• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ******************************************************************************
3 *
4 *   Copyright (C) 2000-2012, International Business Machines
5 *   Corporation and others.  All Rights Reserved.
6 *
7 ******************************************************************************
8 *   file name:  ucnvmbcs.c
9 *   encoding:   US-ASCII
10 *   tab size:   8 (not used)
11 *   indentation:4
12 *
13 *   created on: 2000jul03
14 *   created by: Markus W. Scherer
15 *
16 *   The current code in this file replaces the previous implementation
17 *   of conversion code from multi-byte codepages to Unicode and back.
18 *   This implementation supports the following:
19 *   - legacy variable-length codepages with up to 4 bytes per character
20 *   - all Unicode code points (up to 0x10ffff)
21 *   - efficient distinction of unassigned vs. illegal byte sequences
22 *   - it is possible in fromUnicode() to directly deal with simple
23 *     stateful encodings (used for EBCDIC_STATEFUL)
24 *   - it is possible to convert Unicode code points
25 *     to a single zero byte (but not as a fallback except for SBCS)
26 *
27 *   Remaining limitations in fromUnicode:
28 *   - byte sequences must not have leading zero bytes
29 *   - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
30 *   - limitation to up to 4 bytes per character
31 *
32 *   ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
33 *   limitations and adds m:n character mappings and other features.
34 *   See ucnv_ext.h for details.
35 *
36 *   Change history:
37 *
38 *    5/6/2001       Ram       Moved  MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
39 *                             MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
40 *                             macros to ucnvmbcs.h file
41 */
42 
43 #include "unicode/utypes.h"
44 
45 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
46 
47 #include "unicode/ucnv.h"
48 #include "unicode/ucnv_cb.h"
49 #include "unicode/udata.h"
50 #include "unicode/uset.h"
51 #include "unicode/utf8.h"
52 #include "unicode/utf16.h"
53 #include "ucnv_bld.h"
54 #include "ucnvmbcs.h"
55 #include "ucnv_ext.h"
56 #include "ucnv_cnv.h"
57 #include "cmemory.h"
58 #include "cstring.h"
59 #include "umutex.h"
60 
61 /* control optimizations according to the platform */
62 #define MBCS_UNROLL_SINGLE_TO_BMP 1
63 #define MBCS_UNROLL_SINGLE_FROM_BMP 0
64 
65 /*
66  * _MBCSHeader versions 5.3 & 4.3
67  * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
68  *
69  * This version is optional. Version 5 is used for incompatible data format changes.
70  * makeconv will continue to generate version 4 files if possible.
71  *
72  * Changes from version 4:
73  *
74  * The main difference is an additional _MBCSHeader field with
75  * - the length (number of uint32_t) of the _MBCSHeader
76  * - flags for further incompatible data format changes
77  * - flags for further, backward compatible data format changes
78  *
79  * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
80  * the file and needs to be reconstituted at load time.
81  * This requires a utf8Friendly format with an additional mbcsIndex table for fast
82  * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
83  * (For details about these structures see below, and see ucnvmbcs.h.)
84  *
85  *   utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
86  *   of the Unicode code points. (This requires that the .ucm file has the |0 etc.
87  *   precision markers for all mappings.)
88  *
89  *   All fallbacks have been moved to the extension table, leaving only roundtrips in the
90  *   omitted data that can be reconstituted from the toUnicode data.
91  *
92  *   Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
93  *   With only roundtrip mappings in the base fromUnicode data, this part is fully
94  *   redundant with the mbcsIndex and will be reconstituted from that (also using the
95  *   stage 1 table which contains the information about how stage 2 was compacted).
96  *
97  *   The rest of the stage 2 table, the part for code points above maxFastUChar,
98  *   is stored in the file and will be appended to the reconstituted part.
99  *
100  *   The entire fromUBytes array is omitted from the file and will be reconstitued.
101  *   This is done by enumerating all toUnicode roundtrip mappings, performing
102  *   each mapping (using the stage 1 and reconstituted stage 2 tables) and
103  *   writing instead of reading the byte values.
104  *
105  * _MBCSHeader version 4.3
106  *
107  * Change from version 4.2:
108  * - Optional utf8Friendly data structures, with 64-entry stage 3 block
109  *   allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
110  *   files which can be used instead of stages 1 & 2.
111  *   Faster lookups for roundtrips from most commonly used characters,
112  *   and lookups from UTF-8 byte sequences with a natural bit distribution.
113  *   See ucnvmbcs.h for more details.
114  *
115  * Change from version 4.1:
116  * - Added an optional extension table structure at the end of the .cnv file.
117  *   It is present if the upper bits of the header flags field contains a non-zero
118  *   byte offset to it.
119  *   Files that contain only a conversion table and no base table
120  *   use the special outputType MBCS_OUTPUT_EXT_ONLY.
121  *   These contain the base table name between the MBCS header and the extension
122  *   data.
123  *
124  * Change from version 4.0:
125  * - Replace header.reserved with header.fromUBytesLength so that all
126  *   fields in the data have length.
127  *
128  * Changes from version 3 (for performance improvements):
129  * - new bit distribution for state table entries
130  * - reordered action codes
131  * - new data structure for single-byte fromUnicode
132  *   + stage 2 only contains indexes
133  *   + stage 3 stores 16 bits per character with classification bits 15..8
134  * - no multiplier for stage 1 entries
135  * - stage 2 for non-single-byte codepages contains the index and the flags in
136  *   one 32-bit value
137  * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
138  *
139  * For more details about old versions of the MBCS data structure, see
140  * the corresponding versions of this file.
141  *
142  * Converting stateless codepage data ---------------------------------------***
143  * (or codepage data with simple states) to Unicode.
144  *
145  * Data structure and algorithm for converting from complex legacy codepages
146  * to Unicode. (Designed before 2000-may-22.)
147  *
148  * The basic idea is that the structure of legacy codepages can be described
149  * with state tables.
150  * When reading a byte stream, each input byte causes a state transition.
151  * Some transitions result in the output of a code point, some result in
152  * "unassigned" or "illegal" output.
153  * This is used here for character conversion.
154  *
155  * The data structure begins with a state table consisting of a row
156  * per state, with 256 entries (columns) per row for each possible input
157  * byte value.
158  * Each entry is 32 bits wide, with two formats distinguished by
159  * the sign bit (bit 31):
160  *
161  * One format for transitional entries (bit 31 not set) for non-final bytes, and
162  * one format for final entries (bit 31 set).
163  * Both formats contain the number of the next state in the same bit
164  * positions.
165  * State 0 is the initial state.
166  *
167  * Most of the time, the offset values of subsequent states are added
168  * up to a scalar value. This value will eventually be the index of
169  * the Unicode code point in a table that follows the state table.
170  * The effect is that the code points for final state table rows
171  * are contiguous. The code points of final state rows follow each other
172  * in the order of the references to those final states by previous
173  * states, etc.
174  *
175  * For some terminal states, the offset is itself the output Unicode
176  * code point (16 bits for a BMP code point or 20 bits for a supplementary
177  * code point (stored as code point minus 0x10000 so that 20 bits are enough).
178  * For others, the code point in the Unicode table is stored with either
179  * one or two code units: one for BMP code points, two for a pair of
180  * surrogates.
181  * All code points for a final state entry take up the same number of code
182  * units, regardless of whether they all actually _use_ the same number
183  * of code units. This is necessary for simple array access.
184  *
185  * An additional feature comes in with what in ICU is called "fallback"
186  * mappings:
187  *
188  * In addition to round-trippable, precise, 1:1 mappings, there are often
189  * mappings defined between similar, though not the same, characters.
190  * Typically, such mappings occur only in fromUnicode mapping tables because
191  * Unicode has a superset repertoire of most other codepages. However, it
192  * is possible to provide such mappings in the toUnicode tables, too.
193  * In this case, the fallback mappings are partly integrated into the
194  * general state tables because the structure of the encoding includes their
195  * byte sequences.
196  * For final entries in an initial state, fallback mappings are stored in
197  * the entry itself like with roundtrip mappings.
198  * For other final entries, they are stored in the code units table if
199  * the entry is for a pair of code units.
200  * For single-unit results in the code units table, there is no space to
201  * alternatively hold a fallback mapping; in this case, the code unit
202  * is stored as U+fffe (unassigned), and the fallback mapping needs to
203  * be looked up by the scalar offset value in a separate table.
204  *
205  * "Unassigned" state entries really mean "structurally unassigned",
206  * i.e., such a byte sequence will never have a mapping result.
207  *
208  * The interpretation of the bits in each entry is as follows:
209  *
210  * Bit 31 not set, not a terminal entry ("transitional"):
211  * 30..24 next state
212  * 23..0  offset delta, to be added up
213  *
214  * Bit 31 set, terminal ("final") entry:
215  * 30..24 next state (regardless of action code)
216  * 23..20 action code:
217  *        action codes 0 and 1 result in precise-mapping Unicode code points
218  *        0  valid byte sequence
219  *           19..16 not used, 0
220  *           15..0  16-bit Unicode BMP code point
221  *                  never U+fffe or U+ffff
222  *        1  valid byte sequence
223  *           19..0  20-bit Unicode supplementary code point
224  *                  never U+fffe or U+ffff
225  *
226  *        action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
227  *        2  valid byte sequence (fallback)
228  *           19..16 not used, 0
229  *           15..0  16-bit Unicode BMP code point as fallback result
230  *        3  valid byte sequence (fallback)
231  *           19..0  20-bit Unicode supplementary code point as fallback result
232  *
233  *        action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
234  *        depending on the code units they result in
235  *        4  valid byte sequence
236  *           19..9  not used, 0
237  *            8..0  final offset delta
238  *                  pointing to one 16-bit code unit which may be
239  *                  fffe  unassigned -- look for a fallback for this offset
240  *                  ffff  illegal
241  *        5  valid byte sequence
242  *           19..9  not used, 0
243  *            8..0  final offset delta
244  *                  pointing to two 16-bit code units
245  *                  (typically UTF-16 surrogates)
246  *                  the result depends on the first code unit as follows:
247  *                  0000..d7ff  roundtrip BMP code point (1st alone)
248  *                  d800..dbff  roundtrip surrogate pair (1st, 2nd)
249  *                  dc00..dfff  fallback surrogate pair (1st-400, 2nd)
250  *                  e000        roundtrip BMP code point (2nd alone)
251  *                  e001        fallback BMP code point (2nd alone)
252  *                  fffe        unassigned
253  *                  ffff        illegal
254  *           (the final offset deltas are at most 255 * 2,
255  *            times 2 because of storing code unit pairs)
256  *
257  *        6  unassigned byte sequence
258  *           19..16 not used, 0
259  *           15..0  16-bit Unicode BMP code point U+fffe (new with version 2)
260  *                  this does not contain a final offset delta because the main
261  *                  purpose of this action code is to save scalar offset values;
262  *                  therefore, fallback values cannot be assigned to byte
263  *                  sequences that result in this action code
264  *        7  illegal byte sequence
265  *           19..16 not used, 0
266  *           15..0  16-bit Unicode BMP code point U+ffff (new with version 2)
267  *        8  state change only
268  *           19..0  not used, 0
269  *           useful for state changes in simple stateful encodings,
270  *           at Shift-In/Shift-Out codes
271  *
272  *
273  *        9..15 reserved for future use
274  *           current implementations will only perform a state change
275  *           and ignore bits 19..0
276  *
277  * An encoding with contiguous ranges of unassigned byte sequences, like
278  * Shift-JIS and especially EUC-TW, can be stored efficiently by having
279  * at least two states for the trail bytes:
280  * One trail byte state that results in code points, and one that only
281  * has "unassigned" and "illegal" terminal states.
282  *
283  * Note: partly by accident, this data structure supports simple stateful
284  * encodings without any additional logic.
285  * Currently, only simple Shift-In/Shift-Out schemes are handled with
286  * appropriate state tables (especially EBCDIC_STATEFUL!).
287  *
288  * MBCS version 2 added:
289  * unassigned and illegal action codes have U+fffe and U+ffff
290  * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
291  *
292  * Converting from Unicode to codepage bytes --------------------------------***
293  *
294  * The conversion data structure for fromUnicode is designed for the known
295  * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
296  * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
297  * a roundtrip mapping.
298  *
299  * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
300  * like in the character properties table.
301  * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
302  * with the resulting bytes is at offsetFromUBytes.
303  *
304  * Beginning with version 4, single-byte codepages have a significantly different
305  * trie compared to other codepages.
306  * In all cases, the entry in stage 1 is directly the index of the block of
307  * 64 entries in stage 2.
308  *
309  * Single-byte lookup:
310  *
311  * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
312  * Stage 3 contains one 16-bit word per result:
313  * Bits 15..8 indicate the kind of result:
314  *    f  roundtrip result
315  *    c  fallback result from private-use code point
316  *    8  fallback result from other code points
317  *    0  unassigned
318  * Bits 7..0 contain the codepage byte. A zero byte is always possible.
319  *
320  * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
321  * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
322  * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
323  * ASCII code points can be looked up with a linear array access into stage 3.
324  * See maxFastUChar and other details in ucnvmbcs.h.
325  *
326  * Multi-byte lookup:
327  *
328  * Stage 2 contains a 32-bit word for each 16-block in stage 3:
329  * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
330  *             test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
331  *             If this test is false, then a non-zero result will be interpreted as
332  *             a fallback mapping.
333  * Bits 15..0  contain the index to stage 3, which must be multiplied by 16*(bytes per char)
334  *
335  * Stage 3 contains 2, 3, or 4 bytes per result.
336  * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
337  * while 3 bytes are stored as bytes in big-endian order.
338  * Leading zero bytes are ignored, and the number of bytes is counted.
339  * A zero byte mapping result is possible as a roundtrip result.
340  * For some output types, the actual result is processed from this;
341  * see ucnv_MBCSFromUnicodeWithOffsets().
342  *
343  * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
344  * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
345  *
346  * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
347  * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
348  * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
349  * ASCII code points can be looked up with a linear array access into stage 3.
350  * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
351  *
352  * In version 3, stage 2 blocks may overlap by multiples of the multiplier
353  * for compaction.
354  * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
355  * may overlap by any number of entries.
356  *
357  * MBCS version 2 added:
358  * the converter checks for known output types, which allows
359  * adding new ones without crashing an unaware converter
360  */
361 
362 static const UConverterImpl _SBCSUTF8Impl;
363 static const UConverterImpl _DBCSUTF8Impl;
364 
365 /* GB 18030 data ------------------------------------------------------------ */
366 
367 /* helper macros for linear values for GB 18030 four-byte sequences */
368 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
369 
370 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
371 
372 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
373 
374 /*
375  * Some ranges of GB 18030 where both the Unicode code points and the
376  * GB four-byte sequences are contiguous and are handled algorithmically by
377  * the special callback functions below.
378  * The values are start & end of Unicode & GB codes.
379  *
380  * Note that single surrogates are not mapped by GB 18030
381  * as of the re-released mapping tables from 2000-nov-30.
382  */
383 static const uint32_t
384 gb18030Ranges[14][4]={
385     {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
386     {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
387     {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
388     {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
389     {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
390     {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
391     {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
392     {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
393     {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
394     {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
395     {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
396     {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
397     {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
398     {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
399 };
400 
401 /* bit flag for UConverter.options indicating GB 18030 special handling */
402 #define _MBCS_OPTION_GB18030 0x8000
403 
404 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
405 #define _MBCS_OPTION_KEIS 0x01000
406 #define _MBCS_OPTION_JEF  0x02000
407 #define _MBCS_OPTION_JIPS 0x04000
408 
409 #define KEIS_SO_CHAR_1 0x0A
410 #define KEIS_SO_CHAR_2 0x42
411 #define KEIS_SI_CHAR_1 0x0A
412 #define KEIS_SI_CHAR_2 0x41
413 
414 #define JEF_SO_CHAR 0x28
415 #define JEF_SI_CHAR 0x29
416 
417 #define JIPS_SO_CHAR_1 0x1A
418 #define JIPS_SO_CHAR_2 0x70
419 #define JIPS_SI_CHAR_1 0x1A
420 #define JIPS_SI_CHAR_2 0x71
421 
422 enum SISO_Option {
423     SI,
424     SO
425 };
426 typedef enum SISO_Option SISO_Option;
427 
getSISOBytes(SISO_Option option,uint32_t cnvOption,uint8_t * value)428 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
429     int32_t SISOLength = 0;
430 
431     switch (option) {
432         case SI:
433             if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
434                 value[0] = KEIS_SI_CHAR_1;
435                 value[1] = KEIS_SI_CHAR_2;
436                 SISOLength = 2;
437             } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
438                 value[0] = JEF_SI_CHAR;
439                 SISOLength = 1;
440             } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
441                 value[0] = JIPS_SI_CHAR_1;
442                 value[1] = JIPS_SI_CHAR_2;
443                 SISOLength = 2;
444             } else {
445                 value[0] = UCNV_SI;
446                 SISOLength = 1;
447             }
448             break;
449         case SO:
450             if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
451                 value[0] = KEIS_SO_CHAR_1;
452                 value[1] = KEIS_SO_CHAR_2;
453                 SISOLength = 2;
454             } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
455                 value[0] = JEF_SO_CHAR;
456                 SISOLength = 1;
457             } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
458                 value[0] = JIPS_SO_CHAR_1;
459                 value[1] = JIPS_SO_CHAR_2;
460                 SISOLength = 2;
461             } else {
462                 value[0] = UCNV_SO;
463                 SISOLength = 1;
464             }
465             break;
466         default:
467             /* Should never happen. */
468             break;
469     }
470 
471     return SISOLength;
472 }
473 
474 /* Miscellaneous ------------------------------------------------------------ */
475 
476 /**
477  * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
478  * consecutive sequences of bytes, starting from the one encoded in value,
479  * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
480  * Does not currently support m:n mappings or reverse fallbacks.
481  * This function will not be called for sequences of bytes with leading zeros.
482  *
483  * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
484  * @param value contains 1..4 bytes of the first byte sequence, right-aligned
485  * @param codePoints resulting Unicode code points, or negative if a byte sequence does
486  *        not map to anything
487  * @return TRUE to continue enumeration, FALSE to stop
488  */
489 typedef UBool U_CALLCONV
490 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
491 
492 /* similar to ucnv_MBCSGetNextUChar() but recursive */
493 static UBool
enumToU(UConverterMBCSTable * mbcsTable,int8_t stateProps[],int32_t state,uint32_t offset,uint32_t value,UConverterEnumToUCallback * callback,const void * context,UErrorCode * pErrorCode)494 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
495         int32_t state, uint32_t offset,
496         uint32_t value,
497         UConverterEnumToUCallback *callback, const void *context,
498         UErrorCode *pErrorCode) {
499     UChar32 codePoints[32];
500     const int32_t *row;
501     const uint16_t *unicodeCodeUnits;
502     UChar32 anyCodePoints;
503     int32_t b, limit;
504 
505     row=mbcsTable->stateTable[state];
506     unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
507 
508     value<<=8;
509     anyCodePoints=-1;  /* becomes non-negative if there is a mapping */
510 
511     b=(stateProps[state]&0x38)<<2;
512     if(b==0 && stateProps[state]>=0x40) {
513         /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
514         codePoints[0]=U_SENTINEL;
515         b=1;
516     }
517     limit=((stateProps[state]&7)+1)<<5;
518     while(b<limit) {
519         int32_t entry=row[b];
520         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
521             int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
522             if(stateProps[nextState]>=0) {
523                 /* recurse to a state with non-ignorable actions */
524                 if(!enumToU(
525                         mbcsTable, stateProps, nextState,
526                         offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
527                         value|(uint32_t)b,
528                         callback, context,
529                         pErrorCode)) {
530                     return FALSE;
531                 }
532             }
533             codePoints[b&0x1f]=U_SENTINEL;
534         } else {
535             UChar32 c;
536             int32_t action;
537 
538             /*
539              * An if-else-if chain provides more reliable performance for
540              * the most common cases compared to a switch.
541              */
542             action=MBCS_ENTRY_FINAL_ACTION(entry);
543             if(action==MBCS_STATE_VALID_DIRECT_16) {
544                 /* output BMP code point */
545                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
546             } else if(action==MBCS_STATE_VALID_16) {
547                 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
548                 c=unicodeCodeUnits[finalOffset];
549                 if(c<0xfffe) {
550                     /* output BMP code point */
551                 } else {
552                     c=U_SENTINEL;
553                 }
554             } else if(action==MBCS_STATE_VALID_16_PAIR) {
555                 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
556                 c=unicodeCodeUnits[finalOffset++];
557                 if(c<0xd800) {
558                     /* output BMP code point below 0xd800 */
559                 } else if(c<=0xdbff) {
560                     /* output roundtrip or fallback supplementary code point */
561                     c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
562                 } else if(c==0xe000) {
563                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
564                     c=unicodeCodeUnits[finalOffset];
565                 } else {
566                     c=U_SENTINEL;
567                 }
568             } else if(action==MBCS_STATE_VALID_DIRECT_20) {
569                 /* output supplementary code point */
570                 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
571             } else {
572                 c=U_SENTINEL;
573             }
574 
575             codePoints[b&0x1f]=c;
576             anyCodePoints&=c;
577         }
578         if(((++b)&0x1f)==0) {
579             if(anyCodePoints>=0) {
580                 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
581                     return FALSE;
582                 }
583                 anyCodePoints=-1;
584             }
585         }
586     }
587     return TRUE;
588 }
589 
590 /*
591  * Only called if stateProps[state]==-1.
592  * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
593  * MBCS_STATE_CHANGE_ONLY.
594  */
595 static int8_t
getStateProp(const int32_t (* stateTable)[256],int8_t stateProps[],int state)596 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
597     const int32_t *row;
598     int32_t min, max, entry, nextState;
599 
600     row=stateTable[state];
601     stateProps[state]=0;
602 
603     /* find first non-ignorable state */
604     for(min=0;; ++min) {
605         entry=row[min];
606         nextState=MBCS_ENTRY_STATE(entry);
607         if(stateProps[nextState]==-1) {
608             getStateProp(stateTable, stateProps, nextState);
609         }
610         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
611             if(stateProps[nextState]>=0) {
612                 break;
613             }
614         } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
615             break;
616         }
617         if(min==0xff) {
618             stateProps[state]=-0x40;  /* (int8_t)0xc0 */
619             return stateProps[state];
620         }
621     }
622     stateProps[state]|=(int8_t)((min>>5)<<3);
623 
624     /* find last non-ignorable state */
625     for(max=0xff; min<max; --max) {
626         entry=row[max];
627         nextState=MBCS_ENTRY_STATE(entry);
628         if(stateProps[nextState]==-1) {
629             getStateProp(stateTable, stateProps, nextState);
630         }
631         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
632             if(stateProps[nextState]>=0) {
633                 break;
634             }
635         } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
636             break;
637         }
638     }
639     stateProps[state]|=(int8_t)(max>>5);
640 
641     /* recurse further and collect direct-state information */
642     while(min<=max) {
643         entry=row[min];
644         nextState=MBCS_ENTRY_STATE(entry);
645         if(stateProps[nextState]==-1) {
646             getStateProp(stateTable, stateProps, nextState);
647         }
648         if(MBCS_ENTRY_IS_FINAL(entry)) {
649             stateProps[nextState]|=0x40;
650             if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
651                 stateProps[state]|=0x40;
652             }
653         }
654         ++min;
655     }
656     return stateProps[state];
657 }
658 
659 /*
660  * Internal function enumerating the toUnicode data of an MBCS converter.
