn't convert in any case.
3903 The callback will handle the offset.
3904 */
3905 count--;
3906 }
3907 while(count>0) {
3908 *offsets++=sourceIndex++;
3909 --count;
3910 }
3911 }
3912
3913 /* set the converter state back into UConverter */
3914 cnv->fromUChar32=c;
3915
3916 /* write back the updated pointers */
3917 pArgs->source=source;
3918 pArgs->target=(char *)target;
3919 pArgs->offsets=offsets;
3920 }
3921
3922 /* Begin Android-added */
3923 #undef si_value
3924 #undef so_value
3925 /* End Android-added */
3926
3927 U_CFUNC void
ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3928 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3929 UErrorCode *pErrorCode) {
3930 UConverter *cnv;
3931 const UChar *source, *sourceLimit;
3932 uint8_t *target;
3933 int32_t targetCapacity;
3934 int32_t *offsets;
3935
3936 const uint16_t *table;
3937 const uint16_t *mbcsIndex;
3938 const uint8_t *p, *bytes;
3939 uint8_t outputType;
3940
3941 UChar32 c;
3942
3943 int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
3944
3945 uint32_t stage2Entry;
3946 uint32_t asciiRoundtrips;
3947 uint32_t value;
3948 uint8_t si_value[2] = {0, 0};
3949 uint8_t so_value[2] = {0, 0};
3950 uint8_t si_value_length, so_value_length;
3951 int32_t length = 0, prevLength;
3952 uint8_t unicodeMask;
3953
3954 cnv=pArgs->converter;
3955
3956 if(cnv->preFromUFirstCP>=0) {
3957 /*
3958 * pass sourceIndex=-1 because we continue from an earlier buffer
3959 * in the future, this may change with continuous offsets
3960 */
3961 ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
3962
3963 if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
3964 return;
3965 }
3966 }
3967
3968 /* use optimized function if possible */
3969 outputType=cnv->sharedData->mbcs.outputType;
3970 unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3971 if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3972 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3973 ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
3974 } else {
3975 ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
3976 }
3977 return;
3978 } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
3979 ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
3980 return;
3981 }
3982
3983 /* set up the local pointers */
3984 source=pArgs->source;
3985 sourceLimit=pArgs->sourceLimit;
3986 target=(uint8_t *)pArgs->target;
3987 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3988 offsets=pArgs->offsets;
3989
3990 table=cnv->sharedData->mbcs.fromUnicodeTable;
3991 if(cnv->sharedData->mbcs.utf8Friendly) {
3992 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3993 } else {
3994 mbcsIndex=NULL;
3995 }
3996 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3997 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3998 } else {
3999 bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
4000 }
4001 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4002
4003 /* get the converter state from UConverter */
4004 c=cnv->fromUChar32;
4005
4006 if(outputType==MBCS_OUTPUT_2_SISO) {
4007 prevLength=cnv->fromUnicodeStatus;
4008 if(prevLength==0) {
4009 /* set the real value */
4010 prevLength=1;
4011 }
4012 } else {
4013 /* prevent fromUnicodeStatus from being set to something non-0 */
4014 prevLength=0;
4015 }
4016
4017 /* sourceIndex=-1 if the current character began in the previous buffer */
4018 prevSourceIndex=-1;
4019 sourceIndex= c==0 ? 0 : -1;
4020 nextSourceIndex=0;
4021
4022 /* Get the SI/SO character for the converter */
4023 si_value_length = getSISOBytes(SI, cnv->options, si_value);
4024 so_value_length = getSISOBytes(SO, cnv->options, so_value);
4025
4026 /* conversion loop */
4027 /*
4028 * This is another piece of ugly code:
4029 * A goto into the loop if the converter state contains a first surrogate
4030 * from the previous function call.
4031 * It saves me to check in each loop iteration a check of if(c==0)
4032 * and duplicating the trail-surrogate-handling code in the else
4033 * branch of that check.
4034 * I could not find any other way to get around this other than
4035 * using a function call for the conversion and callback, which would
4036 * be even more inefficient.
4037 *
4038 * Markus Scherer 2000-jul-19
4039 */
4040 if(c!=0 && targetCapacity>0) {
4041 goto getTrail;
4042 }
4043
4044 while(source<sourceLimit) {
4045 /*
4046 * This following test is to see if available input would overflow the output.
4047 * It does not catch output of more than one byte that
4048 * overflows as a result of a multi-byte character or callback output
4049 * from the last source character.
4050 * Therefore, those situations also test for overflows and will
4051 * then break the loop, too.
4052 */
4053 if(targetCapacity>0) {
4054 /*
4055 * Get a correct Unicode code point:
4056 * a single UChar for a BMP code point or
4057 * a matched surrogate pair for a "supplementary code point".
4058 */
4059 c=*source++;
4060 ++nextSourceIndex;
4061 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
4062 *target++=(uint8_t)c;
4063 if(offsets!=NULL) {
4064 *offsets++=sourceIndex;
4065 prevSourceIndex=sourceIndex;
4066 sourceIndex=nextSourceIndex;
4067 }
4068 --targetCapacity;
4069 c=0;
4070 continue;
4071 }
4072 /*
4073 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
4074 * to avoid dealing with surrogates.
4075 * MBCS_FAST_MAX must be >=0xd7ff.
4076 */
4077 if(c<=0xd7ff && mbcsIndex!=NULL) {
4078 value=mbcsIndex[c>>6];
4079
4080 /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
4081 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
4082 switch(outputType) {
4083 case MBCS_OUTPUT_2:
4084 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4085 if(value<=0xff) {
4086 if(value==0) {
4087 goto unassigned;
4088 } else {
4089 length=1;
4090 }
4091 } else {
4092 length=2;
4093 }
4094 break;
4095 case MBCS_OUTPUT_2_SISO:
4096 /* 1/2-byte stateful with Shift-In/Shift-Out */
4097 /*
4098 * Save the old state in the converter object
4099 * right here, then change the local prevLength state variable if necessary.
4100 * Then, if this character turns out to be unassigned or a fallback that
4101 * is not taken, the callback code must not save the new state in the converter
4102 * because the new state is for a character that is not output.
4103 * However, the callback must still restore the state from the converter
4104 * in case the callback function changed it for its output.
