• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * I/O functions for libusb
3  * Copyright (C) 2007-2009 Daniel Drake <dsd@gentoo.org>
4  * Copyright (c) 2001 Johannes Erdfelt <johannes@erdfelt.com>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include <config.h>
22 #include <errno.h>
23 #include <signal.h>
24 #include <stdint.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <time.h>
28 
29 #ifdef HAVE_SYS_TIME_H
30 #include <sys/time.h>
31 #endif
32 
33 #ifdef USBI_TIMERFD_AVAILABLE
34 #include <sys/timerfd.h>
35 #endif
36 
37 #include "libusbi.h"
38 
39 /**
40  * \page io Synchronous and asynchronous device I/O
41  *
42  * \section intro Introduction
43  *
44  * If you're using libusb in your application, you're probably wanting to
45  * perform I/O with devices - you want to perform USB data transfers.
46  *
47  * libusb offers two separate interfaces for device I/O. This page aims to
48  * introduce the two in order to help you decide which one is more suitable
49  * for your application. You can also choose to use both interfaces in your
50  * application by considering each transfer on a case-by-case basis.
51  *
52  * Once you have read through the following discussion, you should consult the
53  * detailed API documentation pages for the details:
54  * - \ref syncio
55  * - \ref asyncio
56  *
57  * \section theory Transfers at a logical level
58  *
59  * At a logical level, USB transfers typically happen in two parts. For
60  * example, when reading data from a endpoint:
61  * -# A request for data is sent to the device
62  * -# Some time later, the incoming data is received by the host
63  *
64  * or when writing data to an endpoint:
65  *
66  * -# The data is sent to the device
67  * -# Some time later, the host receives acknowledgement from the device that
68  *    the data has been transferred.
69  *
70  * There may be an indefinite delay between the two steps. Consider a
71  * fictional USB input device with a button that the user can press. In order
72  * to determine when the button is pressed, you would likely submit a request
73  * to read data on a bulk or interrupt endpoint and wait for data to arrive.
74  * Data will arrive when the button is pressed by the user, which is
75  * potentially hours later.
76  *
77  * libusb offers both a synchronous and an asynchronous interface to performing
78  * USB transfers. The main difference is that the synchronous interface
79  * combines both steps indicated above into a single function call, whereas
80  * the asynchronous interface separates them.
81  *
82  * \section sync The synchronous interface
83  *
84  * The synchronous I/O interface allows you to perform a USB transfer with
85  * a single function call. When the function call returns, the transfer has
86  * completed and you can parse the results.
87  *
88  * If you have used the libusb-0.1 before, this I/O style will seem familar to
89  * you. libusb-0.1 only offered a synchronous interface.
90  *
91  * In our input device example, to read button presses you might write code
92  * in the following style:
93 \code
94 unsigned char data[4];
95 int actual_length;
96 int r = libusb_bulk_transfer(handle, LIBUSB_ENDPOINT_IN, data, sizeof(data), &actual_length, 0);
97 if (r == 0 && actual_length == sizeof(data)) {
98 	// results of the transaction can now be found in the data buffer
99 	// parse them here and report button press
100 } else {
101 	error();
102 }
103 \endcode
104  *
105  * The main advantage of this model is simplicity: you did everything with
106  * a single simple function call.
107  *
108  * However, this interface has its limitations. Your application will sleep
109  * inside libusb_bulk_transfer() until the transaction has completed. If it
110  * takes the user 3 hours to press the button, your application will be
111  * sleeping for that long. Execution will be tied up inside the library -
112  * the entire thread will be useless for that duration.
113  *
114  * Another issue is that by tieing up the thread with that single transaction
115  * there is no possibility of performing I/O with multiple endpoints and/or
116  * multiple devices simultaneously, unless you resort to creating one thread
117  * per transaction.
118  *
119  * Additionally, there is no opportunity to cancel the transfer after the
120  * request has been submitted.
121  *
122  * For details on how to use the synchronous API, see the
123  * \ref syncio "synchronous I/O API documentation" pages.