661  * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
662  * table, but could also be used for a future ucnv_getUnicodeSet() option
663  * that includes reverse fallbacks (after updating this function's implementation).
664  * Currently only handles roundtrip mappings.
665  * Does not currently handle extensions.
666  */
667 static void
ucnv_MBCSEnumToUnicode(UConverterMBCSTable * mbcsTable,UConverterEnumToUCallback * callback,const void * context,UErrorCode * pErrorCode)668 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
669                        UConverterEnumToUCallback *callback, const void *context,
670                        UErrorCode *pErrorCode) {
671     /*
672      * Properties for each state, to speed up the enumeration.
673      * Ignorable actions are unassigned/illegal/state-change-only:
674      * They do not lead to mappings.
675      *
676      * Bits 7..6:
677      * 1 direct/initial state (stateful converters have multiple)
678      * 0 non-initial state with transitions or with non-ignorable result actions
679      * -1 final state with only ignorable actions
680      *
681      * Bits 5..3:
682      * The lowest byte value with non-ignorable actions is
683      * value<<5 (rounded down).
684      *
685      * Bits 2..0:
686      * The highest byte value with non-ignorable actions is
687      * (value<<5)&0x1f (rounded up).
688      */
689     int8_t stateProps[MBCS_MAX_STATE_COUNT];
690     int32_t state;
691 
692     uprv_memset(stateProps, -1, sizeof(stateProps));
693 
694     /* recurse from state 0 and set all stateProps */
695     getStateProp(mbcsTable->stateTable, stateProps, 0);
696 
697     for(state=0; state<mbcsTable->countStates; ++state) {
698         /*if(stateProps[state]==-1) {
699             printf("unused/unreachable <icu:state> %d\n", state);
700         }*/
701         if(stateProps[state]>=0x40) {
702             /* start from each direct state */
703             enumToU(
704                 mbcsTable, stateProps, state, 0, 0,
705                 callback, context,
706                 pErrorCode);
707         }
708     }
709 }
710 
711 U_CFUNC void
ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData * sharedData,const USetAdder * sa,UConverterUnicodeSet which,UConverterSetFilter filter,UErrorCode * pErrorCode)712 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
713                                          const USetAdder *sa,
714                                          UConverterUnicodeSet which,
715                                          UConverterSetFilter filter,
716                                          UErrorCode *pErrorCode) {
717     const UConverterMBCSTable *mbcsTable;
718     const uint16_t *table;
719 
720     uint32_t st3;
721     uint16_t st1, maxStage1, st2;
722 
723     UChar32 c;
724 
725     /* enumerate the from-Unicode trie table */
726     mbcsTable=&sharedData->mbcs;
727     table=mbcsTable->fromUnicodeTable;
728     if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
729         maxStage1=0x440;
730     } else {
731         maxStage1=0x40;
732     }
733 
734     c=0; /* keep track of the current code point while enumerating */
735 
736     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
737         const uint16_t *stage2, *stage3, *results;
738         uint16_t minValue;
739 
740         results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
741 
742         /*
743          * Set a threshold variable for selecting which mappings to use.
744          * See ucnv_MBCSSingleFromBMPWithOffsets() and
745          * MBCS_SINGLE_RESULT_FROM_U() for details.
746          */
747         if(which==UCNV_ROUNDTRIP_SET) {
748             /* use only roundtrips */
749             minValue=0xf00;
750         } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
751             /* use all roundtrip and fallback results */
752             minValue=0x800;
753         }
754 
755         for(st1=0; st1<maxStage1; ++st1) {
756             st2=table[st1];
757             if(st2>maxStage1) {
758                 stage2=table+st2;
759                 for(st2=0; st2<64; ++st2) {
760                     if((st3=stage2[st2])!=0) {
761                         /* read the stage 3 block */
762                         stage3=results+st3;
763 
764                         do {
765                             if(*stage3++>=minValue) {
766                                 sa->add(sa->set, c);
767                             }
768                         } while((++c&0xf)!=0);
769                     } else {
770                         c+=16; /* empty stage 3 block */
771                     }
772                 }
773             } else {
774                 c+=1024; /* empty stage 2 block */
775             }
776         }
777     } else {
778         const uint32_t *stage2;
779         const uint8_t *stage3, *bytes;
780         uint32_t st3Multiplier;
781         uint32_t value;
782         UBool useFallback;
783 
784         bytes=mbcsTable->fromUnicodeBytes;
785 
786         useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
787 
788         switch(mbcsTable->outputType) {
789         case MBCS_OUTPUT_3:
790         case MBCS_OUTPUT_4_EUC:
791             st3Multiplier=3;
792             break;
793         case MBCS_OUTPUT_4:
794             st3Multiplier=4;
795             break;
796         default:
797             st3Multiplier=2;
798             break;
799         }
800 
801         for(st1=0; st1<maxStage1; ++st1) {
802             st2=table[st1];
803             if(st2>(maxStage1>>1)) {
804                 stage2=(const uint32_t *)table+st2;
805                 for(st2=0; st2<64; ++st2) {
806                     if((st3=stage2[st2])!=0) {
807                         /* read the stage 3 block */
808                         stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
809 
810                         /* get the roundtrip flags for the stage 3 block */
811                         st3>>=16;
812 
813                         /*
814                          * Add code points for which the roundtrip flag is set,
815                          * or which map to non-zero bytes if we use fallbacks.
816                          * See ucnv_MBCSFromUnicodeWithOffsets() for details.
817                          */
818                         switch(filter) {
819                         case UCNV_SET_FILTER_NONE:
820                             do {
821                                 if(st3&1) {
822                                     sa->add(sa->set, c);
823                                     stage3+=st3Multiplier;
824                                 } else if(useFallback) {
825                                     uint8_t b=0;
826                                     switch(st3Multiplier) {
827                                     case 4:
828                                         b|=*stage3++;
829                                     case 3: /*fall through*/
830                                         b|=*stage3++;
831                                     case 2: /*fall through*/
832                                         b|=stage3[0]|stage3[1];
833                                         stage3+=2;
834                                     default:
835                                         break;
836                                     }
837                                     if(b!=0) {
838                                         sa->add(sa->set, c);
839                                     }
840                                 }
841                                 st3>>=1;
842                             } while((++c&0xf)!=0);
843                             break;
844                         case UCNV_SET_FILTER_DBCS_ONLY:
845                              /* Ignore single-byte results (<0x100). */
846                             do {
847                                 if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
848                                     sa->add(sa->set, c);
849                                 }
850                                 st3>>=1;
851                                 stage3+=2;  /* +=st3Multiplier */
852                             } while((++c&0xf)!=0);
853                             break;
854                         case UCNV_SET_FILTER_2022_CN:
855                              /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
856                             do {
857                                 if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
858                                     sa->add(sa->set, c);
859                                 }
860                                 st3>>=1;
861                                 stage3+=3;  /* +=st3Multiplier */
862                             } while((++c&0xf)!=0);
863                             break;
864                         case UCNV_SET_FILTER_SJIS:
865                              /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
866                             do {
867                                 if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
868                                     sa->add(sa->set, c);
869                                 }
870                                 st3>>=1;
871                                 stage3+=2;  /* +=st3Multiplier */
872                             } while((++c&0xf)!=0);
873                             break;
874                         case UCNV_SET_FILTER_GR94DBCS:
875                             /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
876                             do {
877                                 if( ((st3&1)!=0 || useFallback) &&
878                                     (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
879                                     (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
880                                 ) {
881                                     sa->add(sa->set, c);
882                                 }
883                                 st3>>=1;
884                                 stage3+=2;  /* +=st3Multiplier */
885                             } while((++c&0xf)!=0);
886                             break;
887                         case UCNV_SET_FILTER_HZ:
888                             /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
889                             do {
890                                 if( ((st3&1)!=0 || useFallback) &&
891                                     (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
892                                     (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
893                                 ) {
894                                     sa->add(sa->set, c);
895                                 }
896                                 st3>>=1;
897                                 stage3+=2;  /* +=st3Multiplier */
898                             } while((++c&0xf)!=0);
899                             break;
900                         default:
901                             *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
902                             return;
903                         }
904                     } else {
905                         c+=16; /* empty stage 3 block */
906                     }
907                 }
908             } else {
909                 c+=1024; /* empty stage 2 block */
910             }
911         }
912     }
913 
914     ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
915 }
916 
917 U_CFUNC void
ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData * sharedData,const USetAdder * sa,UConverterUnicodeSet which,UErrorCode * pErrorCode)918 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
919                                  const USetAdder *sa,
920                                  UConverterUnicodeSet which,
921                                  UErrorCode *pErrorCode) {
922     ucnv_MBCSGetFilteredUnicodeSetForUnicode(
923         sharedData, sa, which,
924         sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
925             UCNV_SET_FILTER_DBCS_ONLY :
926             UCNV_SET_FILTER_NONE,
927         pErrorCode);
928 }
929 
930 static void
ucnv_MBCSGetUnicodeSet(const UConverter * cnv,const USetAdder * sa,UConverterUnicodeSet which,UErrorCode * pErrorCode)931 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
932                    const USetAdder *sa,
933                    UConverterUnicodeSet which,
934                    UErrorCode *pErrorCode) {
935     if(cnv->options&_MBCS_OPTION_GB18030) {
936         sa->addRange(sa->set, 0, 0xd7ff);
937         sa->addRange(sa->set, 0xe000, 0x10ffff);
938     } else {
939         ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
940     }
941 }
942 
943 /* conversion extensions for input not in the main table -------------------- */
944 
945 /*
946  * Hardcoded extension handling for GB 18030.
947  * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
948  *
949  * In the future, conversion extensions may handle m:n mappings and delta tables,
950  * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html
951  *
952  * If an input character cannot be mapped, then these functions set an error
953  * code. The framework will then call the callback function.
954  */
955 
956 /*
957  * @return if(U_FAILURE) return the code point for cnv->fromUChar32
958  *         else return 0 after output has been written to the target
959  */
960 static UChar32
_extFromU(UConverter * cnv,const UConverterSharedData * sharedData,UChar32 cp,const UChar ** source,const UChar * sourceLimit,uint8_t ** target,const uint8_t * targetLimit,int32_t ** offsets,int32_t sourceIndex,UBool flush,UErrorCode * pErrorCode)961 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
962           UChar32 cp,
963           const UChar **source, const UChar *sourceLimit,
964           uint8_t **target, const uint8_t *targetLimit,
965           int32_t **offsets, int32_t sourceIndex,
966           UBool flush,
967           UErrorCode *pErrorCode) {
968     const int32_t *cx;
969 
970     cnv->useSubChar1=FALSE;
971 
972     if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
973         ucnv_extInitialMatchFromU(
974             cnv, cx,
975             cp, source, sourceLimit,
976             (char **)target, (char *)targetLimit,
977             offsets, sourceIndex,
978             flush,
979             pErrorCode)
980     ) {
981         return 0; /* an extension mapping handled the input */
982     }
983 
984     /* GB 18030 */
985     if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
986         const uint32_t *range;
987         int32_t i;
988 
989         range=gb18030Ranges[0];
990         for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) {
991             if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
992                 /* found the Unicode code point, output the four-byte sequence for it */
993                 uint32_t linear;
994                 char bytes[4];
995 
996                 /* get the linear value of the first GB 18030 code in this range */
997                 linear=range[2]-LINEAR_18030_BASE;
998 
999                 /* add the offset from the beginning of the range */
1000                 linear+=((uint32_t)cp-range[0]);
1001 
1002                 /* turn this into a four-byte sequence */
1003                 bytes[3]=(char)(0x30+linear%10); linear/=10;
1004                 bytes[2]=(char)(0x81+linear%126); linear/=126;
1005                 bytes[1]=(char)(0x30+linear%10); linear/=10;
1006                 bytes[0]=(char)(0x81+linear);
1007 
1008                 /* output this sequence */
1009                 ucnv_fromUWriteBytes(cnv,
1010                                      bytes, 4, (char **)target, (char *)targetLimit,
1011                                      offsets, sourceIndex, pErrorCode);
1012                 return 0;
1013             }
1014         }
1015     }
1016 
1017     /* no mapping */
1018     *pErrorCode=U_INVALID_CHAR_FOUND;
1019     return cp;
1020 }
1021 
1022 /*
1023  * Input sequence: cnv->toUBytes[0..length[
1024  * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
1025  *         else return 0 after output has been written to the target
1026  */
1027 static int8_t
_extToU(UConverter * cnv,const UConverterSharedData * sharedData,int8_t length,const uint8_t ** source,const uint8_t * sourceLimit,UChar ** target,const UChar * targetLimit,int32_t ** offsets,int32_t sourceIndex,UBool flush,UErrorCode * pErrorCode)1028 _extToU(UConverter *cnv, const UConverterSharedData *sharedData,
1029         int8_t length,
1030         const uint8_t **source, const uint8_t *sourceLimit,
1031         UChar **target, const UChar *targetLimit,
1032         int32_t **offsets, int32_t sourceIndex,
1033         UBool flush,
1034         UErrorCode *pErrorCode) {
1035     const int32_t *cx;
1036 
1037     if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1038         ucnv_extInitialMatchToU(
1039             cnv, cx,
1040             length, (const char **)source, (const char *)sourceLimit,
1041             target, targetLimit,
1042             offsets, sourceIndex,
1043             flush,
1044             pErrorCode)
1045     ) {
1046         return 0; /* an extension mapping handled the input */
1047     }
1048 
1049     /* GB 18030 */
1050     if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
1051         const uint32_t *range;
1052         uint32_t linear;
1053         int32_t i;
1054 
1055         linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
1056         range=gb18030Ranges[0];
1057         for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) {
1058             if(range[2]<=linear && linear<=range[3]) {
1059                 /* found the sequence, output the Unicode code point for it */
1060                 *pErrorCode=U_ZERO_ERROR;
1061 
1062                 /* add the linear difference between the input and start sequences to the start code point */
1063                 linear=range[0]+(linear-range[2]);
1064 
1065                 /* output this code point */
1066                 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
1067 
1068                 return 0;
1069             }
1070         }
1071     }
1072 
1073     /* no mapping */
1074     *pErrorCode=U_INVALID_CHAR_FOUND;
1075     return length;
1076 }
1077 
1078 /* EBCDIC swap LF<->NL ------------------------------------------------------ */
1079 
1080 /*
1081  * This code modifies a standard EBCDIC<->Unicode mapping table for
1082  * OS/390 (z/OS) Unix System Services (Open Edition).
1083  * The difference is in the mapping of Line Feed and New Line control codes:
1084  * Standard EBCDIC maps
1085  *
1086  *   <U000A> \x25 |0
1087  *   <U0085> \x15 |0
1088  *
1089  * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
1090  * mapping
1091  *
1092  *   <U000A> \x15 |0
1093  *   <U0085> \x25 |0
1094  *
1095  * This code modifies a loaded standard EBCDIC<->Unicode mapping table
1096  * by copying it into allocated memory and swapping the LF and NL values.
1097  * It allows to support the same EBCDIC charset in both versions without
1098  * duplicating the entire installed table.
1099  */
1100 
1101 /* standard EBCDIC codes */
1102 #define EBCDIC_LF 0x25
1103 #define EBCDIC_NL 0x15
1104 
1105 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
1106 #define EBCDIC_RT_LF 0xf25
1107 #define EBCDIC_RT_NL 0xf15
1108 
1109 /* Unicode code points */
1110 #define U_LF 0x0a
1111 #define U_NL 0x85
1112 
1113 static UBool
_EBCDICSwapLFNL(UConverterSharedData * sharedData,UErrorCode * pErrorCode)1114 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
1115     UConverterMBCSTable *mbcsTable;
1116 
1117     const uint16_t *table, *results;
1118     const uint8_t *bytes;
1119 
1120     int32_t (*newStateTable)[256];
1121     uint16_t *newResults;
1122     uint8_t *p;
1123     char *name;
1124 
1125     uint32_t stage2Entry;
1126     uint32_t size, sizeofFromUBytes;
1127 
1128     mbcsTable=&sharedData->mbcs;
1129 
1130     table=mbcsTable->fromUnicodeTable;
1131     bytes=mbcsTable->fromUnicodeBytes;
1132     results=(const uint16_t *)bytes;
1133 
1134     /*
1135      * Check that this is an EBCDIC table with SBCS portion -
1136      * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
1137      *
1138      * If not, ignore the option. Options are always ignored if they do not apply.
1139      */
1140     if(!(
1141          (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
1142          mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
1143          mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
1144     )) {
1145         return FALSE;
1146     }
1147 
1148     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1149         if(!(
1150              EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
1151              EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
1152         )) {
1153             return FALSE;
1154         }
1155     } else /* MBCS_OUTPUT_2_SISO */ {
1156         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1157         if(!(
1158              MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
1159              EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
1160         )) {
1161             return FALSE;
1162         }
1163 
1164         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1165         if(!(
1166              MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
1167              EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
1168         )) {
1169             return FALSE;
1170         }
1171     }
1172 
1173     if(mbcsTable->fromUBytesLength>0) {
1174         /*
1175          * We _know_ the number of bytes in the fromUnicodeBytes array
1176          * starting with header.version 4.1.
1177          */
1178         sizeofFromUBytes=mbcsTable->fromUBytesLength;
1179     } else {
1180         /*
1181          * Otherwise:
1182          * There used to be code to enumerate the fromUnicode
1183          * trie and find the highest entry, but it was removed in ICU 3.2
1184          * because it was not tested and caused a low code coverage number.
1185          * See Jitterbug 3674.
1186          * This affects only some .cnv file formats with a header.version
1187          * below 4.1, and only when swaplfnl is requested.
1188          *
1189          * ucnvmbcs.c revision 1.99 is the last one with the
1190          * ucnv_MBCSSizeofFromUBytes() function.
1191          */
1192         *pErrorCode=U_INVALID_FORMAT_ERROR;
1193         return FALSE;
1194     }
1195 
1196     /*
1197      * The table has an appropriate format.