4105 */
4106 cnv->fromUnicodeStatus=prevLength; /* save the old state */
4107 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4108 if(value<=0xff) {
4109 if(value==0) {
4110 goto unassigned;
4111 } else if(prevLength<=1) {
4112 length=1;
4113 } else {
4114 /* change from double-byte mode to single-byte */
4115 if (si_value_length == 1) {
4116 value|=(uint32_t)si_value[0]<<8;
4117 length = 2;
4118 } else if (si_value_length == 2) {
4119 value|=(uint32_t)si_value[1]<<8;
4120 value|=(uint32_t)si_value[0]<<16;
4121 length = 3;
4122 }
4123 prevLength=1;
4124 }
4125 } else {
4126 if(prevLength==2) {
4127 length=2;
4128 } else {
4129 /* change from single-byte mode to double-byte */
4130 if (so_value_length == 1) {
4131 value|=(uint32_t)so_value[0]<<16;
4132 length = 3;
4133 } else if (so_value_length == 2) {
4134 value|=(uint32_t)so_value[1]<<16;
4135 value|=(uint32_t)so_value[0]<<24;
4136 length = 4;
4137 }
4138 prevLength=2;
4139 }
4140 }
4141 break;
4142 case MBCS_OUTPUT_DBCS_ONLY:
4143 /* table with single-byte results, but only DBCS mappings used */
4144 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4145 if(value<=0xff) {
4146 /* no mapping or SBCS result, not taken for DBCS-only */
4147 goto unassigned;
4148 } else {
4149 length=2;
4150 }
4151 break;
4152 case MBCS_OUTPUT_3:
4153 p=bytes+(value+(c&0x3f))*3;
4154 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4155 if(value<=0xff) {
4156 if(value==0) {
4157 goto unassigned;
4158 } else {
4159 length=1;
4160 }
4161 } else if(value<=0xffff) {
4162 length=2;
4163 } else {
4164 length=3;
4165 }
4166 break;
4167 case MBCS_OUTPUT_4:
4168 value=((const uint32_t *)bytes)[value +(c&0x3f)];
4169 if(value<=0xff) {
4170 if(value==0) {
4171 goto unassigned;
4172 } else {
4173 length=1;
4174 }
4175 } else if(value<=0xffff) {
4176 length=2;
4177 } else if(value<=0xffffff) {
4178 length=3;
4179 } else {
4180 length=4;
4181 }
4182 break;
4183 case MBCS_OUTPUT_3_EUC:
4184 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4185 /* EUC 16-bit fixed-length representation */
4186 if(value<=0xff) {
4187 if(value==0) {
4188 goto unassigned;
4189 } else {
4190 length=1;
4191 }
4192 } else if((value&0x8000)==0) {
4193 value|=0x8e8000;
4194 length=3;
4195 } else if((value&0x80)==0) {
4196 value|=0x8f0080;
4197 length=3;
4198 } else {
4199 length=2;
4200 }
4201 break;
4202 case MBCS_OUTPUT_4_EUC:
4203 p=bytes+(value+(c&0x3f))*3;
4204 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4205 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4206 if(value<=0xff) {
4207 if(value==0) {
4208 goto unassigned;
4209 } else {
4210 length=1;
4211 }
4212 } else if(value<=0xffff) {
4213 length=2;
4214 } else if((value&0x800000)==0) {
4215 value|=0x8e800000;
4216 length=4;
4217 } else if((value&0x8000)==0) {
4218 value|=0x8f008000;
4219 length=4;
4220 } else {
4221 length=3;
4222 }
4223 break;
4224 default:
4225 /* must not occur */
4226 /*
4227 * To avoid compiler warnings that value & length may be
4228 * used without having been initialized, we set them here.
4229 * In reality, this is unreachable code.
4230 * Not having a default branch also causes warnings with
4231 * some compilers.
4232 */
4233 value=0;
4234 length=0;
4235 break;
4236 }
4237 /* output the value */
4238 } else {
4239 /*
4240 * This also tests if the codepage maps single surrogates.
4241 * If it does, then surrogates are not paired but mapped separately.
4242 * Note that in this case unmatched surrogates are not detected.
4243 */
4244 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4245 if(U16_IS_SURROGATE_LEAD(c)) {
4246 getTrail:
4247 if(source<sourceLimit) {
4248 /* test the following code unit */
4249 UChar trail=*source;
4250 if(U16_IS_TRAIL(trail)) {
4251 ++source;
4252 ++nextSourceIndex;
4253 c=U16_GET_SUPPLEMENTARY(c, trail);
4254 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4255 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4256 cnv->fromUnicodeStatus=prevLength; /* save the old state */
4257 /* callback(unassigned) */
4258 goto unassigned;
4259 }
4260 /* convert this supplementary code point */
4261 /* exit this condition tree */
4262 } else {
4263 /* this is an unmatched lead code unit (1st surrogate) */
4264 /* callback(illegal) */
4265 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4266 break;
4267 }
4268 } else {
4269 /* no more input */
4270 break;
4271 }
4272 } else {
4273 /* this is an unmatched trail code unit (2nd surrogate) */
4274 /* callback(illegal) */
4275 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4276 break;
4277 }
4278 }
4279
4280 /* convert the Unicode code point in c into codepage bytes */
4281
4282 /*
4283 * The basic lookup is a triple-stage compact array (trie) lookup.
4284 * For details see the beginning of this file.
4285 *
4286 * Single-byte codepages are handled with a different data structure
4287 * by _MBCSSingle... functions.
4288 *
4289 * The result consists of a 32-bit value from stage 2 and
4290 * a pointer to as many bytes as are stored per character.
4291 * The pointer points to the character's bytes in stage 3.
4292 * Bits 15..0 of the stage 2 entry contain the stage 3 index
4293 * for that pointer, while bits 31..16 are flags for which of
4294 * the 16 characters in the block are roundtrip-assigned.
4295 *
4296 * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
4297 * respectively as uint32_t, in the platform encoding.
4298 * For 3-byte codepages, the bytes are always stored in big-endian order.
4299 *
4300 * For EUC encodings that use only either 0x8e or 0x8f as the first
4301 * byte of their longest byte sequences, the first two bytes in
4302 * this third stage indicate with their 7th bits whether these bytes
4303 * are to be written directly or actually need to be preceeded by
4304 * one of the two Single-Shift codes. With this, the third stage
4305 * stores one byte fewer per character than the actual maximum length of
4306 * EUC byte sequences.
4307 *
4308 * Other than that, leading zero bytes are removed and the other
4309 * bytes output. A single zero byte may be output if the "assigned"
4310 * bit in stage 2 was on.
4311 * The data structure does not support zero byte output as a fallback,
4312 * and also does not allow output of leading zeros.
4313 */
4314 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4315
4316 /* get the bytes and the length for the output */
4317 switch(outputType) {
4318 case MBCS_OUTPUT_2:
4319 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4320 if(value<=0xff) {
4321 length=1;
4322 } else {
4323 length=2;
4324 }
4325 break;
4326 case MBCS_OUTPUT_2_SISO:
4327 /* 1/2-byte stateful with Shift-In/Shift-Out */
4328 /*
4329 * Save the old state in the converter object
4330 * right here, then change the local prevLength state variable if necessary.
4331 * Then, if this character turns out to be unassigned or a fallback that
4332 * is not taken, the callback code must not save the new state in the converter
4333 * because the new state is for a character that is not output.
4334 * However, the callback must still restore the state from the converter
4335 * in case the callback function changed it for its output.