124  *
125  * \section async The asynchronous interface
126  *
127  * Asynchronous I/O is the most significant new feature in libusb-1.0.
128  * Although it is a more complex interface, it solves all the issues detailed
129  * above.
130  *
131  * Instead of providing which functions that block until the I/O has complete,
132  * libusb's asynchronous interface presents non-blocking functions which
133  * begin a transfer and then return immediately. Your application passes a
134  * callback function pointer to this non-blocking function, which libusb will
135  * call with the results of the transaction when it has completed.
136  *
137  * Transfers which have been submitted through the non-blocking functions
138  * can be cancelled with a separate function call.
139  *
140  * The non-blocking nature of this interface allows you to be simultaneously
141  * performing I/O to multiple endpoints on multiple devices, without having
142  * to use threads.
143  *
144  * This added flexibility does come with some complications though:
145  * - In the interest of being a lightweight library, libusb does not create
146  * threads and can only operate when your application is calling into it. Your
147  * application must call into libusb from it's main loop when events are ready
148  * to be handled, or you must use some other scheme to allow libusb to
149  * undertake whatever work needs to be done.
150  * - libusb also needs to be called into at certain fixed points in time in
151  * order to accurately handle transfer timeouts.
152  * - Memory handling becomes more complex. You cannot use stack memory unless
153  * the function with that stack is guaranteed not to return until the transfer
154  * callback has finished executing.
155  * - You generally lose some linearity from your code flow because submitting
156  * the transfer request is done in a separate function from where the transfer
157  * results are handled. This becomes particularly obvious when you want to
158  * submit a second transfer based on the results of an earlier transfer.
159  *
160  * Internally, libusb's synchronous interface is expressed in terms of function
161  * calls to the asynchronous interface.
162  *
163  * For details on how to use the asynchronous API, see the
164  * \ref asyncio "asynchronous I/O API" documentation pages.
165  */
166 
167 
168 /**
169  * \page packetoverflow Packets and overflows
170  *
171  * \section packets Packet abstraction
172  *
173  * The USB specifications describe how data is transmitted in packets, with
174  * constraints on packet size defined by endpoint descriptors. The host must
175  * not send data payloads larger than the endpoint's maximum packet size.
176  *
177  * libusb and the underlying OS abstract out the packet concept, allowing you
178  * to request transfers of any size. Internally, the request will be divided
179  * up into correctly-sized packets. You do not have to be concerned with
180  * packet sizes, but there is one exception when considering overflows.
181  *
182  * \section overflow Bulk/interrupt transfer overflows
183  *
184  * When requesting data on a bulk endpoint, libusb requires you to supply a
185  * buffer and the maximum number of bytes of data that libusb can put in that
186  * buffer. However, the size of the buffer is not communicated to the device -
187  * the device is just asked to send any amount of data.
188  *
189  * There is no problem if the device sends an amount of data that is less than
190  * or equal to the buffer size. libusb reports this condition to you through
191  * the \ref libusb_transfer::actual_length "libusb_transfer.actual_length"
192  * field.
193  *
194  * Problems may occur if the device attempts to send more data than can fit in
195  * the buffer. libusb reports LIBUSB_TRANSFER_OVERFLOW for this condition but
196  * other behaviour is largely undefined: actual_length may or may not be
197  * accurate, the chunk of data that can fit in the buffer (before overflow)
198  * may or may not have been transferred.
199  *
200  * Overflows are nasty, but can be avoided. Even though you were told to
201  * ignore packets above, think about the lower level details: each transfer is
202  * split into packets (typically small, with a maximum size of 512 bytes).
203  * Overflows can only happen if the final packet in an incoming data transfer
204  * is smaller than the actual packet that the device wants to transfer.
205  * Therefore, you will never see an overflow if your transfer buffer size is a
206  * multiple of the endpoint's packet size: the final packet will either
207  * fill up completely or will be only partially filled.