1198      * Allocate and build
1199      * - a modified to-Unicode state table
1200      * - a modified from-Unicode output array
1201      * - a converter name string with the swap option appended
1202      */
1203     size=
1204         mbcsTable->countStates*1024+
1205         sizeofFromUBytes+
1206         UCNV_MAX_CONVERTER_NAME_LENGTH+20;
1207     p=(uint8_t *)uprv_malloc(size);
1208     if(p==NULL) {
1209         *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1210         return FALSE;
1211     }
1212 
1213     /* copy and modify the to-Unicode state table */
1214     newStateTable=(int32_t (*)[256])p;
1215     uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
1216 
1217     newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
1218     newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
1219 
1220     /* copy and modify the from-Unicode result table */
1221     newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
1222     uprv_memcpy(newResults, bytes, sizeofFromUBytes);
1223 
1224     /* conveniently, the table access macros work on the left side of expressions */
1225     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1226         MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
1227         MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
1228     } else /* MBCS_OUTPUT_2_SISO */ {
1229         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1230         MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
1231 
1232         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1233         MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
1234     }
1235 
1236     /* set the canonical converter name */
1237     name=(char *)newResults+sizeofFromUBytes;
1238     uprv_strcpy(name, sharedData->staticData->name);
1239     uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
1240 
1241     /* set the pointers */
1242     umtx_lock(NULL);
1243     if(mbcsTable->swapLFNLStateTable==NULL) {
1244         mbcsTable->swapLFNLStateTable=newStateTable;
1245         mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
1246         mbcsTable->swapLFNLName=name;
1247 
1248         newStateTable=NULL;
1249     }
1250     umtx_unlock(NULL);
1251 
1252     /* release the allocated memory if another thread beat us to it */
1253     if(newStateTable!=NULL) {
1254         uprv_free(newStateTable);
1255     }
1256     return TRUE;
1257 }
1258 
1259 /* reconstitute omitted fromUnicode data ------------------------------------ */
1260 
1261 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
1262 static UBool U_CALLCONV
writeStage3Roundtrip(const void * context,uint32_t value,UChar32 codePoints[32])1263 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
1264     UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
1265     const uint16_t *table;
1266     uint32_t *stage2;
1267     uint8_t *bytes, *p;
1268     UChar32 c;
1269     int32_t i, st3;
1270 
1271     table=mbcsTable->fromUnicodeTable;
1272     bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
1273 
1274     /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
1275     switch(mbcsTable->outputType) {
1276     case MBCS_OUTPUT_3_EUC:
1277         if(value<=0xffff) {
1278             /* short sequences are stored directly */
1279             /* code set 0 or 1 */
1280         } else if(value<=0x8effff) {
1281             /* code set 2 */
1282             value&=0x7fff;
1283         } else /* first byte is 0x8f */ {
1284             /* code set 3 */
1285             value&=0xff7f;
1286         }
1287         break;
1288     case MBCS_OUTPUT_4_EUC:
1289         if(value<=0xffffff) {
1290             /* short sequences are stored directly */
1291             /* code set 0 or 1 */
1292         } else if(value<=0x8effffff) {
1293             /* code set 2 */
1294             value&=0x7fffff;
1295         } else /* first byte is 0x8f */ {
1296             /* code set 3 */
1297             value&=0xff7fff;
1298         }
1299         break;
1300     default:
1301         break;
1302     }
1303 
1304     for(i=0; i<=0x1f; ++value, ++i) {
1305         c=codePoints[i];
1306         if(c<0) {
1307             continue;
1308         }
1309 
1310         /* locate the stage 2 & 3 data */
1311         stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
1312         p=bytes;
1313         st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
1314 
1315         /* write the codepage bytes into stage 3 */
1316         switch(mbcsTable->outputType) {
1317         case MBCS_OUTPUT_3:
1318         case MBCS_OUTPUT_4_EUC:
1319             p+=st3*3;
1320             p[0]=(uint8_t)(value>>16);
1321             p[1]=(uint8_t)(value>>8);
1322             p[2]=(uint8_t)value;
1323             break;
1324         case MBCS_OUTPUT_4:
1325             ((uint32_t *)p)[st3]=value;
1326             break;
1327         default:
1328             /* 2 bytes per character */
1329             ((uint16_t *)p)[st3]=(uint16_t)value;
1330             break;
1331         }
1332 
1333         /* set the roundtrip flag */
1334         *stage2|=(1UL<<(16+(c&0xf)));
1335     }
1336     return TRUE;
1337  }
1338 
1339 static void
reconstituteData(UConverterMBCSTable * mbcsTable,uint32_t stage1Length,uint32_t stage2Length,uint32_t fullStage2Length,UErrorCode * pErrorCode)1340 reconstituteData(UConverterMBCSTable *mbcsTable,
1341                  uint32_t stage1Length, uint32_t stage2Length,
1342                  uint32_t fullStage2Length,  /* lengths are numbers of units, not bytes */
1343                  UErrorCode *pErrorCode) {
1344     uint16_t *stage1;
1345     uint32_t *stage2;
1346     uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
1347     mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
1348     if(mbcsTable->reconstitutedData==NULL) {
1349         *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1350         return;
1351     }
1352     uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
1353 
1354     /* copy existing data and reroute the pointers */
1355     stage1=(uint16_t *)mbcsTable->reconstitutedData;
1356     uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
1357 
1358     stage2=(uint32_t *)(stage1+stage1Length);
1359     uprv_memcpy(stage2+(fullStage2Length-stage2Length),
1360                 mbcsTable->fromUnicodeTable+stage1Length,
1361                 stage2Length*4);
1362 
1363     mbcsTable->fromUnicodeTable=stage1;
1364     mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
1365 
1366     /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
1367     stage2=(uint32_t *)stage1;
1368 
1369     /* reconstitute the initial part of stage 2 from the mbcsIndex */
1370     {
1371         int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
1372         int32_t stageUTF8Index=0;
1373         int32_t st1, st2, st3, i;
1374 
1375         for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
1376             st2=stage1[st1];
1377             if(st2!=stage1Length/2) {
1378                 /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
1379                 for(i=0; i<16; ++i) {
1380                     st3=mbcsTable->mbcsIndex[stageUTF8Index++];
1381                     if(st3!=0) {
1382                         /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
1383                         st3>>=4;
1384                         /*
1385                          * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
1386                          * allocated together as a single 64-block for access from the mbcsIndex
1387                          */
1388                         stage2[st2++]=st3++;
1389                         stage2[st2++]=st3++;
1390                         stage2[st2++]=st3++;
1391                         stage2[st2++]=st3;
1392                     } else {
1393                         /* no stage 3 block, skip */
1394                         st2+=4;
1395                     }
1396                 }
1397             } else {
1398                 /* no stage 2 block, skip */
1399                 stageUTF8Index+=16;
1400             }
1401         }
1402     }
1403 
1404     /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
1405     ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
1406 }
1407 
1408 /* MBCS setup functions ----------------------------------------------------- */
1409 
1410 static void
ucnv_MBCSLoad(UConverterSharedData * sharedData,UConverterLoadArgs * pArgs,const uint8_t * raw,UErrorCode * pErrorCode)1411 ucnv_MBCSLoad(UConverterSharedData *sharedData,
1412           UConverterLoadArgs *pArgs,
1413           const uint8_t *raw,
1414           UErrorCode *pErrorCode) {
1415     UDataInfo info;
1416     UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1417     _MBCSHeader *header=(_MBCSHeader *)raw;
1418     uint32_t offset;
1419     uint32_t headerLength;
1420     UBool noFromU=FALSE;
1421 
1422     if(header->version[0]==4) {
1423         headerLength=MBCS_HEADER_V4_LENGTH;
1424     } else if(header->version[0]==5 && header->version[1]>=3 &&
1425               (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
1426         headerLength=header->options&MBCS_OPT_LENGTH_MASK;
1427         noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
1428     } else {
1429         *pErrorCode=U_INVALID_TABLE_FORMAT;
1430         return;
1431     }
1432 
1433     mbcsTable->outputType=(uint8_t)header->flags;
1434     if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
1435         *pErrorCode=U_INVALID_TABLE_FORMAT;
1436         return;
1437     }
1438 
1439     /* extension data, header version 4.2 and higher */
1440     offset=header->flags>>8;
1441     if(offset!=0) {
1442         mbcsTable->extIndexes=(const int32_t *)(raw+offset);
1443     }
1444 
1445     if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
1446         UConverterLoadArgs args={ 0 };
1447         UConverterSharedData *baseSharedData;
1448         const int32_t *extIndexes;
1449         const char *baseName;
1450 
1451         /* extension-only file, load the base table and set values appropriately */
1452         if((extIndexes=mbcsTable->extIndexes)==NULL) {
1453             /* extension-only file without extension */
1454             *pErrorCode=U_INVALID_TABLE_FORMAT;
1455             return;
1456         }
1457 
1458         if(pArgs->nestedLoads!=1) {
1459             /* an extension table must not be loaded as a base table */
1460             *pErrorCode=U_INVALID_TABLE_FILE;
1461             return;
1462         }
1463 
1464         /* load the base table */
1465         baseName=(const char *)header+headerLength*4;
1466         if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
1467             /* forbid loading this same extension-only file */
1468             *pErrorCode=U_INVALID_TABLE_FORMAT;
1469             return;
1470         }
1471 
1472         /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
1473         args.size=sizeof(UConverterLoadArgs);
1474         args.nestedLoads=2;
1475         args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
1476         args.reserved=pArgs->reserved;
1477         args.options=pArgs->options;
1478         args.pkg=pArgs->pkg;
1479         args.name=baseName;
1480         baseSharedData=ucnv_load(&args, pErrorCode);
1481         if(U_FAILURE(*pErrorCode)) {
1482             return;
1483         }
1484         if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
1485             baseSharedData->mbcs.baseSharedData!=NULL
1486         ) {
1487             ucnv_unload(baseSharedData);
1488             *pErrorCode=U_INVALID_TABLE_FORMAT;
1489             return;
1490         }
1491         if(pArgs->onlyTestIsLoadable) {
1492             /*
1493              * Exit as soon as we know that we can load the converter
1494              * and the format is valid and supported.
1495              * The worst that can happen in the following code is a memory
1496              * allocation error.
1497              */
1498             ucnv_unload(baseSharedData);
1499             return;
1500         }
1501 
1502         /* copy the base table data */
1503         uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
1504 
1505         /* overwrite values with relevant ones for the extension converter */
1506         mbcsTable->baseSharedData=baseSharedData;
1507         mbcsTable->extIndexes=extIndexes;
1508 
1509         /*
1510          * It would be possible to share the swapLFNL data with a base converter,
1511          * but the generated name would have to be different, and the memory
1512          * would have to be free'd only once.
1513          * It is easier to just create the data for the extension converter
1514          * separately when it is requested.
1515          */
1516         mbcsTable->swapLFNLStateTable=NULL;
1517         mbcsTable->swapLFNLFromUnicodeBytes=NULL;
1518         mbcsTable->swapLFNLName=NULL;
1519 
1520         /*
1521          * The reconstitutedData must be deleted only when the base converter
1522          * is unloaded.
1523          */
1524         mbcsTable->reconstitutedData=NULL;
1525 
1526         /*
1527          * Set a special, runtime-only outputType if the extension converter
1528          * is a DBCS version of a base converter that also maps single bytes.
1529          */
1530         if( sharedData->staticData->conversionType==UCNV_DBCS ||
1531                 (sharedData->staticData->conversionType==UCNV_MBCS &&
1532                  sharedData->staticData->minBytesPerChar>=2)
1533         ) {
1534             if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
1535                 /* the base converter is SI/SO-stateful */
1536                 int32_t entry;
1537 
1538                 /* get the dbcs state from the state table entry for SO=0x0e */
1539                 entry=mbcsTable->stateTable[0][0xe];
1540                 if( MBCS_ENTRY_IS_FINAL(entry) &&
1541                     MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
1542                     MBCS_ENTRY_FINAL_STATE(entry)!=0
1543                 ) {
1544                     mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
1545 
1546                     mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1547                 }
1548             } else if(
1549                 baseSharedData->staticData->conversionType==UCNV_MBCS &&
1550                 baseSharedData->staticData->minBytesPerChar==1 &&
1551                 baseSharedData->staticData->maxBytesPerChar==2 &&
1552                 mbcsTable->countStates<=127
1553             ) {
1554                 /* non-stateful base converter, need to modify the state table */
1555                 int32_t (*newStateTable)[256];
1556                 int32_t *state;
1557                 int32_t i, count;
1558 
1559                 /* allocate a new state table and copy the base state table contents */
1560                 count=mbcsTable->countStates;
1561                 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
1562                 if(newStateTable==NULL) {
1563                     ucnv_unload(baseSharedData);
1564                     *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1565                     return;
1566                 }
1567 
1568                 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
1569 
1570                 /* change all final single-byte entries to go to a new all-illegal state */
1571                 state=newStateTable[0];
1572                 for(i=0; i<256; ++i) {
1573                     if(MBCS_ENTRY_IS_FINAL(state[i])) {
1574                         state[i]=MBCS_ENTRY_TRANSITION(count, 0);
1575                     }
1576                 }
1577 
1578                 /* build the new all-illegal state */
1579                 state=newStateTable[count];
1580                 for(i=0; i<256; ++i) {
1581                     state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
1582                 }
1583                 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
1584                 mbcsTable->countStates=(uint8_t)(count+1);
1585                 mbcsTable->stateTableOwned=TRUE;
1586 
1587                 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1588             }
1589         }
1590 
1591         /*
1592          * unlike below for files with base tables, do not get the unicodeMask
1593          * from the sharedData; instead, use the base table's unicodeMask,
1594          * which we copied in the memcpy above;
1595          * this is necessary because the static data unicodeMask, especially
1596          * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
1597          */
1598     } else {
1599         /* conversion file with a base table; an additional extension table is optional */
1600         /* make sure that the output type is known */
1601         switch(mbcsTable->outputType) {
1602         case MBCS_OUTPUT_1:
1603         case MBCS_OUTPUT_2:
1604         case MBCS_OUTPUT_3:
1605         case MBCS_OUTPUT_4:
1606         case MBCS_OUTPUT_3_EUC:
1607         case MBCS_OUTPUT_4_EUC:
1608         case MBCS_OUTPUT_2_SISO:
1609             /* OK */
1610             break;
1611         default:
1612             *pErrorCode=U_INVALID_TABLE_FORMAT;
1613             return;
1614         }
1615         if(pArgs->onlyTestIsLoadable) {
1616             /*
1617              * Exit as soon as we know that we can load the converter
1618              * and the format is valid and supported.
1619              * The worst that can happen in the following code is a memory
1620              * allocation error.
1621              */
1622             return;
1623         }
1624 
1625         mbcsTable->countStates=(uint8_t)header->countStates;
1626         mbcsTable->countToUFallbacks=header->countToUFallbacks;
1627         mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
1628         mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
1629         mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
1630 
1631         mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
1632         mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
1633         mbcsTable->fromUBytesLength=header->fromUBytesLength;
1634 
1635         /*
1636          * converter versions 6.1 and up contain a unicodeMask that is
1637          * used here to select the most efficient function implementations
1638          */
1639         info.size=sizeof(UDataInfo);
1640         udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
1641         if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
1642             /* mask off possible future extensions to be safe */
1643             mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
1644         } else {
1645             /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
1646             mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
1647         }
1648 
1649         /*
1650          * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
1651          * Check for the header version, SBCS vs. MBCS, and for whether the
1652          * data structures are optimized for code points as high as what the
1653          * runtime code is designed for.
1654          * The implementation does not handle mapping tables with entries for
1655          * unpaired surrogates.
1656          */
1657         if( header->version[1]>=3 &&
1658             (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
1659             (mbcsTable->countStates==1 ?
1660                 (header->version[2]>=(SBCS_FAST_MAX>>8)) :
1661                 (header->version[2]>=(MBCS_FAST_MAX>>8))
1662             )
1663         ) {
1664             mbcsTable->utf8Friendly=TRUE;
1665 
1666             if(mbcsTable->countStates==1) {
1667                 /*
1668                  * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
1669                  * Build a table with indexes to each block, to be used instead of
1670                  * the regular stage 1/2 table.
1671                  */
1672                 int32_t i;
1673                 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
1674                     mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
1675                 }
1676                 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
1677                 mbcsTable->maxFastUChar=SBCS_FAST_MAX;
1678             } else {
1679                 /*
1680                  * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
1681                  * The .cnv file is prebuilt with an additional stage table with indexes
1682                  * to each block.
1683                  */
1684                 mbcsTable->mbcsIndex=(const uint16_t *)
1685                     (mbcsTable->fromUnicodeBytes+
1686                      (noFromU ? 0 : mbcsTable->fromUBytesLength));
1687                 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
1688             }
1689         }
1690 
1691         /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
1692         {
1693             uint32_t asciiRoundtrips=0xffffffff;
1694             int32_t i;
1695 
1696             for(i=0; i<0x80; ++i) {
1697                 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
1698                     asciiRoundtrips&=~((uint32_t)1<<(i>>2));
1699                 }
1700             }
1701             mbcsTable->asciiRoundtrips=asciiRoundtrips;
1702         }
1703 
1704         if(noFromU) {
1705             uint32_t stage1Length=
1706                 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
1707                     0x440 : 0x40;
1708             uint32_t stage2Length=
1709                 (header->offsetFromUBytes-header->offsetFromUTable)/4-
1710                 stage1Length/2;
1711             reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
1712         }
1713     }
1714 
1715     /* Set the impl pointer here so that it is set for both extension-only and base tables. */
1716     if(mbcsTable->utf8Friendly) {
1717         if(mbcsTable->countStates==1) {
1718             sharedData->impl=&_SBCSUTF8Impl;
1719         } else {
1720             if(mbcsTable->outputType==MBCS_OUTPUT_2) {
1721                 sharedData->impl=&_DBCSUTF8Impl;
1722             }
1723         }
1724     }
1725 
1726     if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
1727         /*
1728          * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
1729          * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
1730          */
1731         mbcsTable->asciiRoundtrips=0;
1732     }
1733 }
1734 
1735 static void
ucnv_MBCSUnload(UConverterSharedData * sharedData)1736 ucnv_MBCSUnload(UConverterSharedData *sharedData) {
1737     UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1738 
1739     if(mbcsTable->swapLFNLStateTable!=NULL) {
1740         uprv_free(mbcsTable->swapLFNLStateTable);
1741     }
1742     if(mbcsTable->stateTableOwned) {
1743         uprv_free((void *)mbcsTable->stateTable);
1744     }
1745     if(mbcsTable->baseSharedData!=NULL) {
1746         ucnv_unload(mbcsTable->baseSharedData);
1747     }
1748     if(mbcsTable->reconstitutedData!=NULL) {
1749         uprv_free(mbcsTable->reconstitutedData);
1750     }
1751 }
1752 
1753 static void
ucnv_MBCSOpen(UConverter * cnv,UConverterLoadArgs * pArgs,UErrorCode * pErrorCode)1754 ucnv_MBCSOpen(UConverter *cnv,
1755               UConverterLoadArgs *pArgs,
1756               UErrorCode *pErrorCode) {
1757     UConverterMBCSTable *mbcsTable;
1758     const int32_t *extIndexes;
1759     uint8_t outputType;
1760     int8_t maxBytesPerUChar;
1761 
1762     if(pArgs->onlyTestIsLoadable) {
1763         return;
1764     }
1765 
1766     mbcsTable=&cnv->sharedData->mbcs;
1767     outputType=mbcsTable->outputType;
1768 
1769     if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
1770         /* the swaplfnl option does not apply, remove it */
1771         cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1772     }
1773 
1774     if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1775         /* do this because double-checked locking is broken */
1776         UBool isCached;
1777 
1778         umtx_lock(NULL);
1779         isCached=mbcsTable->swapLFNLStateTable!=NULL;
1780         umtx_unlock(NULL);
1781 
1782         if(!isCached) {
1783             if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
1784                 if(U_FAILURE(*pErrorCode)) {
1785                     return; /* something went wrong */
1786                 }
1787 
1788                 /* the option does not apply, remove it */
1789                 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1790             }
1791         }
1792     }
1793 
1794     if(uprv_strstr(pArgs->name, "18030")!=NULL) {
1795         if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
1796             /* set a flag for GB 18030 mode, which changes the callback behavior */
1797             cnv->options|=_MBCS_OPTION_GB18030;
1798         }
1799     } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
1800         /* set a flag for KEIS converter, which changes the SI/SO character sequence */
1801         cnv->options|=_MBCS_OPTION_KEIS;
1802     } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
1803         /* set a flag for JEF converter, which changes the SI/SO character sequence */
1804         cnv->options|=_MBCS_OPTION_JEF;
1805     } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
1806         /* set a flag for JIPS converter, which changes the SI/SO character sequence */
1807         cnv->options|=_MBCS_OPTION_JIPS;
1808     }
1809 
1810     /* fix maxBytesPerUChar depending on outputType and options etc. */
1811     if(outputType==MBCS_OUTPUT_2_SISO) {
1812         cnv->maxBytesPerUChar=3; /* SO+DBCS */
1813     }
1814 
1815     extIndexes=mbcsTable->extIndexes;
1816     if(extIndexes!=NULL) {
1817         maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
1818         if(outputType==MBCS_OUTPUT_2_SISO) {
1819             ++maxBytesPerUChar; /* SO + multiple DBCS */
1820         }
1821 
1822         if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
1823             cnv->maxBytesPerUChar=maxBytesPerUChar;
1824         }
1825     }
1826 
1827 #if 0
1828     /*
1829      * documentation of UConverter fields used for status
1830      * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
1831      */
1832 
1833     /* toUnicode */
1834     cnv->toUnicodeStatus=0;     /* offset */
1835     cnv->mode=0;                /* state */
1836     cnv->toULength=0;           /* byteIndex */
1837 
1838     /* fromUnicode */
1839     cnv->fromUChar32=0;
1840     cnv->fromUnicodeStatus=1;   /* prevLength */
1841 #endif
1842 }
1843 
1844 static const char *
ucnv_MBCSGetName(const UConverter * cnv)1845 ucnv_MBCSGetName(const UConverter *cnv) {
1846     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
1847         return cnv->sharedData->mbcs.swapLFNLName;
1848     } else {
1849         return cnv->sharedData->staticData->name;
1850     }
1851 }
1852 
1853 /* MBCS-to-Unicode conversion functions ------------------------------------- */
1854 
1855 static UChar32
ucnv_MBCSGetFallback(UConverterMBCSTable * mbcsTable,uint32_t offset)1856 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
1857     const _MBCSToUFallback *toUFallbacks;
1858     uint32_t i, start, limit;
1859 
1860     limit=mbcsTable->countToUFallbacks;
1861     if(limit>0) {
1862         /* do a binary search for the fallback mapping */
1863         toUFallbacks=mbcsTable->toUFallbacks;
1864         start=0;
1865         while(start<limit-1) {
1866             i=(start+limit)/2;
1867             if(offset<toUFallbacks[i].offset) {
1868                 limit=i;
1869             } else {
1870                 start=i;
1871             }
1872         }
1873 
1874         /* did we really find it? */
1875         if(offset==toUFallbacks[start].offset) {
1876             return toUFallbacks[start].codePoint;
1877         }
1878     }
1879 
1880     return 0xfffe;
1881 }
1882 
1883 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
1884 static void
ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)1885 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
1886                                 UErrorCode *pErrorCode) {
1887     UConverter *cnv;
1888     const uint8_t *source, *sourceLimit;
1889     UChar *target;
1890     const UChar *targetLimit;
1891     int32_t *offsets;
1892 
1893     const int32_t (*stateTable)[256];
1894 
1895     int32_t sourceIndex;
1896 
1897     int32_t entry;
1898     UChar c;
1899     uint8_t action;
1900 
1901     /* set up the local pointers */
1902     cnv=pArgs->converter;
1903     source=(const uint8_t *)pArgs->source;
1904     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
1905     target=pArgs->target;
1906     targetLimit=pArgs->targetLimit;
1907     offsets=pArgs->offsets;
1908 
1909     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1910         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
1911     } else {
1912         stateTable=cnv->sharedData->mbcs.stateTable;
1913     }
1914 
1915     /* sourceIndex=-1 if the current character began in the previous buffer */
1916     sourceIndex=0;
1917 
1918     /* conversion loop */
1919     while(source<sourceLimit) {
1920         /*
1921          * This following test is to see if available input would overflow the output.
1922          * It does not catch output of more than one code unit that
1923          * overflows as a result of a surrogate pair or callback output
1924          * from the last source byte.
1925          * Therefore, those situations also test for overflows and will
1926          * then break the loop, too.
1927          */
1928         if(target>=targetLimit) {
1929             /* target is full */
1930             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
1931             break;
1932         }
1933 
1934         entry=stateTable[0][*source++];
1935         /* MBCS_ENTRY_IS_FINAL(entry) */
1936 
1937         /* test the most common case first */
1938         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
1939             /* output BMP code point */
1940             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
1941             if(offsets!=NULL) {
1942                 *offsets++=sourceIndex;
1943             }
1944 
1945             /* normal end of action codes: prepare for a new character */
1946             ++sourceIndex;
1947             continue;
1948         }
1949 
1950         /*
1951          * An if-else-if chain provides more reliable performance for
1952          * the most common cases compared to a switch.
1953          */
1954         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
1955         if(action==MBCS_STATE_VALID_DIRECT_20 ||
1956            (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
1957         ) {
1958             entry=MBCS_ENTRY_FINAL_VALUE(entry);
1959             /* output surrogate pair */
1960             *target++=(UChar)(0xd800|(UChar)(entry>>10));
1961             if(offsets!=NULL) {
1962                 *offsets++=sourceIndex;
1963             }
1964             c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
1965             if(target<targetLimit) {
1966                 *target++=c;
1967                 if(offsets!=NULL) {
1968                     *offsets++=sourceIndex;
1969                 }
1970             } else {
1971                 /* target overflow */
1972                 cnv->UCharErrorBuffer[0]=c;
1973                 cnv->UCharErrorBufferLength=1;
1974                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
1975                 break;
1976             }
1977 
1978             ++sourceIndex;
1979             continue;
1980         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
1981             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
1982                 /* output BMP code point */
1983                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
1984                 if(offsets!=NULL) {
1985                     *offsets++=sourceIndex;
1986                 }
1987 
1988                 ++sourceIndex;
1989                 continue;
1990             }
1991         } else if(action==MBCS_STATE_UNASSIGNED) {
1992             /* just fall through */
1993         } else if(action==MBCS_STATE_ILLEGAL) {
1994             /* callback(illegal) */
1995             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
1996         } else {
1997             /* reserved, must never occur */
1998             ++sourceIndex;
1999             continue;
2000         }
2001 
2002         if(U_FAILURE(*pErrorCode)) {
2003             /* callback(illegal) */
2004             break;
2005         } else /* unassigned sequences indicated with byteIndex>0 */ {
2006             /* try an extension mapping */
2007             pArgs->source=(const char *)source;
2008             cnv->toUBytes[0]=*(source-1);
2009             cnv->toULength=_extToU(cnv, cnv->sharedData,
2010                                     1, &source, sourceLimit,
2011                                     &target, targetLimit,
2012                                     &offsets, sourceIndex,
2013                                     pArgs->flush,
2014                                     pErrorCode);
2015             sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
2016 
2017             if(U_FAILURE(*pErrorCode)) {
2018                 /* not mappable or buffer overflow */
2019                 break;
2020             }
2021         }
2022     }
2023 
2024     /* write back the updated pointers */
2025     pArgs->source=(const char *)source;
2026     pArgs->target=target;
2027     pArgs->offsets=offsets;
2028 }
2029 
2030 /*
2031  * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
2032  * that only map to and from the BMP.