4336 */
4337 cnv->fromUnicodeStatus=prevLength; /* save the old state */
4338 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4339 if(value<=0xff) {
4340 if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
4341 /* no mapping, leave value==0 */
4342 length=0;
4343 } else if(prevLength<=1) {
4344 length=1;
4345 } else {
4346 /* change from double-byte mode to single-byte */
4347 if (si_value_length == 1) {
4348 value|=(uint32_t)si_value[0]<<8;
4349 length = 2;
4350 } else if (si_value_length == 2) {
4351 value|=(uint32_t)si_value[1]<<8;
4352 value|=(uint32_t)si_value[0]<<16;
4353 length = 3;
4354 }
4355 prevLength=1;
4356 }
4357 } else {
4358 if(prevLength==2) {
4359 length=2;
4360 } else {
4361 /* change from single-byte mode to double-byte */
4362 if (so_value_length == 1) {
4363 value|=(uint32_t)so_value[0]<<16;
4364 length = 3;
4365 } else if (so_value_length == 2) {
4366 value|=(uint32_t)so_value[1]<<16;
4367 value|=(uint32_t)so_value[0]<<24;
4368 length = 4;
4369 }
4370 prevLength=2;
4371 }
4372 }
4373 break;
4374 case MBCS_OUTPUT_DBCS_ONLY:
4375 /* table with single-byte results, but only DBCS mappings used */
4376 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4377 if(value<=0xff) {
4378 /* no mapping or SBCS result, not taken for DBCS-only */
4379 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4380 length=0;
4381 } else {
4382 length=2;
4383 }
4384 break;
4385 case MBCS_OUTPUT_3:
4386 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4387 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4388 if(value<=0xff) {
4389 length=1;
4390 } else if(value<=0xffff) {
4391 length=2;
4392 } else {
4393 length=3;
4394 }
4395 break;
4396 case MBCS_OUTPUT_4:
4397 value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
4398 if(value<=0xff) {
4399 length=1;
4400 } else if(value<=0xffff) {
4401 length=2;
4402 } else if(value<=0xffffff) {
4403 length=3;
4404 } else {
4405 length=4;
4406 }
4407 break;
4408 case MBCS_OUTPUT_3_EUC:
4409 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4410 /* EUC 16-bit fixed-length representation */
4411 if(value<=0xff) {
4412 length=1;
4413 } else if((value&0x8000)==0) {
4414 value|=0x8e8000;
4415 length=3;
4416 } else if((value&0x80)==0) {
4417 value|=0x8f0080;
4418 length=3;
4419 } else {
4420 length=2;
4421 }
4422 break;
4423 case MBCS_OUTPUT_4_EUC:
4424 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4425 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4426 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4427 if(value<=0xff) {
4428 length=1;
4429 } else if(value<=0xffff) {
4430 length=2;
4431 } else if((value&0x800000)==0) {
4432 value|=0x8e800000;
4433 length=4;
4434 } else if((value&0x8000)==0) {
4435 value|=0x8f008000;
4436 length=4;
4437 } else {
4438 length=3;
4439 }
4440 break;
4441 default:
4442 /* must not occur */
4443 /*
4444 * To avoid compiler warnings that value & length may be
4445 * used without having been initialized, we set them here.
4446 * In reality, this is unreachable code.
4447 * Not having a default branch also causes warnings with
4448 * some compilers.
4449 */
4450 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4451 length=0;
4452 break;
4453 }
4454
4455 /* is this code point assigned, or do we use fallbacks? */
4456 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
4457 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
4458 ) {
4459 /*
4460 * We allow a 0 byte output if the "assigned" bit is set for this entry.
4461 * There is no way with this data structure for fallback output
4462 * to be a zero byte.
4463 */
4464
4465 unassigned:
4466 /* try an extension mapping */
4467 pArgs->source=source;
4468 c=_extFromU(cnv, cnv->sharedData,
4469 c, &source, sourceLimit,
4470 &target, target+targetCapacity,
4471 &offsets, sourceIndex,
4472 pArgs->flush,
4473 pErrorCode);
4474 nextSourceIndex+=(int32_t)(source-pArgs->source);
4475 prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
4476
4477 if(U_FAILURE(*pErrorCode)) {
4478 /* not mappable or buffer overflow */
4479 break;
4480 } else {
4481 /* a mapping was written to the target, continue */
4482
4483 /* recalculate the targetCapacity after an extension mapping */
4484 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4485
4486 /* normal end of conversion: prepare for a new character */
4487 if(offsets!=NULL) {
4488 prevSourceIndex=sourceIndex;
4489 sourceIndex=nextSourceIndex;
4490 }
4491 continue;
4492 }
4493 }
4494 }
4495
4496 /* write the output character bytes from value and length */
4497 /* from the first if in the loop we know that targetCapacity>0 */
4498 if(length<=targetCapacity) {
4499 if(offsets==NULL) {
4500 switch(length) {
4501 /* each branch falls through to the next one */
4502 case 4:
4503 *target++=(uint8_t)(value>>24);
4504 case 3: /*fall through*/
4505 *target++=(uint8_t)(value>>16);
4506 case 2: /*fall through*/
4507 *target++=(uint8_t)(value>>8);
4508 case 1: /*fall through*/
4509 *target++=(uint8_t)value;
4510 default:
4511 /* will never occur */
4512 break;
4513 }
4514 } else {
4515 switch(length) {
4516 /* each branch falls through to the next one */
4517 case 4:
4518 *target++=(uint8_t)(value>>24);
4519 *offsets++=sourceIndex;
4520 case 3: /*fall through*/
4521 *target++=(uint8_t)(value>>16);
4522 *offsets++=sourceIndex;
4523 case 2: /*fall through*/
4524 *target++=(uint8_t)(value>>8);
4525 *offsets++=sourceIndex;
4526 case 1: /*fall through*/
4527 *target++=(uint8_t)value;
4528 *offsets++=sourceIndex;
4529 default:
4530 /* will never occur */
4531 break;
4532 }
4533 }
4534 targetCapacity-=length;
4535 } else {
4536 uint8_t *charErrorBuffer;
4537
4538 /*
4539 * We actually do this backwards here:
4540 * In order to save an intermediate variable, we output
4541 * first to the overflow buffer what does not fit into the
4542 * regular target.