208  */
209 
210 /**
211  * @defgroup asyncio Asynchronous device I/O
212  *
213  * This page details libusb's asynchronous (non-blocking) API for USB device
214  * I/O. This interface is very powerful but is also quite complex - you will
215  * need to read this page carefully to understand the necessary considerations
216  * and issues surrounding use of this interface. Simplistic applications
217  * may wish to consider the \ref syncio "synchronous I/O API" instead.
218  *
219  * The asynchronous interface is built around the idea of separating transfer
220  * submission and handling of transfer completion (the synchronous model
221  * combines both of these into one). There may be a long delay between
222  * submission and completion, however the asynchronous submission function
223  * is non-blocking so will return control to your application during that
224  * potentially long delay.
225  *
226  * \section asyncabstraction Transfer abstraction
227  *
228  * For the asynchronous I/O, libusb implements the concept of a generic
229  * transfer entity for all types of I/O (control, bulk, interrupt,
230  * isochronous). The generic transfer object must be treated slightly
231  * differently depending on which type of I/O you are performing with it.
232  *
233  * This is represented by the public libusb_transfer structure type.
234  *
235  * \section asynctrf Asynchronous transfers
236  *
237  * We can view asynchronous I/O as a 5 step process:
238  * -# <b>Allocation</b>: allocate a libusb_transfer
239  * -# <b>Filling</b>: populate the libusb_transfer instance with information
240  *    about the transfer you wish to perform
241  * -# <b>Submission</b>: ask libusb to submit the transfer
242  * -# <b>Completion handling</b>: examine transfer results in the
243  *    libusb_transfer structure
244  * -# <b>Deallocation</b>: clean up resources
245  *
246  *
247  * \subsection asyncalloc Allocation
248  *
249  * This step involves allocating memory for a USB transfer. This is the
250  * generic transfer object mentioned above. At this stage, the transfer
251  * is "blank" with no details about what type of I/O it will be used for.
252  *
253  * Allocation is done with the libusb_alloc_transfer() function. You must use
254  * this function rather than allocating your own transfers.
255  *
256  * \subsection asyncfill Filling
257  *
258  * This step is where you take a previously allocated transfer and fill it
259  * with information to determine the message type and direction, data buffer,
260  * callback function, etc.
261  *
262  * You can either fill the required fields yourself or you can use the
263  * helper functions: libusb_fill_control_transfer(), libusb_fill_bulk_transfer()
264  * and libusb_fill_interrupt_transfer().
265  *
266  * \subsection asyncsubmit Submission
267  *
268  * When you have allocated a transfer and filled it, you can submit it using
269  * libusb_submit_transfer(). This function returns immediately but can be
270  * regarded as firing off the I/O request in the background.
271  *
272  * \subsection asynccomplete Completion handling
273  *
274  * After a transfer has been submitted, one of four things can happen to it:
275  *
276  * - The transfer completes (i.e. some data was transferred)
277  * - The transfer has a timeout and the timeout expires before all data is
278  * transferred
279  * - The transfer fails due to an error
280  * - The transfer is cancelled
281  *
282  * Each of these will cause the user-specified transfer callback function to
283  * be invoked. It is up to the callback function to determine which of the
284  * above actually happened and to act accordingly.
285  *
286  * The user-specified callback is passed a pointer to the libusb_transfer
287  * structure which was used to setup and submit the transfer. At completion
288  * time, libusb has populated this structure with results of the transfer:
289  * success or failure reason, number of bytes of data transferred, etc. See
290  * the libusb_transfer structure documentation for more information.
291  *
292  * \subsection Deallocation
293  *
294  * When a transfer has completed (i.e. the callback function has been invoked),
295  * you are advised to free the transfer (unless you wish to resubmit it, see
296  * below). Transfers are deallocated with libusb_free_transfer().
297  *
298  * It is undefined behaviour to free a transfer which has not completed.
299  *
300  * \section asyncresubmit Resubmission
301  *
302  * You may be wondering why allocation, filling, and submission are all
303  * separated above where they could reasonably be combined into a single
304  * operation.
305  *
306  * The reason for separation is to allow you to resubmit transfers without
307  * having to allocate new ones every time. This is especially useful for
308  * common situations dealing with interrupt endpoints - you allocate one
309  * transfer, fill and submit it, and when it returns with results you just
310  * resubmit it for the next interrupt.