2033  * In addition to single-byte optimizations, the offset calculations
2034  * become much easier.
2035  */
2036 static void
ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2037 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
2038                             UErrorCode *pErrorCode) {
2039     UConverter *cnv;
2040     const uint8_t *source, *sourceLimit, *lastSource;
2041     UChar *target;
2042     int32_t targetCapacity, length;
2043     int32_t *offsets;
2044 
2045     const int32_t (*stateTable)[256];
2046 
2047     int32_t sourceIndex;
2048 
2049     int32_t entry;
2050     uint8_t action;
2051 
2052     /* set up the local pointers */
2053     cnv=pArgs->converter;
2054     source=(const uint8_t *)pArgs->source;
2055     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2056     target=pArgs->target;
2057     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
2058     offsets=pArgs->offsets;
2059 
2060     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2061         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2062     } else {
2063         stateTable=cnv->sharedData->mbcs.stateTable;
2064     }
2065 
2066     /* sourceIndex=-1 if the current character began in the previous buffer */
2067     sourceIndex=0;
2068     lastSource=source;
2069 
2070     /*
2071      * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
2072      * for the minimum of the sourceLength and targetCapacity
2073      */
2074     length=(int32_t)(sourceLimit-source);
2075     if(length<targetCapacity) {
2076         targetCapacity=length;
2077     }
2078 
2079 #if MBCS_UNROLL_SINGLE_TO_BMP
2080     /* unrolling makes it faster on Pentium III/Windows 2000 */
2081     /* unroll the loop with the most common case */
2082 unrolled:
2083     if(targetCapacity>=16) {
2084         int32_t count, loops, oredEntries;
2085 
2086         loops=count=targetCapacity>>4;
2087         do {
2088             oredEntries=entry=stateTable[0][*source++];
2089             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2090             oredEntries|=entry=stateTable[0][*source++];
2091             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2092             oredEntries|=entry=stateTable[0][*source++];
2093             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2094             oredEntries|=entry=stateTable[0][*source++];
2095             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2096             oredEntries|=entry=stateTable[0][*source++];
2097             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2098             oredEntries|=entry=stateTable[0][*source++];
2099             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2100             oredEntries|=entry=stateTable[0][*source++];
2101             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2102             oredEntries|=entry=stateTable[0][*source++];
2103             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2104             oredEntries|=entry=stateTable[0][*source++];
2105             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2106             oredEntries|=entry=stateTable[0][*source++];
2107             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2108             oredEntries|=entry=stateTable[0][*source++];
2109             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2110             oredEntries|=entry=stateTable[0][*source++];
2111             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2112             oredEntries|=entry=stateTable[0][*source++];
2113             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2114             oredEntries|=entry=stateTable[0][*source++];
2115             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2116             oredEntries|=entry=stateTable[0][*source++];
2117             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2118             oredEntries|=entry=stateTable[0][*source++];
2119             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2120 
2121             /* were all 16 entries really valid? */
2122             if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
2123                 /* no, return to the first of these 16 */
2124                 source-=16;
2125                 target-=16;
2126                 break;
2127             }
2128         } while(--count>0);
2129         count=loops-count;
2130         targetCapacity-=16*count;
2131 
2132         if(offsets!=NULL) {
2133             lastSource+=16*count;
2134             while(count>0) {
2135                 *offsets++=sourceIndex++;
2136                 *offsets++=sourceIndex++;
2137                 *offsets++=sourceIndex++;
2138                 *offsets++=sourceIndex++;
2139                 *offsets++=sourceIndex++;
2140                 *offsets++=sourceIndex++;
2141                 *offsets++=sourceIndex++;
2142                 *offsets++=sourceIndex++;
2143                 *offsets++=sourceIndex++;
2144                 *offsets++=sourceIndex++;
2145                 *offsets++=sourceIndex++;
2146                 *offsets++=sourceIndex++;
2147                 *offsets++=sourceIndex++;
2148                 *offsets++=sourceIndex++;
2149                 *offsets++=sourceIndex++;
2150                 *offsets++=sourceIndex++;
2151                 --count;
2152             }
2153         }
2154     }
2155 #endif
2156 
2157     /* conversion loop */
2158     while(targetCapacity > 0 && source < sourceLimit) {
2159         entry=stateTable[0][*source++];
2160         /* MBCS_ENTRY_IS_FINAL(entry) */
2161 
2162         /* test the most common case first */
2163         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2164             /* output BMP code point */
2165             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2166             --targetCapacity;
2167             continue;
2168         }
2169 
2170         /*
2171          * An if-else-if chain provides more reliable performance for
2172          * the most common cases compared to a switch.
2173          */
2174         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2175         if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2176             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2177                 /* output BMP code point */
2178                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2179                 --targetCapacity;
2180                 continue;
2181             }
2182         } else if(action==MBCS_STATE_UNASSIGNED) {
2183             /* just fall through */
2184         } else if(action==MBCS_STATE_ILLEGAL) {
2185             /* callback(illegal) */
2186             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2187         } else {
2188             /* reserved, must never occur */
2189             continue;
2190         }
2191 
2192         /* set offsets since the start or the last extension */
2193         if(offsets!=NULL) {
2194             int32_t count=(int32_t)(source-lastSource);
2195 
2196             /* predecrement: do not set the offset for the callback-causing character */
2197             while(--count>0) {
2198                 *offsets++=sourceIndex++;
2199             }
2200             /* offset and sourceIndex are now set for the current character */
2201         }
2202 
2203         if(U_FAILURE(*pErrorCode)) {
2204             /* callback(illegal) */
2205             break;
2206         } else /* unassigned sequences indicated with byteIndex>0 */ {
2207             /* try an extension mapping */
2208             lastSource=source;
2209             cnv->toUBytes[0]=*(source-1);
2210             cnv->toULength=_extToU(cnv, cnv->sharedData,
2211                                     1, &source, sourceLimit,
2212                                     &target, pArgs->targetLimit,
2213                                     &offsets, sourceIndex,
2214                                     pArgs->flush,
2215                                     pErrorCode);
2216             sourceIndex+=1+(int32_t)(source-lastSource);
2217 
2218             if(U_FAILURE(*pErrorCode)) {
2219                 /* not mappable or buffer overflow */
2220                 break;
2221             }
2222 
2223             /* recalculate the targetCapacity after an extension mapping */
2224             targetCapacity=(int32_t)(pArgs->targetLimit-target);
2225             length=(int32_t)(sourceLimit-source);
2226             if(length<targetCapacity) {
2227                 targetCapacity=length;
2228             }
2229         }
2230 
2231 #if MBCS_UNROLL_SINGLE_TO_BMP
2232         /* unrolling makes it faster on Pentium III/Windows 2000 */
2233         goto unrolled;
2234 #endif
2235     }
2236 
2237     if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
2238         /* target is full */
2239         *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2240     }
2241 
2242     /* set offsets since the start or the last callback */
2243     if(offsets!=NULL) {
2244         size_t count=source-lastSource;
2245         while(count>0) {
2246             *offsets++=sourceIndex++;
2247             --count;
2248         }
2249     }
2250 
2251     /* write back the updated pointers */
2252     pArgs->source=(const char *)source;
2253     pArgs->target=target;
2254     pArgs->offsets=offsets;
2255 }
2256 
2257 static UBool
hasValidTrailBytes(const int32_t (* stateTable)[256],uint8_t state)2258 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
2259     const int32_t *row=stateTable[state];
2260     int32_t b, entry;
2261     /* First test for final entries in this state for some commonly valid byte values. */
2262     entry=row[0xa1];
2263     if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2264         MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2265     ) {
2266         return TRUE;
2267     }
2268     entry=row[0x41];
2269     if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2270         MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2271     ) {
2272         return TRUE;
2273     }
2274     /* Then test for final entries in this state. */
2275     for(b=0; b<=0xff; ++b) {
2276         entry=row[b];
2277         if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2278             MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2279         ) {
2280             return TRUE;
2281         }
2282     }
2283     /* Then recurse for transition entries. */
2284     for(b=0; b<=0xff; ++b) {
2285         entry=row[b];
2286         if( MBCS_ENTRY_IS_TRANSITION(entry) &&
2287             hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
2288         ) {
2289             return TRUE;
2290         }
2291     }
2292     return FALSE;
2293 }
2294 
2295 /*
2296  * Is byte b a single/lead byte in this state?
2297  * Recurse for transition states, because here we don't want to say that
2298  * b is a lead byte if all byte sequences that start with b are illegal.
2299  */
2300 static UBool
isSingleOrLead(const int32_t (* stateTable)[256],uint8_t state,UBool isDBCSOnly,uint8_t b)2301 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
2302     const int32_t *row=stateTable[state];
2303     int32_t entry=row[b];
2304     if(MBCS_ENTRY_IS_TRANSITION(entry)) {   /* lead byte */
2305         return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
2306     } else {
2307         uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2308         if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
2309             return FALSE;   /* SI/SO are illegal for DBCS-only conversion */
2310         } else {
2311             return action!=MBCS_STATE_ILLEGAL;
2312         }
2313     }
2314 }
2315 
2316 U_CFUNC void
ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2317 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2318                           UErrorCode *pErrorCode) {
2319     UConverter *cnv;
2320     const uint8_t *source, *sourceLimit;
2321     UChar *target;
2322     const UChar *targetLimit;
2323     int32_t *offsets;
2324 
2325     const int32_t (*stateTable)[256];
2326     const uint16_t *unicodeCodeUnits;
2327 
2328     uint32_t offset;
2329     uint8_t state;
2330     int8_t byteIndex;
2331     uint8_t *bytes;
2332 
2333     int32_t sourceIndex, nextSourceIndex;
2334 
2335     int32_t entry;
2336     UChar c;
2337     uint8_t action;
2338 
2339     /* use optimized function if possible */
2340     cnv=pArgs->converter;
2341 
2342     if(cnv->preToULength>0) {
2343         /*
2344          * pass sourceIndex=-1 because we continue from an earlier buffer
2345          * in the future, this may change with continuous offsets
2346          */
2347         ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
2348 
2349         if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
2350             return;
2351         }
2352     }
2353 
2354     if(cnv->sharedData->mbcs.countStates==1) {
2355         if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
2356             ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
2357         } else {
2358             ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
2359         }
2360         return;
2361     }
2362 
2363     /* set up the local pointers */
2364     source=(const uint8_t *)pArgs->source;
2365     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2366     target=pArgs->target;
2367     targetLimit=pArgs->targetLimit;
2368     offsets=pArgs->offsets;
2369 
2370     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2371         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2372     } else {
2373         stateTable=cnv->sharedData->mbcs.stateTable;
2374     }
2375     unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2376 
2377     /* get the converter state from UConverter */
2378     offset=cnv->toUnicodeStatus;
2379     byteIndex=cnv->toULength;
2380     bytes=cnv->toUBytes;
2381 
2382     /*
2383      * if we are in the SBCS state for a DBCS-only converter,
2384      * then load the DBCS state from the MBCS data
2385      * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2386      */
2387     if((state=(uint8_t)(cnv->mode))==0) {
2388         state=cnv->sharedData->mbcs.dbcsOnlyState;
2389     }
2390 
2391     /* sourceIndex=-1 if the current character began in the previous buffer */
2392     sourceIndex=byteIndex==0 ? 0 : -1;
2393     nextSourceIndex=0;
2394 
2395     /* conversion loop */
2396     while(source<sourceLimit) {
2397         /*
2398          * This following test is to see if available input would overflow the output.
2399          * It does not catch output of more than one code unit that
2400          * overflows as a result of a surrogate pair or callback output
2401          * from the last source byte.
2402          * Therefore, those situations also test for overflows and will
2403          * then break the loop, too.
2404          */
2405         if(target>=targetLimit) {
2406             /* target is full */
2407             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2408             break;
2409         }
2410 
2411         if(byteIndex==0) {
2412             /* optimized loop for 1/2-byte input and BMP output */
2413             if(offsets==NULL) {
2414                 do {
2415                     entry=stateTable[state][*source];
2416                     if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2417                         state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2418                         offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2419 
2420                         ++source;
2421                         if( source<sourceLimit &&
2422                             MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2423                             MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2424                             (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2425                         ) {
2426                             ++source;
2427                             *target++=c;
2428                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2429                             offset=0;
2430                         } else {
2431                             /* set the state and leave the optimized loop */
2432                             bytes[0]=*(source-1);
2433                             byteIndex=1;
2434                             break;
2435                         }
2436                     } else {
2437                         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2438                             /* output BMP code point */
2439                             ++source;
2440                             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2441                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2442                         } else {
2443                             /* leave the optimized loop */
2444                             break;
2445                         }
2446                     }
2447                 } while(source<sourceLimit && target<targetLimit);
2448             } else /* offsets!=NULL */ {
2449                 do {
2450                     entry=stateTable[state][*source];
2451                     if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2452                         state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2453                         offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2454 
2455                         ++source;
2456                         if( source<sourceLimit &&
2457                             MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2458                             MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2459                             (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2460                         ) {
2461                             ++source;
2462                             *target++=c;
2463                             if(offsets!=NULL) {
2464                                 *offsets++=sourceIndex;
2465                                 sourceIndex=(nextSourceIndex+=2);
2466                             }
2467                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2468                             offset=0;
2469                         } else {
2470                             /* set the state and leave the optimized loop */
2471                             ++nextSourceIndex;
2472                             bytes[0]=*(source-1);
2473                             byteIndex=1;
2474                             break;
2475                         }
2476                     } else {
2477                         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2478                             /* output BMP code point */
2479                             ++source;
2480                             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2481                             if(offsets!=NULL) {
2482                                 *offsets++=sourceIndex;
2483                                 sourceIndex=++nextSourceIndex;
2484                             }
2485                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2486                         } else {
2487                             /* leave the optimized loop */
2488                             break;
2489                         }
2490                     }
2491                 } while(source<sourceLimit && target<targetLimit);
2492             }
2493 
2494             /*
2495              * these tests and break statements could be put inside the loop
2496              * if C had "break outerLoop" like Java
2497              */
2498             if(source>=sourceLimit) {
2499                 break;
2500             }
2501             if(target>=targetLimit) {
2502                 /* target is full */
2503                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2504                 break;
2505             }
2506 
2507             ++nextSourceIndex;
2508             bytes[byteIndex++]=*source++;
2509         } else /* byteIndex>0 */ {
2510             ++nextSourceIndex;
2511             entry=stateTable[state][bytes[byteIndex++]=*source++];
2512         }
2513 
2514         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2515             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2516             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2517             continue;
2518         }
2519 
2520         /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2521         cnv->mode=state;
2522 
2523         /* set the next state early so that we can reuse the entry variable */
2524         state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2525 
2526         /*
2527          * An if-else-if chain provides more reliable performance for
2528          * the most common cases compared to a switch.
2529          */
2530         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2531         if(action==MBCS_STATE_VALID_16) {
2532             offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2533             c=unicodeCodeUnits[offset];
2534             if(c<0xfffe) {
2535                 /* output BMP code point */
2536                 *target++=c;
2537                 if(offsets!=NULL) {
2538                     *offsets++=sourceIndex;
2539                 }
2540                 byteIndex=0;
2541             } else if(c==0xfffe) {
2542                 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2543                     /* output fallback BMP code point */
2544                     *target++=(UChar)entry;
2545                     if(offsets!=NULL) {
2546                         *offsets++=sourceIndex;
2547                     }
2548                     byteIndex=0;
2549                 }
2550             } else {
2551                 /* callback(illegal) */
2552                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2553             }
2554         } else if(action==MBCS_STATE_VALID_DIRECT_16) {
2555             /* output BMP code point */
2556             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2557             if(offsets!=NULL) {
2558                 *offsets++=sourceIndex;
2559             }
2560             byteIndex=0;
2561         } else if(action==MBCS_STATE_VALID_16_PAIR) {
2562             offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2563             c=unicodeCodeUnits[offset++];
2564             if(c<0xd800) {
2565                 /* output BMP code point below 0xd800 */
2566                 *target++=c;
2567                 if(offsets!=NULL) {
2568                     *offsets++=sourceIndex;
2569                 }
2570                 byteIndex=0;
2571             } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2572                 /* output roundtrip or fallback surrogate pair */
2573                 *target++=(UChar)(c&0xdbff);
2574                 if(offsets!=NULL) {
2575                     *offsets++=sourceIndex;
2576                 }
2577                 byteIndex=0;
2578                 if(target<targetLimit) {
2579                     *target++=unicodeCodeUnits[offset];
2580                     if(offsets!=NULL) {
2581                         *offsets++=sourceIndex;
2582                     }
2583                 } else {
2584                     /* target overflow */
2585                     cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
2586                     cnv->UCharErrorBufferLength=1;
2587                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2588 
2589                     offset=0;
2590                     break;
2591                 }
2592             } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2593                 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2594                 *target++=unicodeCodeUnits[offset];
2595                 if(offsets!=NULL) {
2596                     *offsets++=sourceIndex;
2597                 }
2598                 byteIndex=0;
2599             } else if(c==0xffff) {
2600                 /* callback(illegal) */
2601                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2602             }
2603         } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2604                   (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2605         ) {
2606             entry=MBCS_ENTRY_FINAL_VALUE(entry);
2607             /* output surrogate pair */
2608             *target++=(UChar)(0xd800|(UChar)(entry>>10));
2609             if(offsets!=NULL) {
2610                 *offsets++=sourceIndex;
2611             }
2612             byteIndex=0;
2613             c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2614             if(target<targetLimit) {
2615                 *target++=c;
2616                 if(offsets!=NULL) {
2617                     *offsets++=sourceIndex;
2618                 }
2619             } else {
2620                 /* target overflow */
2621                 cnv->UCharErrorBuffer[0]=c;
2622                 cnv->UCharErrorBufferLength=1;
2623                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2624 
2625                 offset=0;
2626                 break;
2627             }
2628         } else if(action==MBCS_STATE_CHANGE_ONLY) {
2629             /*
2630              * This serves as a state change without any output.
2631              * It is useful for reading simple stateful encodings,
2632              * for example using just Shift-In/Shift-Out codes.
2633              * The 21 unused bits may later be used for more sophisticated
2634              * state transitions.
2635              */
2636             if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
2637                 byteIndex=0;
2638             } else {
2639                 /* SI/SO are illegal for DBCS-only conversion */
2640                 state=(uint8_t)(cnv->mode); /* restore the previous state */
2641 
2642                 /* callback(illegal) */
2643                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2644             }
2645         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2646             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2647                 /* output BMP code point */
2648                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2649                 if(offsets!=NULL) {
2650                     *offsets++=sourceIndex;
2651                 }
2652                 byteIndex=0;
2653             }
2654         } else if(action==MBCS_STATE_UNASSIGNED) {
2655             /* just fall through */
2656         } else if(action==MBCS_STATE_ILLEGAL) {
2657             /* callback(illegal) */
2658             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2659         } else {
2660             /* reserved, must never occur */
2661             byteIndex=0;
2662         }
2663 
2664         /* end of action codes: prepare for a new character */
2665         offset=0;
2666 
2667         if(byteIndex==0) {
2668             sourceIndex=nextSourceIndex;
2669         } else if(U_FAILURE(*pErrorCode)) {
2670             /* callback(illegal) */
2671             if(byteIndex>1) {
2672                 /*
2673                  * Ticket 5691: consistent illegal sequences:
2674                  * - We include at least the first byte in the illegal sequence.
2675                  * - If any of the non-initial bytes could be the start of a character,
2676                  *   we stop the illegal sequence before the first one of those.
2677                  */
2678                 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
2679                 int8_t i;
2680                 for(i=1;
2681                     i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
2682                     ++i) {}
2683                 if(i<byteIndex) {
2684                     /* Back out some bytes. */
2685                     int8_t backOutDistance=byteIndex-i;
2686                     int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
2687                     byteIndex=i;  /* length of reported illegal byte sequence */
2688                     if(backOutDistance<=bytesFromThisBuffer) {
2689                         source-=backOutDistance;
2690                     } else {
2691                         /* Back out bytes from the previous buffer: Need to replay them. */
2692                         cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
2693                         /* preToULength is negative! */
2694                         uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
2695                         source=(const uint8_t *)pArgs->source;
2696                     }
2697                 }
2698             }
2699             break;
2700         } else /* unassigned sequences indicated with byteIndex>0 */ {
2701             /* try an extension mapping */
2702             pArgs->source=(const char *)source;
2703             byteIndex=_extToU(cnv, cnv->sharedData,
2704                               byteIndex, &source, sourceLimit,
2705                               &target, targetLimit,
2706                               &offsets, sourceIndex,
2707                               pArgs->flush,
2708                               pErrorCode);
2709             sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
2710 
2711             if(U_FAILURE(*pErrorCode)) {
2712                 /* not mappable or buffer overflow */
2713                 break;
2714             }
2715         }
2716     }
2717 
2718     /* set the converter state back into UConverter */
2719     cnv->toUnicodeStatus=offset;
2720     cnv->mode=state;
2721     cnv->toULength=byteIndex;
2722 
2723     /* write back the updated pointers */
2724     pArgs->source=(const char *)source;
2725     pArgs->target=target;
2726     pArgs->offsets=offsets;
2727 }
2728 
2729 /*
2730  * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
2731  * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
2732  */
2733 static UChar32
ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2734 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
2735                         UErrorCode *pErrorCode) {
2736     UConverter *cnv;
2737     const int32_t (*stateTable)[256];
2738     const uint8_t *source, *sourceLimit;
2739 
2740     int32_t entry;
2741     uint8_t action;
2742 
2743     /* set up the local pointers */
2744     cnv=pArgs->converter;
2745     source=(const uint8_t *)pArgs->source;
2746     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2747     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2748         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2749     } else {
2750         stateTable=cnv->sharedData->mbcs.stateTable;
2751     }
2752 
2753     /* conversion loop */
2754     while(source<sourceLimit) {
2755         entry=stateTable[0][*source++];
2756         /* MBCS_ENTRY_IS_FINAL(entry) */
2757 
2758         /* write back the updated pointer early so that we can return directly */
2759         pArgs->source=(const char *)source;
2760 
2761         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2762             /* output BMP code point */
2763             return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2764         }
2765 
2766         /*
2767          * An if-else-if chain provides more reliable performance for
2768          * the most common cases compared to a switch.