4543 */
4544 /* we know that 1<=targetCapacity<length<=4 */
4545 length-=targetCapacity;
4546 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
4547 switch(length) {
4548 /* each branch falls through to the next one */
4549 case 3:
4550 *charErrorBuffer++=(uint8_t)(value>>16);
4551 case 2: /*fall through*/
4552 *charErrorBuffer++=(uint8_t)(value>>8);
4553 case 1: /*fall through*/
4554 *charErrorBuffer=(uint8_t)value;
4555 default:
4556 /* will never occur */
4557 break;
4558 }
4559 cnv->charErrorBufferLength=(int8_t)length;
4560
4561 /* now output what fits into the regular target */
4562 value>>=8*length; /* length was reduced by targetCapacity */
4563 switch(targetCapacity) {
4564 /* each branch falls through to the next one */
4565 case 3:
4566 *target++=(uint8_t)(value>>16);
4567 if(offsets!=NULL) {
4568 *offsets++=sourceIndex;
4569 }
4570 case 2: /*fall through*/
4571 *target++=(uint8_t)(value>>8);
4572 if(offsets!=NULL) {
4573 *offsets++=sourceIndex;
4574 }
4575 case 1: /*fall through*/
4576 *target++=(uint8_t)value;
4577 if(offsets!=NULL) {
4578 *offsets++=sourceIndex;
4579 }
4580 default:
4581 /* will never occur */
4582 break;
4583 }
4584
4585 /* target overflow */
4586 targetCapacity=0;
4587 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4588 c=0;
4589 break;
4590 }
4591
4592 /* normal end of conversion: prepare for a new character */
4593 c=0;
4594 if(offsets!=NULL) {
4595 prevSourceIndex=sourceIndex;
4596 sourceIndex=nextSourceIndex;
4597 }
4598 continue;
4599 } else {
4600 /* target is full */
4601 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4602 break;
4603 }
4604 }
4605
4606 /*
4607 * the end of the input stream and detection of truncated input
4608 * are handled by the framework, but for EBCDIC_STATEFUL conversion
4609 * we need to emit an SI at the very end
4610 *
4611 * conditions:
4612 * successful
4613 * EBCDIC_STATEFUL in DBCS mode
4614 * end of input and no truncated input
4615 */
4616 if( U_SUCCESS(*pErrorCode) &&
4617 outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
4618 pArgs->flush && source>=sourceLimit && c==0
4619 ) {
4620 /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
4621 if(targetCapacity>0) {
4622 *target++=(uint8_t)si_value[0];
4623 if (si_value_length == 2) {
4624 if (targetCapacity<2) {
4625 cnv->charErrorBuffer[0]=(uint8_t)si_value[1];
4626 cnv->charErrorBufferLength=1;
4627 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4628 } else {
4629 *target++=(uint8_t)si_value[1];
4630 }
4631 }
4632 if(offsets!=NULL) {
4633 /* set the last source character's index (sourceIndex points at sourceLimit now) */
4634 *offsets++=prevSourceIndex;
4635 }
4636 } else {
4637 /* target is full */
4638 cnv->charErrorBuffer[0]=(uint8_t)si_value[0];
4639 if (si_value_length == 2) {
4640 cnv->charErrorBuffer[1]=(uint8_t)si_value[1];
4641 }
4642 cnv->charErrorBufferLength=si_value_length;
4643 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4644 }
4645 prevLength=1; /* we switched into SBCS */
4646 }
4647
4648 /* set the converter state back into UConverter */
4649 cnv->fromUChar32=c;
4650 cnv->fromUnicodeStatus=prevLength;
4651
4652 /* write back the updated pointers */
4653 pArgs->source=source;
4654 pArgs->target=(char *)target;
4655 pArgs->offsets=offsets;
4656 }
4657
4658 /*
4659 * This is another simple conversion function for internal use by other
4660 * conversion implementations.
4661 * It does not use the converter state nor call callbacks.
4662 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4663 * It handles conversion extensions but not GB 18030.
4664 *
4665 * It converts one single Unicode code point into codepage bytes, encoded
4666 * as one 32-bit value. The function returns the number of bytes in *pValue:
4667 * 1..4 the number of bytes in *pValue
4668 * 0 unassigned (*pValue undefined)
4669 * -1 illegal (currently not used, *pValue undefined)
4670 *
4671 * *pValue will contain the resulting bytes with the last byte in bits 7..0,
4672 * the second to last byte in bits 15..8, etc.
4673 * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
4674 */
4675 U_CFUNC int32_t
ucnv_MBCSFromUChar32(UConverterSharedData * sharedData,UChar32 c,uint32_t * pValue,UBool useFallback)4676 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
4677 UChar32 c, uint32_t *pValue,
4678 UBool useFallback) {
4679 const int32_t *cx;
4680 const uint16_t *table;
4681 #if 0
4682 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4683 const uint8_t *p;
4684 #endif
4685 uint32_t stage2Entry;
4686 uint32_t value;
4687 int32_t length;
4688
4689 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4690 if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4691 table=sharedData->mbcs.fromUnicodeTable;
4692
4693 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4694 if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
4695 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4696 /* is this code point assigned, or do we use fallbacks? */
4697 if(useFallback ? value>=0x800 : value>=0xc00) {
4698 *pValue=value&0xff;
4699 return 1;
4700 }
4701 } else /* outputType!=MBCS_OUTPUT_1 */ {
4702 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4703
4704 /* get the bytes and the length for the output */
4705 switch(sharedData->mbcs.outputType) {
4706 case MBCS_OUTPUT_2:
4707 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4708 if(value<=0xff) {
4709 length=1;
4710 } else {
4711 length=2;
4712 }
4713 break;
4714 #if 0
4715 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4716 case MBCS_OUTPUT_DBCS_ONLY:
4717 /* table with single-byte results, but only DBCS mappings used */
4718 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4719 if(value<=0xff) {
4720 /* no mapping or SBCS result, not taken for DBCS-only */
4721 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4722 length=0;
4723 } else {
4724 length=2;
4725 }
4726 break;
4727 case MBCS_OUTPUT_3:
4728 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4729 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4730 if(value<=0xff) {
4731 length=1;
4732 } else if(value<=0xffff) {
4733 length=2;
4734 } else {
4735 length=3;
4736 }
4737 break;
4738 case MBCS_OUTPUT_4:
4739 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4740 if(value<=0xff) {
4741 length=1;
4742 } else if(value<=0xffff) {
4743 length=2;
4744 } else if(value<=0xffffff) {
4745 length=3;
4746 } else {
4747 length=4;
4748 }
4749 break;
4750 case MBCS_OUTPUT_3_EUC:
4751 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4752 /* EUC 16-bit fixed-length representation */
4753 if(value<=0xff) {
4754 length=1;
4755 } else if((value&0x8000)==0) {
4756 value|=0x8e8000;
4757 length=3;
4758 } else if((value&0x80)==0) {
4759 value|=0x8f0080;
4760 length=3;
4761 } else {
4762 length=2;
4763 }
4764 break;
4765 case MBCS_OUTPUT_4_EUC:
4766 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4767 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4768 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4769 if(value<=0xff) {
4770 length=1;
4771 } else if(value<=0xffff) {
4772 length=2;
4773 } else if((value&0x800000)==0) {
4774 value|=0x8e800000;
4775 length=4;
4776 } else if((value&0x8000)==0) {
4777 value|=0x8f008000;
4778 length=4;
4779 } else {
4780 length=3;
4781 }
4782 break;
4783 #endif
4784 default:
4785 /* must not occur */
4786 return -1;
4787 }
4788
4789 /* is this code point assigned, or do we use fallbacks? */
4790 if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
4791 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
4792 ) {
4793 /*
4794 * We allow a 0 byte output if the "assigned" bit is set for this entry.