311  *
312  * \section asynccancel Cancellation
313  *
314  * Another advantage of using the asynchronous interface is that you have
315  * the ability to cancel transfers which have not yet completed. This is
316  * done by calling the libusb_cancel_transfer() function.
317  *
318  * libusb_cancel_transfer() is asynchronous/non-blocking in itself. When the
319  * cancellation actually completes, the transfer's callback function will
320  * be invoked, and the callback function should check the transfer status to
321  * determine that it was cancelled.
322  *
323  * Freeing the transfer after it has been cancelled but before cancellation
324  * has completed will result in undefined behaviour.
325  *
326  * When a transfer is cancelled, some of the data may have been transferred.
327  * libusb will communicate this to you in the transfer callback. Do not assume
328  * that no data was transferred.
329  *
330  * \section bulk_overflows Overflows on device-to-host bulk/interrupt endpoints
331  *
332  * If your device does not have predictable transfer sizes (or it misbehaves),
333  * your application may submit a request for data on an IN endpoint which is
334  * smaller than the data that the device wishes to send. In some circumstances
335  * this will cause an overflow, which is a nasty condition to deal with. See
336  * the \ref packetoverflow page for discussion.
337  *
338  * \section asyncctrl Considerations for control transfers
339  *
340  * The <tt>libusb_transfer</tt> structure is generic and hence does not
341  * include specific fields for the control-specific setup packet structure.
342  *
343  * In order to perform a control transfer, you must place the 8-byte setup
344  * packet at the start of the data buffer. To simplify this, you could
345  * cast the buffer pointer to type struct libusb_control_setup, or you can
346  * use the helper function libusb_fill_control_setup().
347  *
348  * The wLength field placed in the setup packet must be the length you would
349  * expect to be sent in the setup packet: the length of the payload that
350  * follows (or the expected maximum number of bytes to receive). However,
351  * the length field of the libusb_transfer object must be the length of
352  * the data buffer - i.e. it should be wLength <em>plus</em> the size of
353  * the setup packet (LIBUSB_CONTROL_SETUP_SIZE).
354  *
355  * If you use the helper functions, this is simplified for you:
356  * -# Allocate a buffer of size LIBUSB_CONTROL_SETUP_SIZE plus the size of the
357  * data you are sending/requesting.
358  * -# Call libusb_fill_control_setup() on the data buffer, using the transfer
359  * request size as the wLength value (i.e. do not include the extra space you
360  * allocated for the control setup).
361  * -# If this is a host-to-device transfer, place the data to be transferred
362  * in the data buffer, starting at offset LIBUSB_CONTROL_SETUP_SIZE.
363  * -# Call libusb_fill_control_transfer() to associate the data buffer with
364  * the transfer (and to set the remaining details such as callback and timeout).
365  *   - Note that there is no parameter to set the length field of the transfer.
366  *     The length is automatically inferred from the wLength field of the setup
367  *     packet.
368  * -# Submit the transfer.
369  *
370  * The multi-byte control setup fields (wValue, wIndex and wLength) must
371  * be given in little-endian byte order (the endianness of the USB bus).
372  * Endianness conversion is transparently handled by
373  * libusb_fill_control_setup() which is documented to accept host-endian
374  * values.
375  *
376  * Further considerations are needed when handling transfer completion in
377  * your callback function:
378  * - As you might expect, the setup packet will still be sitting at the start
379  * of the data buffer.
380  * - If this was a device-to-host transfer, the received data will be sitting
381  * at offset LIBUSB_CONTROL_SETUP_SIZE into the buffer.
382  * - The actual_length field of the transfer structure is relative to the
383  * wLength of the setup packet, rather than the size of the data buffer. So,
384  * if your wLength was 4, your transfer's <tt>length</tt> was 12, then you
385  * should expect an <tt>actual_length</tt> of 4 to indicate that the data was
386  * transferred in entirity.