2769          */
2770         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2771         if( action==MBCS_STATE_VALID_DIRECT_20 ||
2772             (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2773         ) {
2774             /* output supplementary code point */
2775             return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2776         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2777             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2778                 /* output BMP code point */
2779                 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2780             }
2781         } else if(action==MBCS_STATE_UNASSIGNED) {
2782             /* just fall through */
2783         } else if(action==MBCS_STATE_ILLEGAL) {
2784             /* callback(illegal) */
2785             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2786         } else {
2787             /* reserved, must never occur */
2788             continue;
2789         }
2790 
2791         if(U_FAILURE(*pErrorCode)) {
2792             /* callback(illegal) */
2793             break;
2794         } else /* unassigned sequence */ {
2795             /* defer to the generic implementation */
2796             pArgs->source=(const char *)source-1;
2797             return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2798         }
2799     }
2800 
2801     /* no output because of empty input or only state changes */
2802     *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2803     return 0xffff;
2804 }
2805 
2806 /*
2807  * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
2808  * conversion without offset handling.
2809  *
2810  * When a character does not have a mapping to Unicode, then we return to the
2811  * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
2812  * handling.
2813  * We also defer to the generic code in other complicated cases and have them
2814  * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
2815  *
2816  * All normal mappings and errors are handled here.
2817  */
2818 static UChar32
ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2819 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
2820                   UErrorCode *pErrorCode) {
2821     UConverter *cnv;
2822     const uint8_t *source, *sourceLimit, *lastSource;
2823 
2824     const int32_t (*stateTable)[256];
2825     const uint16_t *unicodeCodeUnits;
2826 
2827     uint32_t offset;
2828     uint8_t state;
2829 
2830     int32_t entry;
2831     UChar32 c;
2832     uint8_t action;
2833 
2834     /* use optimized function if possible */
2835     cnv=pArgs->converter;
2836 
2837     if(cnv->preToULength>0) {
2838         /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
2839         return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2840     }
2841 
2842     if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
2843         /*
2844          * Using the generic ucnv_getNextUChar() code lets us deal correctly
2845          * with the rare case of a codepage that maps single surrogates
2846          * without adding the complexity to this already complicated function here.
2847          */
2848         return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2849     } else if(cnv->sharedData->mbcs.countStates==1) {
2850         return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
2851     }
2852 
2853     /* set up the local pointers */
2854     source=lastSource=(const uint8_t *)pArgs->source;
2855     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2856 
2857     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2858         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2859     } else {
2860         stateTable=cnv->sharedData->mbcs.stateTable;
2861     }
2862     unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2863 
2864     /* get the converter state from UConverter */
2865     offset=cnv->toUnicodeStatus;
2866 
2867     /*
2868      * if we are in the SBCS state for a DBCS-only converter,
2869      * then load the DBCS state from the MBCS data
2870      * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2871      */
2872     if((state=(uint8_t)(cnv->mode))==0) {
2873         state=cnv->sharedData->mbcs.dbcsOnlyState;
2874     }
2875 
2876     /* conversion loop */
2877     c=U_SENTINEL;
2878     while(source<sourceLimit) {
2879         entry=stateTable[state][*source++];
2880         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2881             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2882             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2883 
2884             /* optimization for 1/2-byte input and BMP output */
2885             if( source<sourceLimit &&
2886                 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2887                 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2888                 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2889             ) {
2890                 ++source;
2891                 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2892                 /* output BMP code point */
2893                 break;
2894             }
2895         } else {
2896             /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2897             cnv->mode=state;
2898 
2899             /* set the next state early so that we can reuse the entry variable */
2900             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2901 
2902             /*
2903              * An if-else-if chain provides more reliable performance for
2904              * the most common cases compared to a switch.
2905              */
2906             action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2907             if(action==MBCS_STATE_VALID_DIRECT_16) {
2908                 /* output BMP code point */
2909                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2910                 break;
2911             } else if(action==MBCS_STATE_VALID_16) {
2912                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2913                 c=unicodeCodeUnits[offset];
2914                 if(c<0xfffe) {
2915                     /* output BMP code point */
2916                     break;
2917                 } else if(c==0xfffe) {
2918                     if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2919                         break;
2920                     }
2921                 } else {
2922                     /* callback(illegal) */
2923                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2924                 }
2925             } else if(action==MBCS_STATE_VALID_16_PAIR) {
2926                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2927                 c=unicodeCodeUnits[offset++];
2928                 if(c<0xd800) {
2929                     /* output BMP code point below 0xd800 */
2930                     break;
2931                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2932                     /* output roundtrip or fallback supplementary code point */
2933                     c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
2934                     break;
2935                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2936                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2937                     c=unicodeCodeUnits[offset];
2938                     break;
2939                 } else if(c==0xffff) {
2940                     /* callback(illegal) */
2941                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2942                 }
2943             } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2944                       (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2945             ) {
2946                 /* output supplementary code point */
2947                 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2948                 break;
2949             } else if(action==MBCS_STATE_CHANGE_ONLY) {
2950                 /*
2951                  * This serves as a state change without any output.
2952                  * It is useful for reading simple stateful encodings,
2953                  * for example using just Shift-In/Shift-Out codes.
2954                  * The 21 unused bits may later be used for more sophisticated
2955                  * state transitions.
2956                  */
2957                 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
2958                     /* SI/SO are illegal for DBCS-only conversion */
2959                     state=(uint8_t)(cnv->mode); /* restore the previous state */
2960 
2961                     /* callback(illegal) */
2962                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2963                 }
2964             } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2965                 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2966                     /* output BMP code point */
2967                     c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2968                     break;
2969                 }
2970             } else if(action==MBCS_STATE_UNASSIGNED) {
2971                 /* just fall through */
2972             } else if(action==MBCS_STATE_ILLEGAL) {
2973                 /* callback(illegal) */
2974                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2975             } else {
2976                 /* reserved (must never occur), or only state change */
2977                 offset=0;
2978                 lastSource=source;
2979                 continue;
2980             }
2981 
2982             /* end of action codes: prepare for a new character */
2983             offset=0;
2984 
2985             if(U_FAILURE(*pErrorCode)) {
2986                 /* callback(illegal) */
2987                 break;
2988             } else /* unassigned sequence */ {
2989                 /* defer to the generic implementation */
2990                 cnv->toUnicodeStatus=0;
2991                 cnv->mode=state;
2992                 pArgs->source=(const char *)lastSource;
2993                 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2994             }
2995         }
2996     }
2997 
2998     if(c<0) {
2999         if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
3000             /* incomplete character byte sequence */
3001             uint8_t *bytes=cnv->toUBytes;
3002             cnv->toULength=(int8_t)(source-lastSource);
3003             do {
3004                 *bytes++=*lastSource++;
3005             } while(lastSource<source);
3006             *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3007         } else if(U_FAILURE(*pErrorCode)) {
3008             /* callback(illegal) */
3009             /*
3010              * Ticket 5691: consistent illegal sequences:
3011              * - We include at least the first byte in the illegal sequence.
3012              * - If any of the non-initial bytes could be the start of a character,
3013              *   we stop the illegal sequence before the first one of those.
3014              */
3015             UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
3016             uint8_t *bytes=cnv->toUBytes;
3017             *bytes++=*lastSource++;     /* first byte */
3018             if(lastSource==source) {
3019                 cnv->toULength=1;
3020             } else /* lastSource<source: multi-byte character */ {
3021                 int8_t i;
3022                 for(i=1;
3023                     lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
3024                     ++i
3025                 ) {
3026                     *bytes++=*lastSource++;
3027                 }
3028                 cnv->toULength=i;
3029                 source=lastSource;
3030             }
3031         } else {
3032             /* no output because of empty input or only state changes */
3033             *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
3034         }
3035         c=0xffff;
3036     }
3037 
3038     /* set the converter state back into UConverter, ready for a new character */
3039     cnv->toUnicodeStatus=0;
3040     cnv->mode=state;
3041 
3042     /* write back the updated pointer */
3043     pArgs->source=(const char *)source;
3044     return c;
3045 }
3046 
3047 #if 0
3048 /*
3049  * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3050  * Removal improves code coverage.
3051  */
3052 /**
3053  * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
3054  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3055  * It does not handle conversion extensions (_extToU()).
3056  */
3057 U_CFUNC UChar32
3058 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
3059                               uint8_t b, UBool useFallback) {
3060     int32_t entry;
3061     uint8_t action;
3062 
3063     entry=sharedData->mbcs.stateTable[0][b];
3064     /* MBCS_ENTRY_IS_FINAL(entry) */
3065 
3066     if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
3067         /* output BMP code point */
3068         return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3069     }
3070 
3071     /*
3072      * An if-else-if chain provides more reliable performance for
3073      * the most common cases compared to a switch.
3074      */
3075     action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3076     if(action==MBCS_STATE_VALID_DIRECT_20) {
3077         /* output supplementary code point */
3078         return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3079     } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3080         if(!TO_U_USE_FALLBACK(useFallback)) {
3081             return 0xfffe;
3082         }
3083         /* output BMP code point */
3084         return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3085     } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3086         if(!TO_U_USE_FALLBACK(useFallback)) {
3087             return 0xfffe;
3088         }
3089         /* output supplementary code point */
3090         return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3091     } else if(action==MBCS_STATE_UNASSIGNED) {
3092         return 0xfffe;
3093     } else if(action==MBCS_STATE_ILLEGAL) {
3094         return 0xffff;
3095     } else {
3096         /* reserved, must never occur */
3097         return 0xffff;
3098     }
3099 }
3100 #endif
3101 
3102 /*
3103  * This is a simple version of _MBCSGetNextUChar() that is used
3104  * by other converter implementations.
3105  * It only returns an "assigned" result if it consumes the entire input.
3106  * It does not use state from the converter, nor error codes.
3107  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3108  * It handles conversion extensions but not GB 18030.
3109  *
3110  * Return value:
3111  * U+fffe   unassigned
3112  * U+ffff   illegal
3113  * otherwise the Unicode code point
3114  */
3115 U_CFUNC UChar32
ucnv_MBCSSimpleGetNextUChar(UConverterSharedData * sharedData,const char * source,int32_t length,UBool useFallback)3116 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
3117                         const char *source, int32_t length,
3118                         UBool useFallback) {
3119     const int32_t (*stateTable)[256];
3120     const uint16_t *unicodeCodeUnits;
3121 
3122     uint32_t offset;
3123     uint8_t state, action;
3124 
3125     UChar32 c;
3126     int32_t i, entry;
3127 
3128     if(length<=0) {
3129         /* no input at all: "illegal" */
3130         return 0xffff;
3131     }
3132 
3133 #if 0
3134 /*
3135  * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3136  * TODO In future releases, verify that this function is never called for SBCS
3137  * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
3138  * Removal improves code coverage.
3139  */
3140     /* use optimized function if possible */
3141     if(sharedData->mbcs.countStates==1) {
3142         if(length==1) {
3143             return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
3144         } else {
3145             return 0xffff; /* illegal: more than a single byte for an SBCS converter */
3146         }
3147     }
3148 #endif
3149 
3150     /* set up the local pointers */
3151     stateTable=sharedData->mbcs.stateTable;
3152     unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
3153 
3154     /* converter state */
3155     offset=0;
3156     state=sharedData->mbcs.dbcsOnlyState;
3157 
3158     /* conversion loop */
3159     for(i=0;;) {
3160         entry=stateTable[state][(uint8_t)source[i++]];
3161         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3162             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3163             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3164 
3165             if(i==length) {
3166                 return 0xffff; /* truncated character */
3167             }
3168         } else {
3169             /*
3170              * An if-else-if chain provides more reliable performance for
3171              * the most common cases compared to a switch.
3172              */
3173             action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3174             if(action==MBCS_STATE_VALID_16) {
3175                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3176                 c=unicodeCodeUnits[offset];
3177                 if(c!=0xfffe) {
3178                     /* done */
3179                 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3180                     c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
3181                 /* else done with 0xfffe */
3182                 }
3183                 break;
3184             } else if(action==MBCS_STATE_VALID_DIRECT_16) {
3185                 /* output BMP code point */
3186                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3187                 break;
3188             } else if(action==MBCS_STATE_VALID_16_PAIR) {
3189                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3190                 c=unicodeCodeUnits[offset++];
3191                 if(c<0xd800) {
3192                     /* output BMP code point below 0xd800 */
3193                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3194                     /* output roundtrip or fallback supplementary code point */
3195                     c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
3196                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3197                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3198                     c=unicodeCodeUnits[offset];
3199                 } else if(c==0xffff) {
3200                     return 0xffff;
3201                 } else {
3202                     c=0xfffe;
3203                 }
3204                 break;
3205             } else if(action==MBCS_STATE_VALID_DIRECT_20) {
3206                 /* output supplementary code point */
3207                 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3208                 break;
3209             } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3210                 if(!TO_U_USE_FALLBACK(useFallback)) {
3211                     c=0xfffe;
3212                     break;
3213                 }
3214                 /* output BMP code point */
3215                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3216                 break;
3217             } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3218                 if(!TO_U_USE_FALLBACK(useFallback)) {
3219                     c=0xfffe;
3220                     break;
3221                 }
3222                 /* output supplementary code point */
3223                 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3224                 break;
3225             } else if(action==MBCS_STATE_UNASSIGNED) {
3226                 c=0xfffe;
3227                 break;
3228             }
3229 
3230             /*
3231              * forbid MBCS_STATE_CHANGE_ONLY for this function,
3232              * and MBCS_STATE_ILLEGAL and reserved action codes
3233              */
3234             return 0xffff;
3235         }
3236     }
3237 
3238     if(i!=length) {
3239         /* illegal for this function: not all input consumed */
3240         return 0xffff;
3241     }
3242 
3243     if(c==0xfffe) {
3244         /* try an extension mapping */
3245         const int32_t *cx=sharedData->mbcs.extIndexes;
3246         if(cx!=NULL) {
3247             return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
3248         }
3249     }
3250 
3251     return c;
3252 }
3253 
3254 /* MBCS-from-Unicode conversion functions ----------------------------------- */
3255 
3256 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
3257 static void
ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3258 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3259                                   UErrorCode *pErrorCode) {
3260     UConverter *cnv;
3261     const UChar *source, *sourceLimit;
3262     uint8_t *target;
3263     int32_t targetCapacity;
3264     int32_t *offsets;
3265 
3266     const uint16_t *table;
3267     const uint16_t *mbcsIndex;
3268     const uint8_t *bytes;
3269 
3270     UChar32 c;
3271 
3272     int32_t sourceIndex, nextSourceIndex;
3273 
3274     uint32_t stage2Entry;
3275     uint32_t asciiRoundtrips;
3276     uint32_t value;
3277     uint8_t unicodeMask;
3278 
3279     /* use optimized function if possible */
3280     cnv=pArgs->converter;
3281     unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3282 
3283     /* set up the local pointers */
3284     source=pArgs->source;
3285     sourceLimit=pArgs->sourceLimit;
3286     target=(uint8_t *)pArgs->target;
3287     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3288     offsets=pArgs->offsets;
3289 
3290     table=cnv->sharedData->mbcs.fromUnicodeTable;
3291     mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3292     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3293         bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3294     } else {
3295         bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3296     }
3297     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3298 
3299     /* get the converter state from UConverter */
3300     c=cnv->fromUChar32;
3301 
3302     /* sourceIndex=-1 if the current character began in the previous buffer */
3303     sourceIndex= c==0 ? 0 : -1;
3304     nextSourceIndex=0;
3305 
3306     /* conversion loop */
3307     if(c!=0 && targetCapacity>0) {
3308         goto getTrail;
3309     }
3310 
3311     while(source<sourceLimit) {
3312         /*
3313          * This following test is to see if available input would overflow the output.
3314          * It does not catch output of more than one byte that
3315          * overflows as a result of a multi-byte character or callback output
3316          * from the last source character.
3317          * Therefore, those situations also test for overflows and will
3318          * then break the loop, too.
3319          */
3320         if(targetCapacity>0) {
3321             /*
3322              * Get a correct Unicode code point:
3323              * a single UChar for a BMP code point or
3324              * a matched surrogate pair for a "supplementary code point".
3325              */
3326             c=*source++;
3327             ++nextSourceIndex;
3328             if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3329                 *target++=(uint8_t)c;
3330                 if(offsets!=NULL) {
3331                     *offsets++=sourceIndex;
3332                     sourceIndex=nextSourceIndex;
3333                 }
3334                 --targetCapacity;
3335                 c=0;
3336                 continue;
3337             }
3338             /*
3339              * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
3340              * to avoid dealing with surrogates.
3341              * MBCS_FAST_MAX must be >=0xd7ff.
3342              */
3343             if(c<=0xd7ff) {
3344                 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
3345                 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
3346                 if(value==0) {
3347                     goto unassigned;
3348                 }
3349                 /* output the value */
3350             } else {
3351                 /*
3352                  * This also tests if the codepage maps single surrogates.
3353                  * If it does, then surrogates are not paired but mapped separately.
3354                  * Note that in this case unmatched surrogates are not detected.
3355                  */
3356                 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3357                     if(U16_IS_SURROGATE_LEAD(c)) {
3358 getTrail:
3359                         if(source<sourceLimit) {
3360                             /* test the following code unit */
3361                             UChar trail=*source;
3362                             if(U16_IS_TRAIL(trail)) {
3363                                 ++source;
3364                                 ++nextSourceIndex;
3365                                 c=U16_GET_SUPPLEMENTARY(c, trail);
3366                                 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3367                                     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3368                                     /* callback(unassigned) */
3369                                     goto unassigned;
3370                                 }
3371                                 /* convert this supplementary code point */
3372                                 /* exit this condition tree */
3373                             } else {
3374                                 /* this is an unmatched lead code unit (1st surrogate) */
3375                                 /* callback(illegal) */
3376                                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3377                                 break;
3378                             }
3379                         } else {
3380                             /* no more input */
3381                             break;
3382                         }
3383                     } else {
3384                         /* this is an unmatched trail code unit (2nd surrogate) */
3385                         /* callback(illegal) */
3386                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3387                         break;
3388                     }
3389                 }
3390 
3391                 /* convert the Unicode code point in c into codepage bytes */
3392                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
3393 
3394                 /* get the bytes and the length for the output */
3395                 /* MBCS_OUTPUT_2 */
3396                 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
3397 
3398                 /* is this code point assigned, or do we use fallbacks? */
3399                 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
3400                      (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
3401                 ) {
3402                     /*
3403                      * We allow a 0 byte output if the "assigned" bit is set for this entry.
3404                      * There is no way with this data structure for fallback output
3405                      * to be a zero byte.
3406                      */
3407 
3408 unassigned:
3409                     /* try an extension mapping */
3410                     pArgs->source=source;
3411                     c=_extFromU(cnv, cnv->sharedData,
3412                                 c, &source, sourceLimit,
3413                                 &target, target+targetCapacity,
3414                                 &offsets, sourceIndex,
3415                                 pArgs->flush,
3416                                 pErrorCode);
3417                     nextSourceIndex+=(int32_t)(source-pArgs->source);
3418 
3419                     if(U_FAILURE(*pErrorCode)) {
3420                         /* not mappable or buffer overflow */
3421                         break;
3422                     } else {
3423                         /* a mapping was written to the target, continue */
3424 
3425                         /* recalculate the targetCapacity after an extension mapping */
3426                         targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3427 
3428                         /* normal end of conversion: prepare for a new character */
3429                         sourceIndex=nextSourceIndex;
3430                         continue;
3431                     }
3432                 }
3433             }
3434 
3435             /* write the output character bytes from value and length */
3436             /* from the first if in the loop we know that targetCapacity>0 */
3437             if(value<=0xff) {
3438                 /* this is easy because we know that there is enough space */
3439                 *target++=(uint8_t)value;
3440                 if(offsets!=NULL) {
3441                     *offsets++=sourceIndex;
3442                 }
3443                 --targetCapacity;
3444             } else /* length==2 */ {
3445                 *target++=(uint8_t)(value>>8);
3446                 if(2<=targetCapacity) {
3447                     *target++=(uint8_t)value;
3448                     if(offsets!=NULL) {
3449                         *offsets++=sourceIndex;
3450                         *offsets++=sourceIndex;
3451                     }
3452                     targetCapacity-=2;
3453                 } else {
3454                     if(offsets!=NULL) {
3455                         *offsets++=sourceIndex;
3456                     }
3457                     cnv->charErrorBuffer[0]=(char)value;
3458                     cnv->charErrorBufferLength=1;
3459 
3460                     /* target overflow */
3461                     targetCapacity=0;
3462                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3463                     c=0;
3464                     break;
3465                 }
3466             }
3467 
3468             /* normal end of conversion: prepare for a new character */
3469             c=0;
3470             sourceIndex=nextSourceIndex;
3471             continue;
3472         } else {
3473             /* target is full */
3474             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3475             break;
3476         }
3477     }
3478 
3479     /* set the converter state back into UConverter */
3480     cnv->fromUChar32=c;
3481 
3482     /* write back the updated pointers */
3483     pArgs->source=source;
3484     pArgs->target=(char *)target;
3485     pArgs->offsets=offsets;
3486 }
3487 
3488 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
3489 static void
ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3490 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3491                                   UErrorCode *pErrorCode) {
3492     UConverter *cnv;
3493     const UChar *source, *sourceLimit;
3494     uint8_t *target;
3495     int32_t targetCapacity;
3496     int32_t *offsets;
3497 
3498     const uint16_t *table;
3499     const uint16_t *results;
3500 
3501     UChar32 c;
3502 
3503     int32_t sourceIndex, nextSourceIndex;
3504 
3505     uint16_t value, minValue;
3506     UBool hasSupplementary;
3507 
3508     /* set up the local pointers */
3509     cnv=pArgs->converter;
3510     source=pArgs->source;
3511     sourceLimit=pArgs->sourceLimit;
3512     target=(uint8_t *)pArgs->target;
3513     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3514     offsets=pArgs->offsets;
3515 
3516     table=cnv->sharedData->mbcs.fromUnicodeTable;
3517     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3518         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3519     } else {
3520         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3521     }
3522 
3523     if(cnv->useFallback) {
3524         /* use all roundtrip and fallback results */
3525         minValue=0x800;
3526     } else {
3527         /* use only roundtrips and fallbacks from private-use characters */
3528         minValue=0xc00;
3529     }
3530     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
3531 
3532     /* get the converter state from UConverter */
3533     c=cnv->fromUChar32;
3534 
3535     /* sourceIndex=-1 if the current character began in the previous buffer */
3536     sourceIndex= c==0 ? 0 : -1;
3537     nextSourceIndex=0;
3538 
3539     /* conversion loop */
3540     if(c!=0 && targetCapacity>0) {
3541         goto getTrail;
3542     }
3543 
3544     while(source<sourceLimit) {
3545         /*
3546          * This following test is to see if available input would overflow the output.