4795 * There is no way with this data structure for fallback output
4796 * to be a zero byte.
4797 */
4798 /* assigned */
4799 *pValue=value;
4800 return length;
4801 }
4802 }
4803 }
4804
4805 cx=sharedData->mbcs.extIndexes;
4806 if(cx!=NULL) {
4807 length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
4808 return length>=0 ? length : -length; /* return abs(length); */
4809 }
4810
4811 /* unassigned */
4812 return 0;
4813 }
4814
4815
4816 #if 0
4817 /*
4818 * This function has been moved to ucnv2022.c for inlining.
4819 * This implementation is here only for documentation purposes
4820 */
4821
4822 /**
4823 * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
4824 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4825 * It does not handle conversion extensions (_extFromU()).
4826 *
4827 * It returns the codepage byte for the code point, or -1 if it is unassigned.
4828 */
4829 U_CFUNC int32_t
4830 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
4831 UChar32 c,
4832 UBool useFallback) {
4833 const uint16_t *table;
4834 int32_t value;
4835
4836 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4837 if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4838 return -1;
4839 }
4840
4841 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4842 table=sharedData->mbcs.fromUnicodeTable;
4843
4844 /* get the byte for the output */
4845 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4846 /* is this code point assigned, or do we use fallbacks? */
4847 if(useFallback ? value>=0x800 : value>=0xc00) {
4848 return value&0xff;
4849 } else {
4850 return -1;
4851 }
4852 }
4853 #endif
4854
4855 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */
4856
4857 /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */
4858 static const UChar32
4859 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 };
4860
4861 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
4862 static const UChar32
4863 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
4864
4865 static void
ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs * pFromUArgs,UConverterToUnicodeArgs * pToUArgs,UErrorCode * pErrorCode)4866 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
4867 UConverterToUnicodeArgs *pToUArgs,
4868 UErrorCode *pErrorCode) {
4869 UConverter *utf8, *cnv;
4870 const uint8_t *source, *sourceLimit;
4871 uint8_t *target;
4872 int32_t targetCapacity;
4873
4874 const uint16_t *table, *sbcsIndex;
4875 const uint16_t *results;
4876
4877 int8_t oldToULength, toULength, toULimit;
4878
4879 UChar32 c;
4880 uint8_t b, t1, t2;
4881
4882 uint32_t asciiRoundtrips;
4883 uint16_t value, minValue;
4884 UBool hasSupplementary;
4885
4886 /* set up the local pointers */
4887 utf8=pToUArgs->converter;
4888 cnv=pFromUArgs->converter;
4889 source=(uint8_t *)pToUArgs->source;
4890 sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
4891 target=(uint8_t *)pFromUArgs->target;
4892 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
4893
4894 table=cnv->sharedData->mbcs.fromUnicodeTable;
4895 sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
4896 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
4897 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
4898 } else {
4899 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
4900 }
4901 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4902
4903 if(cnv->useFallback) {
4904 /* use all roundtrip and fallback results */
4905 minValue=0x800;
4906 } else {
4907 /* use only roundtrips and fallbacks from private-use characters */
4908 minValue=0xc00;
4909 }
4910 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
4911
4912 /* get the converter state from the UTF-8 UConverter */
4913 c=(UChar32)utf8->toUnicodeStatus;
4914 if(c!=0) {
4915 toULength=oldToULength=utf8->toULength;
4916 toULimit=(int8_t)utf8->mode;
4917 } else {
4918 toULength=oldToULength=toULimit=0;
4919 }
4920
4921 /*
4922 * Make sure that the last byte sequence before sourceLimit is complete
4923 * or runs into a lead byte.
4924 * Do not go back into the bytes that will be read for finishing a partial
4925 * sequence from the previous buffer.
4926 * In the conversion loop compare source with sourceLimit only once
4927 * per multi-byte character.
4928 */
4929 {
4930 int32_t i, length;
4931
4932 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
4933 for(i=0; i<3 && i<length;) {
4934 b=*(sourceLimit-i-1);
4935 if(U8_IS_TRAIL(b)) {
4936 ++i;
4937 } else {
4938 if(i<U8_COUNT_TRAIL_BYTES(b)) {
4939 /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
4940 sourceLimit-=i+1;
4941 }
4942 break;
4943 }
4944 }
4945 }
4946
4947 if(c!=0 && targetCapacity>0) {
4948 utf8->toUnicodeStatus=0;
4949 utf8->toULength=0;
4950 goto moreBytes;
4951 /*
4952 * Note: We could avoid the goto by duplicating some of the moreBytes
4953 * code, but only up to the point of collecting a complete UTF-8
4954 * sequence; then recurse for the toUBytes[toULength]
4955 * and then continue with normal conversion.
4956 *
4957 * If so, move this code to just after initializing the minimum
4958 * set of local variables for reading the UTF-8 input
4959 * (utf8, source, target, limits but not cnv, table, minValue, etc.).
4960 *
4961 * Potential advantages:
4962 * - avoid the goto
4963 * - oldToULength could become a local variable in just those code blocks
4964 * that deal with buffer boundaries
4965 * - possibly faster if the goto prevents some compiler optimizations
4966 * (this would need measuring to confirm)
4967 * Disadvantage:
4968 * - code duplication
4969 */
4970 }
4971
4972 /* conversion loop */
4973 while(source<sourceLimit) {
4974 if(targetCapacity>0) {
4975 b=*source++;
4976 if((int8_t)b>=0) {
4977 /* convert ASCII */
4978 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
4979 *target++=(uint8_t)b;
4980 --targetCapacity;
4981 continue;
4982 } else {
4983 c=b;
4984 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
4985 }
4986 } else {
4987 if(b<0xe0) {
4988 if( /* handle U+0080..U+07FF inline */
4989 b>=0xc2 &&
4990 (t1=(uint8_t)(*source-0x80)) <= 0x3f
4991 ) {
4992 c=b&0x1f;
4993 ++source;
4994 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
4995 if(value>=minValue) {
4996 *target++=(uint8_t)value;
4997 --targetCapacity;
4998 continue;
4999 } else {
5000 c=(c<<6)|t1;
5001 }
5002 } else {
5003 c=-1;
5004 }
5005 } else if(b==0xe0) {
5006 if( /* handle U+0800..U+0FFF inline */
5007 (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
5008 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5009 ) {
5010 c=t1;
5011 source+=2;
5012 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
5013 if(value>=minValue) {
5014 *target++=(uint8_t)value;
5015 --targetCapacity;
5016 continue;
5017 } else {
5018 c=(c<<6)|t2;
5019 }
5020 } else {
5021 c=-1;
5022 }
5023 } else {
5024 c=-1;
5025 }
5026
5027 if(c<0) {
5028 /* handle "complicated" and error cases, and continuing partial characters */
5029 oldToULength=0;
5030 toULength=1;
5031 toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5032 c=b;
5033 moreBytes:
5034 while(toULength<toULimit) {
5035 /*
5036 * The sourceLimit may have been adjusted before the conversion loop
5037 * to stop before a truncated sequence.