387  *
388  * To simplify parsing of setup packets and obtaining the data from the
389  * correct offset, you may wish to use the libusb_control_transfer_get_data()
390  * and libusb_control_transfer_get_setup() functions within your transfer
391  * callback.
392  *
393  * Even though control endpoints do not halt, a completed control transfer
394  * may have a LIBUSB_TRANSFER_STALL status code. This indicates the control
395  * request was not supported.
396  *
397  * \section asyncintr Considerations for interrupt transfers
398  *
399  * All interrupt transfers are performed using the polling interval presented
400  * by the bInterval value of the endpoint descriptor.
401  *
402  * \section asynciso Considerations for isochronous transfers
403  *
404  * Isochronous transfers are more complicated than transfers to
405  * non-isochronous endpoints.
406  *
407  * To perform I/O to an isochronous endpoint, allocate the transfer by calling
408  * libusb_alloc_transfer() with an appropriate number of isochronous packets.
409  *
410  * During filling, set \ref libusb_transfer::type "type" to
411  * \ref libusb_transfer_type::LIBUSB_TRANSFER_TYPE_ISOCHRONOUS
412  * "LIBUSB_TRANSFER_TYPE_ISOCHRONOUS", and set
413  * \ref libusb_transfer::num_iso_packets "num_iso_packets" to a value less than
414  * or equal to the number of packets you requested during allocation.
415  * libusb_alloc_transfer() does not set either of these fields for you, given
416  * that you might not even use the transfer on an isochronous endpoint.
417  *
418  * Next, populate the length field for the first num_iso_packets entries in
419  * the \ref libusb_transfer::iso_packet_desc "iso_packet_desc" array. Section
420  * 5.6.3 of the USB2 specifications describe how the maximum isochronous
421  * packet length is determined by the wMaxPacketSize field in the endpoint
422  * descriptor.
423  * Two functions can help you here:
424  *
425  * - libusb_get_max_iso_packet_size() is an easy way to determine the max
426  *   packet size for an isochronous endpoint. Note that the maximum packet
427  *   size is actually the maximum number of bytes that can be transmitted in
428  *   a single microframe, therefore this function multiplies the maximum number
429  *   of bytes per transaction by the number of transaction opportunities per
430  *   microframe.
431  * - libusb_set_iso_packet_lengths() assigns the same length to all packets
432  *   within a transfer, which is usually what you want.
433  *
434  * For outgoing transfers, you'll obviously fill the buffer and populate the
435  * packet descriptors in hope that all the data gets transferred. For incoming
436  * transfers, you must ensure the buffer has sufficient capacity for
437  * the situation where all packets transfer the full amount of requested data.
438  *
439  * Completion handling requires some extra consideration. The
440  * \ref libusb_transfer::actual_length "actual_length" field of the transfer
441  * is meaningless and should not be examined; instead you must refer to the
442  * \ref libusb_iso_packet_descriptor::actual_length "actual_length" field of
443  * each individual packet.
444  *
445  * The \ref libusb_transfer::status "status" field of the transfer is also a
446  * little misleading:
447  *  - If the packets were submitted and the isochronous data microframes
448  *    completed normally, status will have value
449  *    \ref libusb_transfer_status::LIBUSB_TRANSFER_COMPLETED
450  *    "LIBUSB_TRANSFER_COMPLETED". Note that bus errors and software-incurred
451  *    delays are not counted as transfer errors; the transfer.status field may
452  *    indicate COMPLETED even if some or all of the packets failed. Refer to
453  *    the \ref libusb_iso_packet_descriptor::status "status" field of each
454  *    individual packet to determine packet failures.
455  *  - The status field will have value
456  *    \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR
457  *    "LIBUSB_TRANSFER_ERROR" only when serious errors were encountered.
458  *  - Other transfer status codes occur with normal behaviour.
459  *
460  * The data for each packet will be found at an offset into the buffer that
461  * can be calculated as if each prior packet completed in full. The
462  * libusb_get_iso_packet_buffer() and libusb_get_iso_packet_buffer_simple()
463  * functions may help you here.