3547          * It does not catch output of more than one byte that
3548          * overflows as a result of a multi-byte character or callback output
3549          * from the last source character.
3550          * Therefore, those situations also test for overflows and will
3551          * then break the loop, too.
3552          */
3553         if(targetCapacity>0) {
3554             /*
3555              * Get a correct Unicode code point:
3556              * a single UChar for a BMP code point or
3557              * a matched surrogate pair for a "supplementary code point".
3558              */
3559             c=*source++;
3560             ++nextSourceIndex;
3561             if(U16_IS_SURROGATE(c)) {
3562                 if(U16_IS_SURROGATE_LEAD(c)) {
3563 getTrail:
3564                     if(source<sourceLimit) {
3565                         /* test the following code unit */
3566                         UChar trail=*source;
3567                         if(U16_IS_TRAIL(trail)) {
3568                             ++source;
3569                             ++nextSourceIndex;
3570                             c=U16_GET_SUPPLEMENTARY(c, trail);
3571                             if(!hasSupplementary) {
3572                                 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3573                                 /* callback(unassigned) */
3574                                 goto unassigned;
3575                             }
3576                             /* convert this supplementary code point */
3577                             /* exit this condition tree */
3578                         } else {
3579                             /* this is an unmatched lead code unit (1st surrogate) */
3580                             /* callback(illegal) */
3581                             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3582                             break;
3583                         }
3584                     } else {
3585                         /* no more input */
3586                         break;
3587                     }
3588                 } else {
3589                     /* this is an unmatched trail code unit (2nd surrogate) */
3590                     /* callback(illegal) */
3591                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3592                     break;
3593                 }
3594             }
3595 
3596             /* convert the Unicode code point in c into codepage bytes */
3597             value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3598 
3599             /* is this code point assigned, or do we use fallbacks? */
3600             if(value>=minValue) {
3601                 /* assigned, write the output character bytes from value and length */
3602                 /* length==1 */
3603                 /* this is easy because we know that there is enough space */
3604                 *target++=(uint8_t)value;
3605                 if(offsets!=NULL) {
3606                     *offsets++=sourceIndex;
3607                 }
3608                 --targetCapacity;
3609 
3610                 /* normal end of conversion: prepare for a new character */
3611                 c=0;
3612                 sourceIndex=nextSourceIndex;
3613             } else { /* unassigned */
3614 unassigned:
3615                 /* try an extension mapping */
3616                 pArgs->source=source;
3617                 c=_extFromU(cnv, cnv->sharedData,
3618                             c, &source, sourceLimit,
3619                             &target, target+targetCapacity,
3620                             &offsets, sourceIndex,
3621                             pArgs->flush,
3622                             pErrorCode);
3623                 nextSourceIndex+=(int32_t)(source-pArgs->source);
3624 
3625                 if(U_FAILURE(*pErrorCode)) {
3626                     /* not mappable or buffer overflow */
3627                     break;
3628                 } else {
3629                     /* a mapping was written to the target, continue */
3630 
3631                     /* recalculate the targetCapacity after an extension mapping */
3632                     targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3633 
3634                     /* normal end of conversion: prepare for a new character */
3635                     sourceIndex=nextSourceIndex;
3636                 }
3637             }
3638         } else {
3639             /* target is full */
3640             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3641             break;
3642         }
3643     }
3644 
3645     /* set the converter state back into UConverter */
3646     cnv->fromUChar32=c;
3647 
3648     /* write back the updated pointers */
3649     pArgs->source=source;
3650     pArgs->target=(char *)target;
3651     pArgs->offsets=offsets;
3652 }
3653 
3654 /*
3655  * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
3656  * that map only to and from the BMP.
3657  * In addition to single-byte/state optimizations, the offset calculations
3658  * become much easier.
3659  * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
3660  * but measurements have shown that this diminishes performance
3661  * in more cases than it improves it.
3662  * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
3663  * for various MBCS and SBCS optimizations.
3664  */
3665 static void
ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3666 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
3667                               UErrorCode *pErrorCode) {
3668     UConverter *cnv;
3669     const UChar *source, *sourceLimit, *lastSource;
3670     uint8_t *target;
3671     int32_t targetCapacity, length;
3672     int32_t *offsets;
3673 
3674     const uint16_t *table;
3675     const uint16_t *results;
3676 
3677     UChar32 c;
3678 
3679     int32_t sourceIndex;
3680 
3681     uint32_t asciiRoundtrips;
3682     uint16_t value, minValue;
3683 
3684     /* set up the local pointers */
3685     cnv=pArgs->converter;
3686     source=pArgs->source;
3687     sourceLimit=pArgs->sourceLimit;
3688     target=(uint8_t *)pArgs->target;
3689     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3690     offsets=pArgs->offsets;
3691 
3692     table=cnv->sharedData->mbcs.fromUnicodeTable;
3693     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3694         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3695     } else {
3696         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3697     }
3698     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3699 
3700     if(cnv->useFallback) {
3701         /* use all roundtrip and fallback results */
3702         minValue=0x800;
3703     } else {
3704         /* use only roundtrips and fallbacks from private-use characters */
3705         minValue=0xc00;
3706     }
3707 
3708     /* get the converter state from UConverter */
3709     c=cnv->fromUChar32;
3710 
3711     /* sourceIndex=-1 if the current character began in the previous buffer */
3712     sourceIndex= c==0 ? 0 : -1;
3713     lastSource=source;
3714 
3715     /*
3716      * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
3717      * for the minimum of the sourceLength and targetCapacity
3718      */
3719     length=(int32_t)(sourceLimit-source);
3720     if(length<targetCapacity) {
3721         targetCapacity=length;
3722     }
3723 
3724     /* conversion loop */
3725     if(c!=0 && targetCapacity>0) {
3726         goto getTrail;
3727     }
3728 
3729 #if MBCS_UNROLL_SINGLE_FROM_BMP
3730     /* unrolling makes it slower on Pentium III/Windows 2000?! */
3731     /* unroll the loop with the most common case */
3732 unrolled:
3733     if(targetCapacity>=4) {
3734         int32_t count, loops;
3735         uint16_t andedValues;
3736 
3737         loops=count=targetCapacity>>2;
3738         do {
3739             c=*source++;
3740             andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3741             *target++=(uint8_t)value;
3742             c=*source++;
3743             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3744             *target++=(uint8_t)value;
3745             c=*source++;
3746             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3747             *target++=(uint8_t)value;
3748             c=*source++;
3749             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3750             *target++=(uint8_t)value;
3751 
3752             /* were all 4 entries really valid? */
3753             if(andedValues<minValue) {
3754                 /* no, return to the first of these 4 */
3755                 source-=4;
3756                 target-=4;
3757                 break;
3758             }
3759         } while(--count>0);
3760         count=loops-count;
3761         targetCapacity-=4*count;
3762 
3763         if(offsets!=NULL) {
3764             lastSource+=4*count;
3765             while(count>0) {
3766                 *offsets++=sourceIndex++;
3767                 *offsets++=sourceIndex++;
3768                 *offsets++=sourceIndex++;
3769                 *offsets++=sourceIndex++;
3770                 --count;
3771             }
3772         }
3773 
3774         c=0;
3775     }
3776 #endif
3777 
3778     while(targetCapacity>0) {
3779         /*
3780          * Get a correct Unicode code point:
3781          * a single UChar for a BMP code point or
3782          * a matched surrogate pair for a "supplementary code point".
3783          */
3784         c=*source++;
3785         /*
3786          * Do not immediately check for single surrogates:
3787          * Assume that they are unassigned and check for them in that case.
3788          * This speeds up the conversion of assigned characters.
3789          */
3790         /* convert the Unicode code point in c into codepage bytes */
3791         if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3792             *target++=(uint8_t)c;
3793             --targetCapacity;
3794             c=0;
3795             continue;
3796         }
3797         value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3798         /* is this code point assigned, or do we use fallbacks? */
3799         if(value>=minValue) {
3800             /* assigned, write the output character bytes from value and length */
3801             /* length==1 */
3802             /* this is easy because we know that there is enough space */
3803             *target++=(uint8_t)value;
3804             --targetCapacity;
3805 
3806             /* normal end of conversion: prepare for a new character */
3807             c=0;
3808             continue;
3809         } else if(!U16_IS_SURROGATE(c)) {
3810             /* normal, unassigned BMP character */
3811         } else if(U16_IS_SURROGATE_LEAD(c)) {
3812 getTrail:
3813             if(source<sourceLimit) {
3814                 /* test the following code unit */
3815                 UChar trail=*source;
3816                 if(U16_IS_TRAIL(trail)) {
3817                     ++source;
3818                     c=U16_GET_SUPPLEMENTARY(c, trail);
3819                     /* this codepage does not map supplementary code points */
3820                     /* callback(unassigned) */
3821                 } else {
3822                     /* this is an unmatched lead code unit (1st surrogate) */
3823                     /* callback(illegal) */
3824                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3825                     break;
3826                 }
3827             } else {
3828                 /* no more input */
3829                 if (pArgs->flush) {
3830                     *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3831                 }
3832                 break;
3833             }
3834         } else {
3835             /* this is an unmatched trail code unit (2nd surrogate) */
3836             /* callback(illegal) */
3837             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3838             break;
3839         }
3840 
3841         /* c does not have a mapping */
3842 
3843         /* get the number of code units for c to correctly advance sourceIndex */
3844         length=U16_LENGTH(c);
3845 
3846         /* set offsets since the start or the last extension */
3847         if(offsets!=NULL) {
3848             int32_t count=(int32_t)(source-lastSource);
3849 
3850             /* do not set the offset for this character */
3851             count-=length;
3852 
3853             while(count>0) {
3854                 *offsets++=sourceIndex++;
3855                 --count;
3856             }
3857             /* offsets and sourceIndex are now set for the current character */
3858         }
3859 
3860         /* try an extension mapping */
3861         lastSource=source;
3862         c=_extFromU(cnv, cnv->sharedData,
3863                     c, &source, sourceLimit,
3864                     &target, (const uint8_t *)(pArgs->targetLimit),
3865                     &offsets, sourceIndex,
3866                     pArgs->flush,
3867                     pErrorCode);
3868         sourceIndex+=length+(int32_t)(source-lastSource);
3869         lastSource=source;
3870 
3871         if(U_FAILURE(*pErrorCode)) {
3872             /* not mappable or buffer overflow */
3873             break;
3874         } else {
3875             /* a mapping was written to the target, continue */
3876 
3877             /* recalculate the targetCapacity after an extension mapping */
3878             targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3879             length=(int32_t)(sourceLimit-source);
3880             if(length<targetCapacity) {
3881                 targetCapacity=length;
3882             }
3883         }
3884 
3885 #if MBCS_UNROLL_SINGLE_FROM_BMP
3886         /* unrolling makes it slower on Pentium III/Windows 2000?! */
3887         goto unrolled;
3888 #endif
3889     }
3890 
3891     if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
3892         /* target is full */
3893         *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3894     }
3895 
3896     /* set offsets since the start or the last callback */
3897     if(offsets!=NULL) {
3898         size_t count=source-lastSource;
3899         if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
3900             /*
3901             Caller gave us a partial supplementary character,
3902             which this function couldn't convert in any case.
3903             The callback will handle the offset.
3904             */
3905             count--;
3906         }
3907         while(count>0) {
3908             *offsets++=sourceIndex++;
3909             --count;
3910         }
3911     }
3912 
3913     /* set the converter state back into UConverter */
3914     cnv->fromUChar32=c;
3915 
3916     /* write back the updated pointers */
3917     pArgs->source=source;
3918     pArgs->target=(char *)target;
3919     pArgs->offsets=offsets;
3920 }
3921 
3922 /* Begin Android-added */
3923 #undef si_value
3924 #undef so_value
3925 /* End Android-added */
3926 
3927 U_CFUNC void
ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3928 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3929                             UErrorCode *pErrorCode) {
3930     UConverter *cnv;
3931     const UChar *source, *sourceLimit;
3932     uint8_t *target;
3933     int32_t targetCapacity;
3934     int32_t *offsets;
3935 
3936     const uint16_t *table;
3937     const uint16_t *mbcsIndex;
3938     const uint8_t *p, *bytes;
3939     uint8_t outputType;
3940 
3941     UChar32 c;
3942 
3943     int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
3944 
3945     uint32_t stage2Entry;
3946     uint32_t asciiRoundtrips;
3947     uint32_t value;
3948     uint8_t si_value[2] = {0, 0};
3949     uint8_t so_value[2] = {0, 0};
3950     uint8_t si_value_length, so_value_length;
3951     int32_t length = 0, prevLength;
3952     uint8_t unicodeMask;
3953 
3954     cnv=pArgs->converter;
3955 
3956     if(cnv->preFromUFirstCP>=0) {
3957         /*
3958          * pass sourceIndex=-1 because we continue from an earlier buffer
3959          * in the future, this may change with continuous offsets
3960          */
3961         ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
3962 
3963         if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
3964             return;
3965         }
3966     }
3967 
3968     /* use optimized function if possible */
3969     outputType=cnv->sharedData->mbcs.outputType;
3970     unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3971     if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3972         if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3973             ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
3974         } else {
3975             ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
3976         }
3977         return;
3978     } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
3979         ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
3980         return;
3981     }
3982 
3983     /* set up the local pointers */
3984     source=pArgs->source;
3985     sourceLimit=pArgs->sourceLimit;
3986     target=(uint8_t *)pArgs->target;
3987     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3988     offsets=pArgs->offsets;
3989 
3990     table=cnv->sharedData->mbcs.fromUnicodeTable;
3991     if(cnv->sharedData->mbcs.utf8Friendly) {
3992         mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3993     } else {
3994         mbcsIndex=NULL;
3995     }
3996     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3997         bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3998     } else {
3999         bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
4000     }
4001     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4002 
4003     /* get the converter state from UConverter */
4004     c=cnv->fromUChar32;
4005 
4006     if(outputType==MBCS_OUTPUT_2_SISO) {
4007         prevLength=cnv->fromUnicodeStatus;
4008         if(prevLength==0) {
4009             /* set the real value */
4010             prevLength=1;
4011         }
4012     } else {
4013         /* prevent fromUnicodeStatus from being set to something non-0 */
4014         prevLength=0;
4015     }
4016 
4017     /* sourceIndex=-1 if the current character began in the previous buffer */
4018     prevSourceIndex=-1;
4019     sourceIndex= c==0 ? 0 : -1;
4020     nextSourceIndex=0;
4021 
4022     /* Get the SI/SO character for the converter */
4023     si_value_length = getSISOBytes(SI, cnv->options, si_value);
4024     so_value_length = getSISOBytes(SO, cnv->options, so_value);
4025 
4026     /* conversion loop */
4027     /*
4028      * This is another piece of ugly code:
4029      * A goto into the loop if the converter state contains a first surrogate
4030      * from the previous function call.
4031      * It saves me to check in each loop iteration a check of if(c==0)
4032      * and duplicating the trail-surrogate-handling code in the else
4033      * branch of that check.
4034      * I could not find any other way to get around this other than
4035      * using a function call for the conversion and callback, which would
4036      * be even more inefficient.
4037      *
4038      * Markus Scherer 2000-jul-19
4039      */
4040     if(c!=0 && targetCapacity>0) {
4041         goto getTrail;
4042     }
4043 
4044     while(source<sourceLimit) {
4045         /*
4046          * This following test is to see if available input would overflow the output.
4047          * It does not catch output of more than one byte that
4048          * overflows as a result of a multi-byte character or callback output
4049          * from the last source character.
4050          * Therefore, those situations also test for overflows and will
4051          * then break the loop, too.
4052          */
4053         if(targetCapacity>0) {
4054             /*
4055              * Get a correct Unicode code point:
4056              * a single UChar for a BMP code point or
4057              * a matched surrogate pair for a "supplementary code point".
4058              */
4059             c=*source++;
4060             ++nextSourceIndex;
4061             if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
4062                 *target++=(uint8_t)c;
4063                 if(offsets!=NULL) {
4064                     *offsets++=sourceIndex;
4065                     prevSourceIndex=sourceIndex;
4066                     sourceIndex=nextSourceIndex;
4067                 }
4068                 --targetCapacity;
4069                 c=0;
4070                 continue;
4071             }
4072             /*
4073              * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
4074              * to avoid dealing with surrogates.
4075              * MBCS_FAST_MAX must be >=0xd7ff.
4076              */
4077             if(c<=0xd7ff && mbcsIndex!=NULL) {
4078                 value=mbcsIndex[c>>6];
4079 
4080                 /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
4081                 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
4082                 switch(outputType) {
4083                 case MBCS_OUTPUT_2:
4084                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4085                     if(value<=0xff) {
4086                         if(value==0) {
4087                             goto unassigned;
4088                         } else {
4089                             length=1;
4090                         }
4091                     } else {
4092                         length=2;
4093                     }
4094                     break;
4095                 case MBCS_OUTPUT_2_SISO:
4096                     /* 1/2-byte stateful with Shift-In/Shift-Out */
4097                     /*
4098                      * Save the old state in the converter object
4099                      * right here, then change the local prevLength state variable if necessary.
4100                      * Then, if this character turns out to be unassigned or a fallback that
4101                      * is not taken, the callback code must not save the new state in the converter
4102                      * because the new state is for a character that is not output.
4103                      * However, the callback must still restore the state from the converter
4104                      * in case the callback function changed it for its output.
4105                      */
4106                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4107                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4108                     if(value<=0xff) {
4109                         if(value==0) {
4110                             goto unassigned;
4111                         } else if(prevLength<=1) {
4112                             length=1;
4113                         } else {
4114                             /* change from double-byte mode to single-byte */
4115                             if (si_value_length == 1) {
4116                                 value|=(uint32_t)si_value[0]<<8;
4117                                 length = 2;
4118                             } else if (si_value_length == 2) {
4119                                 value|=(uint32_t)si_value[1]<<8;
4120                                 value|=(uint32_t)si_value[0]<<16;
4121                                 length = 3;
4122                             }
4123                             prevLength=1;
4124                         }
4125                     } else {
4126                         if(prevLength==2) {
4127                             length=2;
4128                         } else {
4129                             /* change from single-byte mode to double-byte */
4130                             if (so_value_length == 1) {
4131                                 value|=(uint32_t)so_value[0]<<16;
4132                                 length = 3;
4133                             } else if (so_value_length == 2) {
4134                                 value|=(uint32_t)so_value[1]<<16;
4135                                 value|=(uint32_t)so_value[0]<<24;
4136                                 length = 4;
4137                             }
4138                             prevLength=2;
4139                         }
4140                     }
4141                     break;
4142                 case MBCS_OUTPUT_DBCS_ONLY:
4143                     /* table with single-byte results, but only DBCS mappings used */
4144                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4145                     if(value<=0xff) {
4146                         /* no mapping or SBCS result, not taken for DBCS-only */
4147                         goto unassigned;
4148                     } else {
4149                         length=2;
4150                     }
4151                     break;
4152                 case MBCS_OUTPUT_3:
4153                     p=bytes+(value+(c&0x3f))*3;
4154                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4155                     if(value<=0xff) {
4156                         if(value==0) {
4157                             goto unassigned;
4158                         } else {
4159                             length=1;
4160                         }
4161                     } else if(value<=0xffff) {
4162                         length=2;
4163                     } else {
4164                         length=3;
4165                     }
4166                     break;
4167                 case MBCS_OUTPUT_4:
4168                     value=((const uint32_t *)bytes)[value +(c&0x3f)];
4169                     if(value<=0xff) {
4170                         if(value==0) {
4171                             goto unassigned;
4172                         } else {
4173                             length=1;
4174                         }
4175                     } else if(value<=0xffff) {
4176                         length=2;
4177                     } else if(value<=0xffffff) {
4178                         length=3;
4179                     } else {
4180                         length=4;
4181                     }
4182                     break;
4183                 case MBCS_OUTPUT_3_EUC:
4184                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4185                     /* EUC 16-bit fixed-length representation */
4186                     if(value<=0xff) {
4187                         if(value==0) {
4188                             goto unassigned;
4189                         } else {
4190                             length=1;
4191                         }
4192                     } else if((value&0x8000)==0) {
4193                         value|=0x8e8000;
4194                         length=3;
4195                     } else if((value&0x80)==0) {
4196                         value|=0x8f0080;
4197                         length=3;
4198                     } else {
4199                         length=2;
4200                     }
4201                     break;
4202                 case MBCS_OUTPUT_4_EUC:
4203                     p=bytes+(value+(c&0x3f))*3;
4204                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4205                     /* EUC 16-bit fixed-length representation applied to the first two bytes */
4206                     if(value<=0xff) {
4207                         if(value==0) {
4208                             goto unassigned;
4209                         } else {
4210                             length=1;
4211                         }
4212                     } else if(value<=0xffff) {
4213                         length=2;
4214                     } else if((value&0x800000)==0) {
4215                         value|=0x8e800000;
4216                         length=4;
4217                     } else if((value&0x8000)==0) {
4218                         value|=0x8f008000;
4219                         length=4;
4220                     } else {
4221                         length=3;
4222                     }
4223                     break;
4224                 default:
4225                     /* must not occur */
4226                     /*
4227                      * To avoid compiler warnings that value & length may be
4228                      * used without having been initialized, we set them here.
4229                      * In reality, this is unreachable code.
4230                      * Not having a default branch also causes warnings with
4231                      * some compilers.
4232                      */
4233                     value=0;
4234                     length=0;
4235                     break;
4236                 }
4237                 /* output the value */
4238             } else {
4239                 /*
4240                  * This also tests if the codepage maps single surrogates.
4241                  * If it does, then surrogates are not paired but mapped separately.
4242                  * Note that in this case unmatched surrogates are not detected.