5038 * Here we need to use the real limit in case we have two truncated
5039 * sequences at the end.
5040 * See ticket #7492.
5041 */
5042 if(source<(uint8_t *)pToUArgs->sourceLimit) {
5043 b=*source;
5044 if(U8_IS_TRAIL(b)) {
5045 ++source;
5046 ++toULength;
5047 c=(c<<6)+b;
5048 } else {
5049 break; /* sequence too short, stop with toULength<toULimit */
5050 }
5051 } else {
5052 /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5053 source-=(toULength-oldToULength);
5054 while(oldToULength<toULength) {
5055 utf8->toUBytes[oldToULength++]=*source++;
5056 }
5057 utf8->toUnicodeStatus=c;
5058 utf8->toULength=toULength;
5059 utf8->mode=toULimit;
5060 pToUArgs->source=(char *)source;
5061 pFromUArgs->target=(char *)target;
5062 return;
5063 }
5064 }
5065
5066 if( toULength==toULimit && /* consumed all trail bytes */
5067 (toULength==3 || toULength==2) && /* BMP */
5068 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5069 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */
5070 ) {
5071 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5072 } else if(
5073 toULength==toULimit && toULength==4 &&
5074 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5075 ) {
5076 /* supplementary code point */
5077 if(!hasSupplementary) {
5078 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5079 value=0;
5080 } else {
5081 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5082 }
5083 } else {
5084 /* error handling: illegal UTF-8 byte sequence */
5085 source-=(toULength-oldToULength);
5086 while(oldToULength<toULength) {
5087 utf8->toUBytes[oldToULength++]=*source++;
5088 }
5089 utf8->toULength=toULength;
5090 pToUArgs->source=(char *)source;
5091 pFromUArgs->target=(char *)target;
5092 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5093 return;
5094 }
5095 }
5096 }
5097
5098 if(value>=minValue) {
5099 /* output the mapping for c */
5100 *target++=(uint8_t)value;
5101 --targetCapacity;
5102 } else {
5103 /* value<minValue means c is unassigned (unmappable) */
5104 /*
5105 * Try an extension mapping.
5106 * Pass in no source because we don't have UTF-16 input.
5107 * If we have a partial match on c, we will return and revert
5108 * to UTF-8->UTF-16->charset conversion.
5109 */
5110 static const UChar nul=0;
5111 const UChar *noSource=&nul;
5112 c=_extFromU(cnv, cnv->sharedData,
5113 c, &noSource, noSource,
5114 &target, target+targetCapacity,
5115 NULL, -1,
5116 pFromUArgs->flush,
5117 pErrorCode);
5118
5119 if(U_FAILURE(*pErrorCode)) {
5120 /* not mappable or buffer overflow */
5121 cnv->fromUChar32=c;
5122 break;
5123 } else if(cnv->preFromUFirstCP>=0) {
5124 /*
5125 * Partial match, return and revert to pivoting.
5126 * In normal from-UTF-16 conversion, we would just continue
5127 * but then exit the loop because the extension match would
5128 * have consumed the source.
5129 */
5130 *pErrorCode=U_USING_DEFAULT_WARNING;
5131 break;
5132 } else {
5133 /* a mapping was written to the target, continue */
5134
5135 /* recalculate the targetCapacity after an extension mapping */
5136 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5137 }
5138 }
5139 } else {
5140 /* target is full */
5141 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5142 break;
5143 }
5144 }
5145
5146 /*
5147 * The sourceLimit may have been adjusted before the conversion loop
5148 * to stop before a truncated sequence.
5149 * If so, then collect the truncated sequence now.
5150 */
5151 if(U_SUCCESS(*pErrorCode) &&
5152 cnv->preFromUFirstCP<0 &&
5153 source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5154 c=utf8->toUBytes[0]=b=*source++;
5155 toULength=1;
5156 toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5157 while(source<sourceLimit) {
5158 utf8->toUBytes[toULength++]=b=*source++;
5159 c=(c<<6)+b;
5160 }
5161 utf8->toUnicodeStatus=c;
5162 utf8->toULength=toULength;
5163 utf8->mode=toULimit;
5164 }
5165
5166 /* write back the updated pointers */
5167 pToUArgs->source=(char *)source;
5168 pFromUArgs->target=(char *)target;
5169 }
5170
5171 static void
ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs * pFromUArgs,UConverterToUnicodeArgs * pToUArgs,UErrorCode * pErrorCode)5172 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5173 UConverterToUnicodeArgs *pToUArgs,
5174 UErrorCode *pErrorCode) {
5175 UConverter *utf8, *cnv;
5176 const uint8_t *source, *sourceLimit;
5177 uint8_t *target;
5178 int32_t targetCapacity;
5179
5180 const uint16_t *table, *mbcsIndex;
5181 const uint16_t *results;
5182
5183 int8_t oldToULength, toULength, toULimit;
5184
5185 UChar32 c;
5186 uint8_t b, t1, t2;
5187
5188 uint32_t stage2Entry;
5189 uint32_t asciiRoundtrips;
5190 uint16_t value;
5191 UBool hasSupplementary;
5192
5193 /* set up the local pointers */
5194 utf8=pToUArgs->converter;
5195 cnv=pFromUArgs->converter;
5196 source=(uint8_t *)pToUArgs->source;
5197 sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5198 target=(uint8_t *)pFromUArgs->target;
5199 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5200
5201 table=cnv->sharedData->mbcs.fromUnicodeTable;
5202 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
5203 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5204 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5205 } else {
5206 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5207 }
5208 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5209
5210 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5211
5212 /* get the converter state from the UTF-8 UConverter */
5213 c=(UChar32)utf8->toUnicodeStatus;
5214 if(c!=0) {
5215 toULength=oldToULength=utf8->toULength;
5216 toULimit=(int8_t)utf8->mode;
5217 } else {
5218 toULength=oldToULength=toULimit=0;
5219 }
5220
5221 /*
5222 * Make sure that the last byte sequence before sourceLimit is complete
5223 * or runs into a lead byte.
5224 * Do not go back into the bytes that will be read for finishing a partial
5225 * sequence from the previous buffer.
5226 * In the conversion loop compare source with sourceLimit only once
5227 * per multi-byte character.
5228 */
5229 {
5230 int32_t i, length;
5231
5232 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5233 for(i=0; i<3 && i<length;) {
5234 b=*(sourceLimit-i-1);
5235 if(U8_IS_TRAIL(b)) {
5236 ++i;
5237 } else {
5238 if(i<U8_COUNT_TRAIL_BYTES(b)) {
5239 /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
5240 sourceLimit-=i+1;
5241 }
5242 break;
5243 }
5244 }
5245 }
5246
5247 if(c!=0 && targetCapacity>0) {
5248 utf8->toUnicodeStatus=0;
5249 utf8->toULength=0;
5250 goto moreBytes;
5251 /* See note in ucnv_SBCSFromUTF8() about this goto. */
5252 }
5253
5254 /* conversion loop */
5255 while(source<sourceLimit) {
5256 if(targetCapacity>0) {
5257 b=*source++;
5258 if((int8_t)b>=0) {
5259 /* convert ASCII */
5260 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5261 *target++=b;
5262 --targetCapacity;
5263 continue;
5264 } else {
5265 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
5266 if(value==0) {
5267 c=b;
5268 goto unassigned;
5269 }
5270 }
5271 } else {
5272 if(b>0xe0) {
5273 if( /* handle U+1000..U+D7FF inline */
5274 (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) ||
5275 (b==0xed && (t1 <= 0x1f))) &&
5276 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5277 ) {
5278 c=((b&0xf)<<6)|t1;
5279 source+=2;
5280 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
5281 if(value==0) {
5282 c=(c<<6)|t2;
5283 goto unassigned;
5284 }
5285 } else {
5286 c=-1;
5287 }
5288 } else if(b<0xe0) {
5289 if( /* handle U+0080..U+07FF inline */
5290 b>=0xc2 &&
5291 (t1=(uint8_t)(*source-0x80)) <= 0x3f
5292 ) {
5293 c=b&0x1f;
5294 ++source;
5295 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
5296 if(value==0) {
5297 c=(c<<6)|t1;
5298 goto unassigned;
5299 }
5300 } else {
5301 c=-1;
5302 }
5303 } else {
5304 c=-1;
5305 }
5306
5307 if(c<0) {
5308 /* handle "complicated" and error cases, and continuing partial characters */
5309 oldToULength=0;
5310 toULength=1;
5311 toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5312 c=b;
5313 moreBytes:
5314 while(toULength<toULimit) {
5315 /*
5316 * The sourceLimit may have been adjusted before the conversion loop
5317 * to stop before a truncated sequence.
5318 * Here we need to use the real limit in case we have two truncated
5319 * sequences at the end.
5320 * See ticket #7492.
5321 */
5322 if(source<(uint8_t *)pToUArgs->sourceLimit) {
5323 b=*source;
5324 if(U8_IS_TRAIL(b)) {
5325 ++source;
5326 ++toULength;
5327 c=(c<<6)+b;
5328 } else {
5329 break; /* sequence too short, stop with toULength<toULimit */
5330 }
5331 } else {
5332 /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5333 source-=(toULength-oldToULength);
5334 while(oldToULength<toULength) {
5335 utf8->toUBytes[oldToULength++]=*source++;
5336 }
5337 utf8->toUnicodeStatus=c;
5338 utf8->toULength=toULength;
5339 utf8->mode=toULimit;
5340 pToUArgs->source=(char *)source;
5341 pFromUArgs->target=(char *)target;
5342 return;
5343 }
5344 }
5345
5346 if( toULength==toULimit && /* consumed all trail bytes */
5347 (toULength==3 || toULength==2) && /* BMP */
5348 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5349 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */
5350 ) {
5351 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5352 } else if(
5353 toULength==toULimit && toULength==4 &&
5354 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5355 ) {
5356 /* supplementary code point */
5357 if(!hasSupplementary) {
5358 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5359 stage2Entry=0;
5360 } else {
5361 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5362 }
5363 } else {
5364 /* error handling: illegal UTF-8 byte sequence */
5365 source-=(toULength-oldToULength);
5366 while(oldToULength<toULength) {
5367 utf8->toUBytes[oldToULength++]=*source++;
5368 }
5369 utf8->toULength=toULength;
5370 pToUArgs->source=(char *)source;
5371 pFromUArgs->target=(char *)target;
5372 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5373 return;
5374 }
5375
5376 /* get the bytes and the length for the output */
5377 /* MBCS_OUTPUT_2 */
5378 value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
5379
5380 /* is this code point assigned, or do we use fallbacks? */
5381 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
5382 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
5383 ) {
5384 goto unassigned;
5385 }
5386 }
5387 }
5388
5389 /* write the output character bytes from value and length */
5390 /* from the first if in the loop we know that targetCapacity>0 */
5391 if(value<=0xff) {
5392 /* this is easy because we know that there is enough space */
5393 *target++=(uint8_t)value;
5394 --targetCapacity;
5395 } else /* length==2 */ {
5396 *target++=(uint8_t)(value>>8);
5397 if(2<=targetCapacity) {
5398 *target++=(uint8_t)value;
5399 targetCapacity-=2;
5400 } else {
5401 cnv->charErrorBuffer[0]=(char)value;
5402 cnv->charErrorBufferLength=1;
5403
5404 /* target overflow */
5405 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5406 break;
5407 }
5408 }
5409 continue;
5410
5411 unassigned:
5412 {
5413 /*
5414 * Try an extension mapping.
5415 * Pass in no source because we don't have UTF-16 input.
5416 * If we have a partial match on c, we will return and revert
5417 * to UTF-8->UTF-16->charset conversion.
5418 */
5419 static const UChar nul=0;
5420 const UChar *noSource=&nul;
5421 c=_extFromU(cnv, cnv->sharedData,
5422 c, &noSource, noSource,
5423 &target, target+targetCapacity,
5424 NULL, -1,
5425 pFromUArgs->flush,
5426 pErrorCode);
5427
5428 if(U_FAILURE(*pErrorCode)) {
5429 /* not mappable or buffer overflow */
5430 cnv->fromUChar32=c;
5431 break;
5432 } else if(cnv->preFromUFirstCP>=0) {
5433 /*
5434 * Partial match, return and revert to pivoting.
5435 * In normal from-UTF-16 conversion, we would just continue
5436 * but then exit the loop because the extension match would
5437 * have consumed the source.
5438 */
5439 *pErrorCode=U_USING_DEFAULT_WARNING;
5440 break;
5441 } else {
5442 /* a mapping was written to the target, continue */
5443
5444 /* recalculate the targetCapacity after an extension mapping */
5445 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5446 continue;
5447 }
5448 }
5449 } else {
5450 /* target is full */
5451 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5452 break;
5453 }
5454 }
5455
5456 /*
5457 * The sourceLimit may have been adjusted before the conversion loop
5458 * to stop before a truncated sequence.
5459 * If so, then collect the truncated sequence now.