4243                  */
4244                 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4245                     if(U16_IS_SURROGATE_LEAD(c)) {
4246 getTrail:
4247                         if(source<sourceLimit) {
4248                             /* test the following code unit */
4249                             UChar trail=*source;
4250                             if(U16_IS_TRAIL(trail)) {
4251                                 ++source;
4252                                 ++nextSourceIndex;
4253                                 c=U16_GET_SUPPLEMENTARY(c, trail);
4254                                 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4255                                     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4256                                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4257                                     /* callback(unassigned) */
4258                                     goto unassigned;
4259                                 }
4260                                 /* convert this supplementary code point */
4261                                 /* exit this condition tree */
4262                             } else {
4263                                 /* this is an unmatched lead code unit (1st surrogate) */
4264                                 /* callback(illegal) */
4265                                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4266                                 break;
4267                             }
4268                         } else {
4269                             /* no more input */
4270                             break;
4271                         }
4272                     } else {
4273                         /* this is an unmatched trail code unit (2nd surrogate) */
4274                         /* callback(illegal) */
4275                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4276                         break;
4277                     }
4278                 }
4279 
4280                 /* convert the Unicode code point in c into codepage bytes */
4281 
4282                 /*
4283                  * The basic lookup is a triple-stage compact array (trie) lookup.
4284                  * For details see the beginning of this file.
4285                  *
4286                  * Single-byte codepages are handled with a different data structure
4287                  * by _MBCSSingle... functions.
4288                  *
4289                  * The result consists of a 32-bit value from stage 2 and
4290                  * a pointer to as many bytes as are stored per character.
4291                  * The pointer points to the character's bytes in stage 3.
4292                  * Bits 15..0 of the stage 2 entry contain the stage 3 index
4293                  * for that pointer, while bits 31..16 are flags for which of
4294                  * the 16 characters in the block are roundtrip-assigned.
4295                  *
4296                  * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
4297                  * respectively as uint32_t, in the platform encoding.
4298                  * For 3-byte codepages, the bytes are always stored in big-endian order.
4299                  *
4300                  * For EUC encodings that use only either 0x8e or 0x8f as the first
4301                  * byte of their longest byte sequences, the first two bytes in
4302                  * this third stage indicate with their 7th bits whether these bytes
4303                  * are to be written directly or actually need to be preceeded by
4304                  * one of the two Single-Shift codes. With this, the third stage
4305                  * stores one byte fewer per character than the actual maximum length of
4306                  * EUC byte sequences.
4307                  *
4308                  * Other than that, leading zero bytes are removed and the other
4309                  * bytes output. A single zero byte may be output if the "assigned"
4310                  * bit in stage 2 was on.
4311                  * The data structure does not support zero byte output as a fallback,
4312                  * and also does not allow output of leading zeros.
4313                  */
4314                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4315 
4316                 /* get the bytes and the length for the output */
4317                 switch(outputType) {
4318                 case MBCS_OUTPUT_2:
4319                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4320                     if(value<=0xff) {
4321                         length=1;
4322                     } else {
4323                         length=2;
4324                     }
4325                     break;
4326                 case MBCS_OUTPUT_2_SISO:
4327                     /* 1/2-byte stateful with Shift-In/Shift-Out */
4328                     /*
4329                      * Save the old state in the converter object
4330                      * right here, then change the local prevLength state variable if necessary.
4331                      * Then, if this character turns out to be unassigned or a fallback that
4332                      * is not taken, the callback code must not save the new state in the converter
4333                      * because the new state is for a character that is not output.
4334                      * However, the callback must still restore the state from the converter
4335                      * in case the callback function changed it for its output.
4336                      */
4337                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4338                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4339                     if(value<=0xff) {
4340                         if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
4341                             /* no mapping, leave value==0 */
4342                             length=0;
4343                         } else if(prevLength<=1) {
4344                             length=1;
4345                         } else {
4346                             /* change from double-byte mode to single-byte */
4347                             if (si_value_length == 1) {
4348                                 value|=(uint32_t)si_value[0]<<8;
4349                                 length = 2;
4350                             } else if (si_value_length == 2) {
4351                                 value|=(uint32_t)si_value[1]<<8;
4352                                 value|=(uint32_t)si_value[0]<<16;
4353                                 length = 3;
4354                             }
4355                             prevLength=1;
4356                         }
4357                     } else {
4358                         if(prevLength==2) {
4359                             length=2;
4360                         } else {
4361                             /* change from single-byte mode to double-byte */
4362                             if (so_value_length == 1) {
4363                                 value|=(uint32_t)so_value[0]<<16;
4364                                 length = 3;
4365                             } else if (so_value_length == 2) {
4366                                 value|=(uint32_t)so_value[1]<<16;
4367                                 value|=(uint32_t)so_value[0]<<24;
4368                                 length = 4;
4369                             }
4370                             prevLength=2;
4371                         }
4372                     }
4373                     break;
4374                 case MBCS_OUTPUT_DBCS_ONLY:
4375                     /* table with single-byte results, but only DBCS mappings used */
4376                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4377                     if(value<=0xff) {
4378                         /* no mapping or SBCS result, not taken for DBCS-only */
4379                         value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4380                         length=0;
4381                     } else {
4382                         length=2;
4383                     }
4384                     break;
4385                 case MBCS_OUTPUT_3:
4386                     p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4387                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4388                     if(value<=0xff) {
4389                         length=1;
4390                     } else if(value<=0xffff) {
4391                         length=2;
4392                     } else {
4393                         length=3;
4394                     }
4395                     break;
4396                 case MBCS_OUTPUT_4:
4397                     value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
4398                     if(value<=0xff) {
4399                         length=1;
4400                     } else if(value<=0xffff) {
4401                         length=2;
4402                     } else if(value<=0xffffff) {
4403                         length=3;
4404                     } else {
4405                         length=4;
4406                     }
4407                     break;
4408                 case MBCS_OUTPUT_3_EUC:
4409                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4410                     /* EUC 16-bit fixed-length representation */
4411                     if(value<=0xff) {
4412                         length=1;
4413                     } else if((value&0x8000)==0) {
4414                         value|=0x8e8000;
4415                         length=3;
4416                     } else if((value&0x80)==0) {
4417                         value|=0x8f0080;
4418                         length=3;
4419                     } else {
4420                         length=2;
4421                     }
4422                     break;
4423                 case MBCS_OUTPUT_4_EUC:
4424                     p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4425                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4426                     /* EUC 16-bit fixed-length representation applied to the first two bytes */
4427                     if(value<=0xff) {
4428                         length=1;
4429                     } else if(value<=0xffff) {
4430                         length=2;
4431                     } else if((value&0x800000)==0) {
4432                         value|=0x8e800000;
4433                         length=4;
4434                     } else if((value&0x8000)==0) {
4435                         value|=0x8f008000;
4436                         length=4;
4437                     } else {
4438                         length=3;
4439                     }
4440                     break;
4441                 default:
4442                     /* must not occur */
4443                     /*
4444                      * To avoid compiler warnings that value & length may be
4445                      * used without having been initialized, we set them here.
4446                      * In reality, this is unreachable code.
4447                      * Not having a default branch also causes warnings with
4448                      * some compilers.
4449                      */
4450                     value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4451                     length=0;
4452                     break;
4453                 }
4454 
4455                 /* is this code point assigned, or do we use fallbacks? */
4456                 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
4457                      (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
4458                 ) {
4459                     /*
4460                      * We allow a 0 byte output if the "assigned" bit is set for this entry.
4461                      * There is no way with this data structure for fallback output
4462                      * to be a zero byte.
4463                      */
4464 
4465 unassigned:
4466                     /* try an extension mapping */
4467                     pArgs->source=source;
4468                     c=_extFromU(cnv, cnv->sharedData,
4469                                 c, &source, sourceLimit,
4470                                 &target, target+targetCapacity,
4471                                 &offsets, sourceIndex,
4472                                 pArgs->flush,
4473                                 pErrorCode);
4474                     nextSourceIndex+=(int32_t)(source-pArgs->source);
4475                     prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
4476 
4477                     if(U_FAILURE(*pErrorCode)) {
4478                         /* not mappable or buffer overflow */
4479                         break;
4480                     } else {
4481                         /* a mapping was written to the target, continue */
4482 
4483                         /* recalculate the targetCapacity after an extension mapping */
4484                         targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4485 
4486                         /* normal end of conversion: prepare for a new character */
4487                         if(offsets!=NULL) {
4488                             prevSourceIndex=sourceIndex;
4489                             sourceIndex=nextSourceIndex;
4490                         }
4491                         continue;
4492                     }
4493                 }
4494             }
4495 
4496             /* write the output character bytes from value and length */
4497             /* from the first if in the loop we know that targetCapacity>0 */
4498             if(length<=targetCapacity) {
4499                 if(offsets==NULL) {
4500                     switch(length) {
4501                         /* each branch falls through to the next one */
4502                     case 4:
4503                         *target++=(uint8_t)(value>>24);
4504                     case 3: /*fall through*/
4505                         *target++=(uint8_t)(value>>16);
4506                     case 2: /*fall through*/
4507                         *target++=(uint8_t)(value>>8);
4508                     case 1: /*fall through*/
4509                         *target++=(uint8_t)value;
4510                     default:
4511                         /* will never occur */
4512                         break;
4513                     }
4514                 } else {
4515                     switch(length) {
4516                         /* each branch falls through to the next one */
4517                     case 4:
4518                         *target++=(uint8_t)(value>>24);
4519                         *offsets++=sourceIndex;
4520                     case 3: /*fall through*/
4521                         *target++=(uint8_t)(value>>16);
4522                         *offsets++=sourceIndex;
4523                     case 2: /*fall through*/
4524                         *target++=(uint8_t)(value>>8);
4525                         *offsets++=sourceIndex;
4526                     case 1: /*fall through*/
4527                         *target++=(uint8_t)value;
4528                         *offsets++=sourceIndex;
4529                     default:
4530                         /* will never occur */
4531                         break;
4532                     }
4533                 }
4534                 targetCapacity-=length;
4535             } else {
4536                 uint8_t *charErrorBuffer;
4537 
4538                 /*
4539                  * We actually do this backwards here:
4540                  * In order to save an intermediate variable, we output
4541                  * first to the overflow buffer what does not fit into the
4542                  * regular target.
4543                  */
4544                 /* we know that 1<=targetCapacity<length<=4 */
4545                 length-=targetCapacity;
4546                 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
4547                 switch(length) {
4548                     /* each branch falls through to the next one */
4549                 case 3:
4550                     *charErrorBuffer++=(uint8_t)(value>>16);
4551                 case 2: /*fall through*/
4552                     *charErrorBuffer++=(uint8_t)(value>>8);
4553                 case 1: /*fall through*/
4554                     *charErrorBuffer=(uint8_t)value;
4555                 default:
4556                     /* will never occur */
4557                     break;
4558                 }
4559                 cnv->charErrorBufferLength=(int8_t)length;
4560 
4561                 /* now output what fits into the regular target */
4562                 value>>=8*length; /* length was reduced by targetCapacity */
4563                 switch(targetCapacity) {
4564                     /* each branch falls through to the next one */
4565                 case 3:
4566                     *target++=(uint8_t)(value>>16);
4567                     if(offsets!=NULL) {
4568                         *offsets++=sourceIndex;
4569                     }
4570                 case 2: /*fall through*/
4571                     *target++=(uint8_t)(value>>8);
4572                     if(offsets!=NULL) {
4573                         *offsets++=sourceIndex;
4574                     }
4575                 case 1: /*fall through*/
4576                     *target++=(uint8_t)value;
4577                     if(offsets!=NULL) {
4578                         *offsets++=sourceIndex;
4579                     }
4580                 default:
4581                     /* will never occur */
4582                     break;
4583                 }
4584 
4585                 /* target overflow */
4586                 targetCapacity=0;
4587                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4588                 c=0;
4589                 break;
4590             }
4591 
4592             /* normal end of conversion: prepare for a new character */
4593             c=0;
4594             if(offsets!=NULL) {
4595                 prevSourceIndex=sourceIndex;
4596                 sourceIndex=nextSourceIndex;
4597             }
4598             continue;
4599         } else {
4600             /* target is full */
4601             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4602             break;
4603         }
4604     }
4605 
4606     /*
4607      * the end of the input stream and detection of truncated input
4608      * are handled by the framework, but for EBCDIC_STATEFUL conversion
4609      * we need to emit an SI at the very end
4610      *
4611      * conditions:
4612      *   successful
4613      *   EBCDIC_STATEFUL in DBCS mode
4614      *   end of input and no truncated input
4615      */
4616     if( U_SUCCESS(*pErrorCode) &&
4617         outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
4618         pArgs->flush && source>=sourceLimit && c==0
4619     ) {
4620         /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
4621         if(targetCapacity>0) {
4622             *target++=(uint8_t)si_value[0];
4623             if (si_value_length == 2) {
4624                 if (targetCapacity<2) {
4625                     cnv->charErrorBuffer[0]=(uint8_t)si_value[1];
4626                     cnv->charErrorBufferLength=1;
4627                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4628                 } else {
4629                     *target++=(uint8_t)si_value[1];
4630                 }
4631             }
4632             if(offsets!=NULL) {
4633                 /* set the last source character's index (sourceIndex points at sourceLimit now) */
4634                 *offsets++=prevSourceIndex;
4635             }
4636         } else {
4637             /* target is full */
4638             cnv->charErrorBuffer[0]=(uint8_t)si_value[0];
4639             if (si_value_length == 2) {
4640                 cnv->charErrorBuffer[1]=(uint8_t)si_value[1];
4641             }
4642             cnv->charErrorBufferLength=si_value_length;
4643             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4644         }
4645         prevLength=1; /* we switched into SBCS */
4646     }
4647 
4648     /* set the converter state back into UConverter */
4649     cnv->fromUChar32=c;
4650     cnv->fromUnicodeStatus=prevLength;
4651 
4652     /* write back the updated pointers */
4653     pArgs->source=source;
4654     pArgs->target=(char *)target;
4655     pArgs->offsets=offsets;
4656 }
4657 
4658 /*
4659  * This is another simple conversion function for internal use by other
4660  * conversion implementations.
4661  * It does not use the converter state nor call callbacks.
4662  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4663  * It handles conversion extensions but not GB 18030.
4664  *
4665  * It converts one single Unicode code point into codepage bytes, encoded
4666  * as one 32-bit value. The function returns the number of bytes in *pValue:
4667  * 1..4 the number of bytes in *pValue
4668  * 0    unassigned (*pValue undefined)
4669  * -1   illegal (currently not used, *pValue undefined)
4670  *
4671  * *pValue will contain the resulting bytes with the last byte in bits 7..0,
4672  * the second to last byte in bits 15..8, etc.
4673  * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
4674  */
4675 U_CFUNC int32_t
ucnv_MBCSFromUChar32(UConverterSharedData * sharedData,UChar32 c,uint32_t * pValue,UBool useFallback)4676 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
4677                  UChar32 c, uint32_t *pValue,
4678                  UBool useFallback) {
4679     const int32_t *cx;
4680     const uint16_t *table;
4681 #if 0
4682 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4683     const uint8_t *p;
4684 #endif
4685     uint32_t stage2Entry;
4686     uint32_t value;
4687     int32_t length;
4688 
4689     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4690     if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4691         table=sharedData->mbcs.fromUnicodeTable;
4692 
4693         /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4694         if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
4695             value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4696             /* is this code point assigned, or do we use fallbacks? */
4697             if(useFallback ? value>=0x800 : value>=0xc00) {
4698                 *pValue=value&0xff;
4699                 return 1;
4700             }
4701         } else /* outputType!=MBCS_OUTPUT_1 */ {
4702             stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4703 
4704             /* get the bytes and the length for the output */
4705             switch(sharedData->mbcs.outputType) {
4706             case MBCS_OUTPUT_2:
4707                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4708                 if(value<=0xff) {
4709                     length=1;
4710                 } else {
4711                     length=2;
4712                 }
4713                 break;
4714 #if 0
4715 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4716             case MBCS_OUTPUT_DBCS_ONLY:
4717                 /* table with single-byte results, but only DBCS mappings used */
4718                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4719                 if(value<=0xff) {
4720                     /* no mapping or SBCS result, not taken for DBCS-only */
4721                     value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4722                     length=0;
4723                 } else {
4724                     length=2;
4725                 }
4726                 break;
4727             case MBCS_OUTPUT_3:
4728                 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4729                 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4730                 if(value<=0xff) {
4731                     length=1;
4732                 } else if(value<=0xffff) {
4733                     length=2;
4734                 } else {
4735                     length=3;
4736                 }
4737                 break;
4738             case MBCS_OUTPUT_4:
4739                 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4740                 if(value<=0xff) {
4741                     length=1;
4742                 } else if(value<=0xffff) {
4743                     length=2;
4744                 } else if(value<=0xffffff) {
4745                     length=3;
4746                 } else {
4747                     length=4;
4748                 }
4749                 break;
4750             case MBCS_OUTPUT_3_EUC:
4751                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4752                 /* EUC 16-bit fixed-length representation */
4753                 if(value<=0xff) {
4754                     length=1;
4755                 } else if((value&0x8000)==0) {
4756                     value|=0x8e8000;
4757                     length=3;
4758                 } else if((value&0x80)==0) {
4759                     value|=0x8f0080;
4760                     length=3;
4761                 } else {
4762                     length=2;
4763                 }
4764                 break;
4765             case MBCS_OUTPUT_4_EUC:
4766                 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4767                 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4768                 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4769                 if(value<=0xff) {
4770                     length=1;
4771                 } else if(value<=0xffff) {
4772                     length=2;
4773                 } else if((value&0x800000)==0) {
4774                     value|=0x8e800000;
4775                     length=4;
4776                 } else if((value&0x8000)==0) {
4777                     value|=0x8f008000;
4778                     length=4;
4779                 } else {
4780                     length=3;
4781                 }
4782                 break;
4783 #endif
4784             default:
4785                 /* must not occur */
4786                 return -1;
4787             }
4788 
4789             /* is this code point assigned, or do we use fallbacks? */
4790             if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
4791                 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
4792             ) {
4793                 /*
4794                  * We allow a 0 byte output if the "assigned" bit is set for this entry.
4795                  * There is no way with this data structure for fallback output
4796                  * to be a zero byte.
4797                  */
4798                 /* assigned */
4799                 *pValue=value;
4800                 return length;
4801             }
4802         }
4803     }
4804 
4805     cx=sharedData->mbcs.extIndexes;
4806     if(cx!=NULL) {
4807         length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
4808         return length>=0 ? length : -length;  /* return abs(length); */
4809     }
4810 
4811     /* unassigned */
4812     return 0;
4813 }
4814 
4815 
4816 #if 0
4817 /*
4818  * This function has been moved to ucnv2022.c for inlining.
4819  * This implementation is here only for documentation purposes
4820  */
4821 
4822 /**
4823  * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
4824  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4825  * It does not handle conversion extensions (_extFromU()).
4826  *
4827  * It returns the codepage byte for the code point, or -1 if it is unassigned.
4828  */
4829 U_CFUNC int32_t
4830 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
4831                        UChar32 c,
4832                        UBool useFallback) {
4833     const uint16_t *table;
4834     int32_t value;
4835 
4836     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4837     if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4838         return -1;
4839     }
4840 
4841     /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4842     table=sharedData->mbcs.fromUnicodeTable;
4843 
4844     /* get the byte for the output */
4845     value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4846     /* is this code point assigned, or do we use fallbacks? */
4847     if(useFallback ? value>=0x800 : value>=0xc00) {
4848         return value&0xff;
4849     } else {
4850         return -1;
4851     }
4852 }
4853 #endif
4854 
4855 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */
4856 
4857 /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */
4858 static const UChar32
4859 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 };
4860 
4861 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
4862 static const UChar32
4863 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
4864 
4865 static void
ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs * pFromUArgs,UConverterToUnicodeArgs * pToUArgs,UErrorCode * pErrorCode)4866 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
4867                   UConverterToUnicodeArgs *pToUArgs,
4868                   UErrorCode *pErrorCode) {
4869     UConverter *utf8, *cnv;
4870     const uint8_t *source, *sourceLimit;
4871     uint8_t *target;
4872     int32_t targetCapacity;
4873 
4874     const uint16_t *table, *sbcsIndex;
4875     const uint16_t *results;
4876 
4877     int8_t oldToULength, toULength, toULimit;
4878 
4879     UChar32 c;
4880     uint8_t b, t1, t2;
4881 
4882     uint32_t asciiRoundtrips;
4883     uint16_t value, minValue;
4884     UBool hasSupplementary;
4885 
4886     /* set up the local pointers */
4887     utf8=pToUArgs->converter;
4888     cnv=pFromUArgs->converter;
4889     source=(uint8_t *)pToUArgs->source;
4890     sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
4891     target=(uint8_t *)pFromUArgs->target;
4892     targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
4893 
4894     table=cnv->sharedData->mbcs.fromUnicodeTable;
4895     sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
4896     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
4897         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
4898     } else {
4899         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
4900     }
4901     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4902 
4903     if(cnv->useFallback) {
4904         /* use all roundtrip and fallback results */
4905         minValue=0x800;
4906     } else {
4907         /* use only roundtrips and fallbacks from private-use characters */
4908         minValue=0xc00;
4909     }
4910     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
4911 
4912     /* get the converter state from the UTF-8 UConverter */
4913     c=(UChar32)utf8->toUnicodeStatus;
4914     if(c!=0) {
4915         toULength=oldToULength=utf8->toULength;
4916         toULimit=(int8_t)utf8->mode;
4917     } else {
4918         toULength=oldToULength=toULimit=0;
4919     }
4920 
4921     /*
4922      * Make sure that the last byte sequence before sourceLimit is complete
4923      * or runs into a lead byte.
4924      * Do not go back into the bytes that will be read for finishing a partial
4925      * sequence from the previous buffer.
4926      * In the conversion loop compare source with sourceLimit only once
4927      * per multi-byte character.
4928      */
4929     {
4930         int32_t i, length;
4931 
4932         length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
4933         for(i=0; i<3 && i<length;) {
4934             b=*(sourceLimit-i-1);
4935             if(U8_IS_TRAIL(b)) {
4936                 ++i;
4937             } else {
4938                 if(i<U8_COUNT_TRAIL_BYTES(b)) {
4939                     /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
4940                     sourceLimit-=i+1;
4941                 }
4942                 break;
4943             }
4944         }
4945     }
4946 
4947     if(c!=0 && targetCapacity>0) {
4948         utf8->toUnicodeStatus=0;
4949         utf8->toULength=0;
4950         goto moreBytes;
4951         /*
4952          * Note: We could avoid the goto by duplicating some of the moreBytes
4953          * code, but only up to the point of collecting a complete UTF-8
4954          * sequence; then recurse for the toUBytes[toULength]
4955          * and then continue with normal conversion.
4956          *
4957          * If so, move this code to just after initializing the minimum
4958          * set of local variables for reading the UTF-8 input
4959          * (utf8, source, target, limits but not cnv, table, minValue, etc.).