5460 */
5461 if(U_SUCCESS(*pErrorCode) &&
5462 cnv->preFromUFirstCP<0 &&
5463 source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5464 c=utf8->toUBytes[0]=b=*source++;
5465 toULength=1;
5466 toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5467 while(source<sourceLimit) {
5468 utf8->toUBytes[toULength++]=b=*source++;
5469 c=(c<<6)+b;
5470 }
5471 utf8->toUnicodeStatus=c;
5472 utf8->toULength=toULength;
5473 utf8->mode=toULimit;
5474 }
5475
5476 /* write back the updated pointers */
5477 pToUArgs->source=(char *)source;
5478 pFromUArgs->target=(char *)target;
5479 }
5480
5481 /* miscellaneous ------------------------------------------------------------ */
5482
5483 static void
ucnv_MBCSGetStarters(const UConverter * cnv,UBool starters[256],UErrorCode * pErrorCode)5484 ucnv_MBCSGetStarters(const UConverter* cnv,
5485 UBool starters[256],
5486 UErrorCode *pErrorCode) {
5487 const int32_t *state0;
5488 int i;
5489
5490 state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
5491 for(i=0; i<256; ++i) {
5492 /* all bytes that cause a state transition from state 0 are lead bytes */
5493 starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
5494 }
5495 }
5496
5497 /*
5498 * This is an internal function that allows other converter implementations
5499 * to check whether a byte is a lead byte.
5500 */
5501 U_CFUNC UBool
ucnv_MBCSIsLeadByte(UConverterSharedData * sharedData,char byte)5502 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
5503 return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
5504 }
5505
5506 static void
ucnv_MBCSWriteSub(UConverterFromUnicodeArgs * pArgs,int32_t offsetIndex,UErrorCode * pErrorCode)5507 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
5508 int32_t offsetIndex,
5509 UErrorCode *pErrorCode) {
5510 UConverter *cnv=pArgs->converter;
5511 char *p, *subchar;
5512 char buffer[4];
5513 int32_t length;
5514
5515 /* first, select between subChar and subChar1 */
5516 if( cnv->subChar1!=0 &&
5517 (cnv->sharedData->mbcs.extIndexes!=NULL ?
5518 cnv->useSubChar1 :
5519 (cnv->invalidUCharBuffer[0]<=0xff))
5520 ) {
5521 /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
5522 subchar=(char *)&cnv->subChar1;
5523 length=1;
5524 } else {
5525 /* select subChar in all other cases */
5526 subchar=(char *)cnv->subChars;
5527 length=cnv->subCharLen;
5528 }
5529
5530 /* reset the selector for the next code point */
5531 cnv->useSubChar1=FALSE;
5532
5533 if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
5534 p=buffer;
5535
5536 /* fromUnicodeStatus contains prevLength */
5537 switch(length) {
5538 case 1:
5539 if(cnv->fromUnicodeStatus==2) {
5540 /* DBCS mode and SBCS sub char: change to SBCS */
5541 cnv->fromUnicodeStatus=1;
5542 *p++=UCNV_SI;
5543 }
5544 *p++=subchar[0];
5545 break;
5546 case 2:
5547 if(cnv->fromUnicodeStatus<=1) {
5548 /* SBCS mode and DBCS sub char: change to DBCS */
5549 cnv->fromUnicodeStatus=2;
5550 *p++=UCNV_SO;
5551 }
5552 *p++=subchar[0];
5553 *p++=subchar[1];
5554 break;
5555 default:
5556 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
5557 return;
5558 }
5559 subchar=buffer;
5560 length=(int32_t)(p-buffer);
5561 }
5562
5563 ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
5564 }
5565
5566 U_CFUNC UConverterType
ucnv_MBCSGetType(const UConverter * converter)5567 ucnv_MBCSGetType(const UConverter* converter) {
5568 /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
5569 if(converter->sharedData->mbcs.countStates==1) {
5570 return (UConverterType)UCNV_SBCS;
5571 } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
5572 return (UConverterType)UCNV_EBCDIC_STATEFUL;
5573 } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
5574 return (UConverterType)UCNV_DBCS;
5575 }
5576 return (UConverterType)UCNV_MBCS;
5577 }
5578
5579 static const UConverterImpl _SBCSUTF8Impl={
5580 UCNV_MBCS,
5581
5582 ucnv_MBCSLoad,
5583 ucnv_MBCSUnload,
5584
5585 ucnv_MBCSOpen,
5586 NULL,
5587 NULL,
5588
5589 ucnv_MBCSToUnicodeWithOffsets,
5590 ucnv_MBCSToUnicodeWithOffsets,
5591 ucnv_MBCSFromUnicodeWithOffsets,
5592 ucnv_MBCSFromUnicodeWithOffsets,
5593 ucnv_MBCSGetNextUChar,
5594
5595 ucnv_MBCSGetStarters,
5596 ucnv_MBCSGetName,
5597 ucnv_MBCSWriteSub,
5598 NULL,
5599 ucnv_MBCSGetUnicodeSet,
5600
5601 NULL,
5602 ucnv_SBCSFromUTF8
5603 };
5604
5605 static const UConverterImpl _DBCSUTF8Impl={
5606 UCNV_MBCS,
5607
5608 ucnv_MBCSLoad,
5609 ucnv_MBCSUnload,
5610
5611 ucnv_MBCSOpen,
5612 NULL,
5613 NULL,
5614
5615 ucnv_MBCSToUnicodeWithOffsets,
5616 ucnv_MBCSToUnicodeWithOffsets,
5617 ucnv_MBCSFromUnicodeWithOffsets,
5618 ucnv_MBCSFromUnicodeWithOffsets,
5619 ucnv_MBCSGetNextUChar,
5620
5621 ucnv_MBCSGetStarters,
5622 ucnv_MBCSGetName,
5623 ucnv_MBCSWriteSub,
5624 NULL,
5625 ucnv_MBCSGetUnicodeSet,
5626
5627 NULL,
5628 ucnv_DBCSFromUTF8
5629 };
5630
5631 static const UConverterImpl _MBCSImpl={
5632 UCNV_MBCS,
5633
5634 ucnv_MBCSLoad,
5635 ucnv_MBCSUnload,
5636
5637 ucnv_MBCSOpen,
5638 NULL,
5639 NULL,
5640
5641 ucnv_MBCSToUnicodeWithOffsets,
5642 ucnv_MBCSToUnicodeWithOffsets,
5643 ucnv_MBCSFromUnicodeWithOffsets,
5644 ucnv_MBCSFromUnicodeWithOffsets,
5645 ucnv_MBCSGetNextUChar,
5646
5647 ucnv_MBCSGetStarters,
5648 ucnv_MBCSGetName,
5649 ucnv_MBCSWriteSub,
5650 NULL,
5651 ucnv_MBCSGetUnicodeSet
5652 };
5653
5654
5655 /* Static data is in tools/makeconv/ucnvstat.c for data-based
5656 * converters. Be sure to update it as well.
5657 */
5658
5659 const UConverterSharedData _MBCSData={
5660 sizeof(UConverterSharedData), 1,
5661 NULL, NULL, NULL, FALSE, &_MBCSImpl,
5662 0
5663 };
5664
5665 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
5666