4960          *
4961          * Potential advantages:
4962          * - avoid the goto
4963          * - oldToULength could become a local variable in just those code blocks
4964          *   that deal with buffer boundaries
4965          * - possibly faster if the goto prevents some compiler optimizations
4966          *   (this would need measuring to confirm)
4967          * Disadvantage:
4968          * - code duplication
4969          */
4970     }
4971 
4972     /* conversion loop */
4973     while(source<sourceLimit) {
4974         if(targetCapacity>0) {
4975             b=*source++;
4976             if((int8_t)b>=0) {
4977                 /* convert ASCII */
4978                 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
4979                     *target++=(uint8_t)b;
4980                     --targetCapacity;
4981                     continue;
4982                 } else {
4983                     c=b;
4984                     value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
4985                 }
4986             } else {
4987                 if(b<0xe0) {
4988                     if( /* handle U+0080..U+07FF inline */
4989                         b>=0xc2 &&
4990                         (t1=(uint8_t)(*source-0x80)) <= 0x3f
4991                     ) {
4992                         c=b&0x1f;
4993                         ++source;
4994                         value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
4995                         if(value>=minValue) {
4996                             *target++=(uint8_t)value;
4997                             --targetCapacity;
4998                             continue;
4999                         } else {
5000                             c=(c<<6)|t1;
5001                         }
5002                     } else {
5003                         c=-1;
5004                     }
5005                 } else if(b==0xe0) {
5006                     if( /* handle U+0800..U+0FFF inline */
5007                         (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
5008                         (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5009                     ) {
5010                         c=t1;
5011                         source+=2;
5012                         value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
5013                         if(value>=minValue) {
5014                             *target++=(uint8_t)value;
5015                             --targetCapacity;
5016                             continue;
5017                         } else {
5018                             c=(c<<6)|t2;
5019                         }
5020                     } else {
5021                         c=-1;
5022                     }
5023                 } else {
5024                     c=-1;
5025                 }
5026 
5027                 if(c<0) {
5028                     /* handle "complicated" and error cases, and continuing partial characters */
5029                     oldToULength=0;
5030                     toULength=1;
5031                     toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5032                     c=b;
5033 moreBytes:
5034                     while(toULength<toULimit) {
5035                         /*
5036                          * The sourceLimit may have been adjusted before the conversion loop
5037                          * to stop before a truncated sequence.
5038                          * Here we need to use the real limit in case we have two truncated
5039                          * sequences at the end.
5040                          * See ticket #7492.
5041                          */
5042                         if(source<(uint8_t *)pToUArgs->sourceLimit) {
5043                             b=*source;
5044                             if(U8_IS_TRAIL(b)) {
5045                                 ++source;
5046                                 ++toULength;
5047                                 c=(c<<6)+b;
5048                             } else {
5049                                 break; /* sequence too short, stop with toULength<toULimit */
5050                             }
5051                         } else {
5052                             /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5053                             source-=(toULength-oldToULength);
5054                             while(oldToULength<toULength) {
5055                                 utf8->toUBytes[oldToULength++]=*source++;
5056                             }
5057                             utf8->toUnicodeStatus=c;
5058                             utf8->toULength=toULength;
5059                             utf8->mode=toULimit;
5060                             pToUArgs->source=(char *)source;
5061                             pFromUArgs->target=(char *)target;
5062                             return;
5063                         }
5064                     }
5065 
5066                     if( toULength==toULimit &&      /* consumed all trail bytes */
5067                         (toULength==3 || toULength==2) &&             /* BMP */
5068                         (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5069                         (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
5070                     ) {
5071                         value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5072                     } else if(
5073                         toULength==toULimit && toULength==4 &&
5074                         (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5075                     ) {
5076                         /* supplementary code point */
5077                         if(!hasSupplementary) {
5078                             /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5079                             value=0;
5080                         } else {
5081                             value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5082                         }
5083                     } else {
5084                         /* error handling: illegal UTF-8 byte sequence */
5085                         source-=(toULength-oldToULength);
5086                         while(oldToULength<toULength) {
5087                             utf8->toUBytes[oldToULength++]=*source++;
5088                         }
5089                         utf8->toULength=toULength;
5090                         pToUArgs->source=(char *)source;
5091                         pFromUArgs->target=(char *)target;
5092                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5093                         return;
5094                     }
5095                 }
5096             }
5097 
5098             if(value>=minValue) {
5099                 /* output the mapping for c */
5100                 *target++=(uint8_t)value;
5101                 --targetCapacity;
5102             } else {
5103                 /* value<minValue means c is unassigned (unmappable) */
5104                 /*
5105                  * Try an extension mapping.
5106                  * Pass in no source because we don't have UTF-16 input.
5107                  * If we have a partial match on c, we will return and revert
5108                  * to UTF-8->UTF-16->charset conversion.
5109                  */
5110                 static const UChar nul=0;
5111                 const UChar *noSource=&nul;
5112                 c=_extFromU(cnv, cnv->sharedData,
5113                             c, &noSource, noSource,
5114                             &target, target+targetCapacity,
5115                             NULL, -1,
5116                             pFromUArgs->flush,
5117                             pErrorCode);
5118 
5119                 if(U_FAILURE(*pErrorCode)) {
5120                     /* not mappable or buffer overflow */
5121                     cnv->fromUChar32=c;
5122                     break;
5123                 } else if(cnv->preFromUFirstCP>=0) {
5124                     /*
5125                      * Partial match, return and revert to pivoting.
5126                      * In normal from-UTF-16 conversion, we would just continue
5127                      * but then exit the loop because the extension match would
5128                      * have consumed the source.
5129                      */
5130                     *pErrorCode=U_USING_DEFAULT_WARNING;
5131                     break;
5132                 } else {
5133                     /* a mapping was written to the target, continue */
5134 
5135                     /* recalculate the targetCapacity after an extension mapping */
5136                     targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5137                 }
5138             }
5139         } else {
5140             /* target is full */
5141             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5142             break;
5143         }
5144     }
5145 
5146     /*
5147      * The sourceLimit may have been adjusted before the conversion loop
5148      * to stop before a truncated sequence.
5149      * If so, then collect the truncated sequence now.
5150      */
5151     if(U_SUCCESS(*pErrorCode) &&
5152             cnv->preFromUFirstCP<0 &&
5153             source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5154         c=utf8->toUBytes[0]=b=*source++;
5155         toULength=1;
5156         toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5157         while(source<sourceLimit) {
5158             utf8->toUBytes[toULength++]=b=*source++;
5159             c=(c<<6)+b;
5160         }
5161         utf8->toUnicodeStatus=c;
5162         utf8->toULength=toULength;
5163         utf8->mode=toULimit;
5164     }
5165 
5166     /* write back the updated pointers */
5167     pToUArgs->source=(char *)source;
5168     pFromUArgs->target=(char *)target;
5169 }
5170 
5171 static void
ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs * pFromUArgs,UConverterToUnicodeArgs * pToUArgs,UErrorCode * pErrorCode)5172 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5173                   UConverterToUnicodeArgs *pToUArgs,
5174                   UErrorCode *pErrorCode) {
5175     UConverter *utf8, *cnv;
5176     const uint8_t *source, *sourceLimit;
5177     uint8_t *target;
5178     int32_t targetCapacity;
5179 
5180     const uint16_t *table, *mbcsIndex;
5181     const uint16_t *results;
5182 
5183     int8_t oldToULength, toULength, toULimit;
5184 
5185     UChar32 c;
5186     uint8_t b, t1, t2;
5187 
5188     uint32_t stage2Entry;
5189     uint32_t asciiRoundtrips;
5190     uint16_t value;
5191     UBool hasSupplementary;
5192 
5193     /* set up the local pointers */
5194     utf8=pToUArgs->converter;
5195     cnv=pFromUArgs->converter;
5196     source=(uint8_t *)pToUArgs->source;
5197     sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5198     target=(uint8_t *)pFromUArgs->target;
5199     targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5200 
5201     table=cnv->sharedData->mbcs.fromUnicodeTable;
5202     mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
5203     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5204         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5205     } else {
5206         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5207     }
5208     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5209 
5210     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5211 
5212     /* get the converter state from the UTF-8 UConverter */
5213     c=(UChar32)utf8->toUnicodeStatus;
5214     if(c!=0) {
5215         toULength=oldToULength=utf8->toULength;
5216         toULimit=(int8_t)utf8->mode;
5217     } else {
5218         toULength=oldToULength=toULimit=0;
5219     }
5220 
5221     /*
5222      * Make sure that the last byte sequence before sourceLimit is complete
5223      * or runs into a lead byte.
5224      * Do not go back into the bytes that will be read for finishing a partial
5225      * sequence from the previous buffer.
5226      * In the conversion loop compare source with sourceLimit only once
5227      * per multi-byte character.
5228      */
5229     {
5230         int32_t i, length;
5231 
5232         length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5233         for(i=0; i<3 && i<length;) {
5234             b=*(sourceLimit-i-1);
5235             if(U8_IS_TRAIL(b)) {
5236                 ++i;
5237             } else {
5238                 if(i<U8_COUNT_TRAIL_BYTES(b)) {
5239                     /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
5240                     sourceLimit-=i+1;
5241                 }
5242                 break;
5243             }
5244         }
5245     }
5246 
5247     if(c!=0 && targetCapacity>0) {
5248         utf8->toUnicodeStatus=0;
5249         utf8->toULength=0;
5250         goto moreBytes;
5251         /* See note in ucnv_SBCSFromUTF8() about this goto. */
5252     }
5253 
5254     /* conversion loop */
5255     while(source<sourceLimit) {
5256         if(targetCapacity>0) {
5257             b=*source++;
5258             if((int8_t)b>=0) {
5259                 /* convert ASCII */
5260                 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5261                     *target++=b;
5262                     --targetCapacity;
5263                     continue;
5264                 } else {
5265                     value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
5266                     if(value==0) {
5267                         c=b;
5268                         goto unassigned;
5269                     }
5270                 }
5271             } else {
5272                 if(b>0xe0) {
5273                     if( /* handle U+1000..U+D7FF inline */
5274                         (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) ||
5275                                                         (b==0xed && (t1 <= 0x1f))) &&
5276                         (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5277                     ) {
5278                         c=((b&0xf)<<6)|t1;
5279                         source+=2;
5280                         value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
5281                         if(value==0) {
5282                             c=(c<<6)|t2;
5283                             goto unassigned;
5284                         }
5285                     } else {
5286                         c=-1;
5287                     }
5288                 } else if(b<0xe0) {
5289                     if( /* handle U+0080..U+07FF inline */
5290                         b>=0xc2 &&
5291                         (t1=(uint8_t)(*source-0x80)) <= 0x3f
5292                     ) {
5293                         c=b&0x1f;
5294                         ++source;
5295                         value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
5296                         if(value==0) {
5297                             c=(c<<6)|t1;
5298                             goto unassigned;
5299                         }
5300                     } else {
5301                         c=-1;
5302                     }
5303                 } else {
5304                     c=-1;
5305                 }
5306 
5307                 if(c<0) {
5308                     /* handle "complicated" and error cases, and continuing partial characters */
5309                     oldToULength=0;
5310                     toULength=1;
5311                     toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5312                     c=b;
5313 moreBytes:
5314                     while(toULength<toULimit) {
5315                         /*
5316                          * The sourceLimit may have been adjusted before the conversion loop
5317                          * to stop before a truncated sequence.
5318                          * Here we need to use the real limit in case we have two truncated
5319                          * sequences at the end.
5320                          * See ticket #7492.
5321                          */
5322                         if(source<(uint8_t *)pToUArgs->sourceLimit) {
5323                             b=*source;
5324                             if(U8_IS_TRAIL(b)) {
5325                                 ++source;
5326                                 ++toULength;
5327                                 c=(c<<6)+b;
5328                             } else {
5329                                 break; /* sequence too short, stop with toULength<toULimit */
5330                             }
5331                         } else {
5332                             /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5333                             source-=(toULength-oldToULength);
5334                             while(oldToULength<toULength) {
5335                                 utf8->toUBytes[oldToULength++]=*source++;
5336                             }
5337                             utf8->toUnicodeStatus=c;
5338                             utf8->toULength=toULength;
5339                             utf8->mode=toULimit;
5340                             pToUArgs->source=(char *)source;
5341                             pFromUArgs->target=(char *)target;
5342                             return;
5343                         }
5344                     }
5345 
5346                     if( toULength==toULimit &&      /* consumed all trail bytes */
5347                         (toULength==3 || toULength==2) &&             /* BMP */
5348                         (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5349                         (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
5350                     ) {
5351                         stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5352                     } else if(
5353                         toULength==toULimit && toULength==4 &&
5354                         (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5355                     ) {
5356                         /* supplementary code point */
5357                         if(!hasSupplementary) {
5358                             /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5359                             stage2Entry=0;
5360                         } else {
5361                             stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5362                         }
5363                     } else {
5364                         /* error handling: illegal UTF-8 byte sequence */
5365                         source-=(toULength-oldToULength);
5366                         while(oldToULength<toULength) {
5367                             utf8->toUBytes[oldToULength++]=*source++;
5368                         }
5369                         utf8->toULength=toULength;
5370                         pToUArgs->source=(char *)source;
5371                         pFromUArgs->target=(char *)target;
5372                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5373                         return;
5374                     }
5375 
5376                     /* get the bytes and the length for the output */
5377                     /* MBCS_OUTPUT_2 */
5378                     value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
5379 
5380                     /* is this code point assigned, or do we use fallbacks? */
5381                     if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
5382                          (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
5383                     ) {
5384                         goto unassigned;
5385                     }
5386                 }
5387             }
5388 
5389             /* write the output character bytes from value and length */
5390             /* from the first if in the loop we know that targetCapacity>0 */
5391             if(value<=0xff) {
5392                 /* this is easy because we know that there is enough space */
5393                 *target++=(uint8_t)value;
5394                 --targetCapacity;
5395             } else /* length==2 */ {
5396                 *target++=(uint8_t)(value>>8);
5397                 if(2<=targetCapacity) {
5398                     *target++=(uint8_t)value;
5399                     targetCapacity-=2;
5400                 } else {
5401                     cnv->charErrorBuffer[0]=(char)value;
5402                     cnv->charErrorBufferLength=1;
5403 
5404                     /* target overflow */
5405                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5406                     break;
5407                 }
5408             }
5409             continue;
5410 
5411 unassigned:
5412             {
5413                 /*
5414                  * Try an extension mapping.
5415                  * Pass in no source because we don't have UTF-16 input.
5416                  * If we have a partial match on c, we will return and revert
5417                  * to UTF-8->UTF-16->charset conversion.
5418                  */
5419                 static const UChar nul=0;
5420                 const UChar *noSource=&nul;
5421                 c=_extFromU(cnv, cnv->sharedData,
5422                             c, &noSource, noSource,
5423                             &target, target+targetCapacity,
5424                             NULL, -1,
5425                             pFromUArgs->flush,
5426                             pErrorCode);
5427 
5428                 if(U_FAILURE(*pErrorCode)) {
5429                     /* not mappable or buffer overflow */
5430                     cnv->fromUChar32=c;
5431                     break;
5432                 } else if(cnv->preFromUFirstCP>=0) {
5433                     /*
5434                      * Partial match, return and revert to pivoting.
5435                      * In normal from-UTF-16 conversion, we would just continue
5436                      * but then exit the loop because the extension match would
5437                      * have consumed the source.
5438                      */
5439                     *pErrorCode=U_USING_DEFAULT_WARNING;
5440                     break;
5441                 } else {
5442                     /* a mapping was written to the target, continue */
5443 
5444                     /* recalculate the targetCapacity after an extension mapping */
5445                     targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5446                     continue;
5447                 }
5448             }
5449         } else {
5450             /* target is full */
5451             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5452             break;
5453         }
5454     }
5455 
5456     /*
5457      * The sourceLimit may have been adjusted before the conversion loop
5458      * to stop before a truncated sequence.
5459      * If so, then collect the truncated sequence now.
5460      */
5461     if(U_SUCCESS(*pErrorCode) &&
5462             cnv->preFromUFirstCP<0 &&
5463             source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5464         c=utf8->toUBytes[0]=b=*source++;
5465         toULength=1;
5466         toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5467         while(source<sourceLimit) {
5468             utf8->toUBytes[toULength++]=b=*source++;
5469             c=(c<<6)+b;
5470         }
5471         utf8->toUnicodeStatus=c;
5472         utf8->toULength=toULength;
5473         utf8->mode=toULimit;
5474     }
5475 
5476     /* write back the updated pointers */
5477     pToUArgs->source=(char *)source;
5478     pFromUArgs->target=(char *)target;
5479 }
5480 
5481 /* miscellaneous ------------------------------------------------------------ */
5482 
5483 static void
ucnv_MBCSGetStarters(const UConverter * cnv,UBool starters[256],UErrorCode * pErrorCode)5484 ucnv_MBCSGetStarters(const UConverter* cnv,
5485                  UBool starters[256],
5486                  UErrorCode *pErrorCode) {
5487     const int32_t *state0;
5488     int i;
5489 
5490     state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
5491     for(i=0; i<256; ++i) {
5492         /* all bytes that cause a state transition from state 0 are lead bytes */
5493         starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
5494     }
5495 }
5496 
5497 /*
5498  * This is an internal function that allows other converter implementations
5499  * to check whether a byte is a lead byte.
5500  */
5501 U_CFUNC UBool
ucnv_MBCSIsLeadByte(UConverterSharedData * sharedData,char byte)5502 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
5503     return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
5504 }
5505 
5506 static void
ucnv_MBCSWriteSub(UConverterFromUnicodeArgs * pArgs,int32_t offsetIndex,UErrorCode * pErrorCode)5507 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
5508               int32_t offsetIndex,
5509               UErrorCode *pErrorCode) {
5510     UConverter *cnv=pArgs->converter;
5511     char *p, *subchar;
5512     char buffer[4];
5513     int32_t length;
5514 
5515     /* first, select between subChar and subChar1 */
5516     if( cnv->subChar1!=0 &&
5517         (cnv->sharedData->mbcs.extIndexes!=NULL ?
5518             cnv->useSubChar1 :
5519             (cnv->invalidUCharBuffer[0]<=0xff))
5520     ) {
5521         /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
5522         subchar=(char *)&cnv->subChar1;
5523         length=1;
5524     } else {
5525         /* select subChar in all other cases */
5526         subchar=(char *)cnv->subChars;
5527         length=cnv->subCharLen;
5528     }
5529 
5530     /* reset the selector for the next code point */
5531     cnv->useSubChar1=FALSE;
5532 
5533     if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
5534         p=buffer;
5535 
5536         /* fromUnicodeStatus contains prevLength */
5537         switch(length) {
5538         case 1:
5539             if(cnv->fromUnicodeStatus==2) {
5540                 /* DBCS mode and SBCS sub char: change to SBCS */
5541                 cnv->fromUnicodeStatus=1;
5542                 *p++=UCNV_SI;
5543             }
5544             *p++=subchar[0];
5545             break;
5546         case 2:
5547             if(cnv->fromUnicodeStatus<=1) {
5548                 /* SBCS mode and DBCS sub char: change to DBCS */
5549                 cnv->fromUnicodeStatus=2;
5550                 *p++=UCNV_SO;
5551             }
5552             *p++=subchar[0];
5553             *p++=subchar[1];
5554             break;
5555         default:
5556             *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
5557             return;
5558         }
5559         subchar=buffer;
5560         length=(int32_t)(p-buffer);
5561     }
5562 
5563     ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
5564 }
5565 
5566 U_CFUNC UConverterType
ucnv_MBCSGetType(const UConverter * converter)5567 ucnv_MBCSGetType(const UConverter* converter) {
5568     /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
5569     if(converter->sharedData->mbcs.countStates==1) {
5570         return (UConverterType)UCNV_SBCS;
5571     } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
5572         return (UConverterType)UCNV_EBCDIC_STATEFUL;
5573     } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
5574         return (UConverterType)UCNV_DBCS;
5575     }
5576     return (UConverterType)UCNV_MBCS;
5577 }
5578 
5579 static const UConverterImpl _SBCSUTF8Impl={
5580     UCNV_MBCS,
5581 
5582     ucnv_MBCSLoad,
5583     ucnv_MBCSUnload,
5584 
5585     ucnv_MBCSOpen,
5586     NULL,
5587     NULL,
5588 
5589     ucnv_MBCSToUnicodeWithOffsets,
5590     ucnv_MBCSToUnicodeWithOffsets,
5591     ucnv_MBCSFromUnicodeWithOffsets,
5592     ucnv_MBCSFromUnicodeWithOffsets,
5593     ucnv_MBCSGetNextUChar,
5594 
5595     ucnv_MBCSGetStarters,
5596     ucnv_MBCSGetName,
5597     ucnv_MBCSWriteSub,
5598     NULL,
5599     ucnv_MBCSGetUnicodeSet,
5600 
5601     NULL,
5602     ucnv_SBCSFromUTF8
5603 };
5604 
5605 static const UConverterImpl _DBCSUTF8Impl={
5606     UCNV_MBCS,
5607 
5608     ucnv_MBCSLoad,
5609     ucnv_MBCSUnload,
5610 
5611     ucnv_MBCSOpen,
5612     NULL,
5613     NULL,
5614 
5615     ucnv_MBCSToUnicodeWithOffsets,
5616     ucnv_MBCSToUnicodeWithOffsets,
5617     ucnv_MBCSFromUnicodeWithOffsets,
5618     ucnv_MBCSFromUnicodeWithOffsets,
5619     ucnv_MBCSGetNextUChar,
5620 
5621     ucnv_MBCSGetStarters,
5622     ucnv_MBCSGetName,
5623     ucnv_MBCSWriteSub,
5624     NULL,
5625     ucnv_MBCSGetUnicodeSet,
5626 
5627     NULL,
5628     ucnv_DBCSFromUTF8
5629 };
5630 
5631 static const UConverterImpl _MBCSImpl={
5632     UCNV_MBCS,
5633 
5634     ucnv_MBCSLoad,
5635     ucnv_MBCSUnload,
5636 
5637     ucnv_MBCSOpen,
5638     NULL,
5639     NULL,
5640 
5641     ucnv_MBCSToUnicodeWithOffsets,
5642     ucnv_MBCSToUnicodeWithOffsets,
5643     ucnv_MBCSFromUnicodeWithOffsets,
5644     ucnv_MBCSFromUnicodeWithOffsets,
5645     ucnv_MBCSGetNextUChar,
5646 
5647     ucnv_MBCSGetStarters,
5648     ucnv_MBCSGetName,
5649     ucnv_MBCSWriteSub,
5650     NULL,
5651     ucnv_MBCSGetUnicodeSet
5652 };
5653 
5654 
5655 /* Static data is in tools/makeconv/ucnvstat.c for data-based
5656  * converters. Be sure to update it as well.
5657  */
5658 
5659 const UConverterSharedData _MBCSData={
5660     sizeof(UConverterSharedData), 1,
5661     NULL, NULL, NULL, FALSE, &_MBCSImpl,
5662     0
5663 };
5664 
5665 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
5666