464  *
465  * \section asyncmem Memory caveats
466  *
467  * In most circumstances, it is not safe to use stack memory for transfer
468  * buffers. This is because the function that fired off the asynchronous
469  * transfer may return before libusb has finished using the buffer, and when
470  * the function returns it's stack gets destroyed. This is true for both
471  * host-to-device and device-to-host transfers.
472  *
473  * The only case in which it is safe to use stack memory is where you can
474  * guarantee that the function owning the stack space for the buffer does not
475  * return until after the transfer's callback function has completed. In every
476  * other case, you need to use heap memory instead.
477  *
478  * \section asyncflags Fine control
479  *
480  * Through using this asynchronous interface, you may find yourself repeating
481  * a few simple operations many times. You can apply a bitwise OR of certain
482  * flags to a transfer to simplify certain things:
483  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_SHORT_NOT_OK
484  *   "LIBUSB_TRANSFER_SHORT_NOT_OK" results in transfers which transferred
485  *   less than the requested amount of data being marked with status
486  *   \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR "LIBUSB_TRANSFER_ERROR"
487  *   (they would normally be regarded as COMPLETED)
488  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
489  *   "LIBUSB_TRANSFER_FREE_BUFFER" allows you to ask libusb to free the transfer
490  *   buffer when freeing the transfer.
491  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_TRANSFER
492  *   "LIBUSB_TRANSFER_FREE_TRANSFER" causes libusb to automatically free the
493  *   transfer after the transfer callback returns.
494  *
495  * \section asyncevent Event handling
496  *
497  * In accordance of the aim of being a lightweight library, libusb does not
498  * create threads internally. This means that libusb code does not execute
499  * at any time other than when your application is calling a libusb function.
500  * However, an asynchronous model requires that libusb perform work at various
501  * points in time - namely processing the results of previously-submitted
502  * transfers and invoking the user-supplied callback function.
503  *
504  * This gives rise to the libusb_handle_events() function which your
505  * application must call into when libusb has work do to. This gives libusb
506  * the opportunity to reap pending transfers, invoke callbacks, etc.
507  *
508  * The first issue to discuss here is how your application can figure out
509  * when libusb has work to do. In fact, there are two naive options which
510  * do not actually require your application to know this:
511  * -# Periodically call libusb_handle_events() in non-blocking mode at fixed
512  *    short intervals from your main loop
513  * -# Repeatedly call libusb_handle_events() in blocking mode from a dedicated
514  *    thread.
515  *
516  * The first option is plainly not very nice, and will cause unnecessary
517  * CPU wakeups leading to increased power usage and decreased battery life.
518  * The second option is not very nice either, but may be the nicest option
519  * available to you if the "proper" approach can not be applied to your
520  * application (read on...).
521  *
522  * The recommended option is to integrate libusb with your application main
523  * event loop. libusb exposes a set of file descriptors which allow you to do
524  * this. Your main loop is probably already calling poll() or select() or a
525  * variant on a set of file descriptors for other event sources (e.g. keyboard
526  * button presses, mouse movements, network sockets, etc). You then add
527  * libusb's file descriptors to your poll()/select() calls, and when activity
528  * is detected on such descriptors you know it is time to call
529  * libusb_handle_events().
530  *
531  * There is one final event handling complication. libusb supports
532  * asynchronous transfers which time out after a specified time period, and
533  * this requires that libusb is called into at or after the timeout so that
534  * the timeout can be handled. So, in addition to considering libusb's file
535  * descriptors in your main event loop, you must also consider that libusb
536  * sometimes needs to be called into at fixed points in time even when there
537  * is no file descriptor activity.
538  *
539  * For the details on retrieving the set of file descriptors and determining
540  * the next timeout, see the \ref poll "polling and timing" API documentation.
541  */
542 
543 /**
544  * @defgroup poll Polling and timing
545  *
546  * This page documents libusb's functions for polling events and timing.
547  * These functions are only necessary for users of the
548  * \ref asyncio "asynchronous API". If you are only using the simpler
549  * \ref syncio "synchronous API" then you do not need to ever call these
550  * functions.
551  *
552  * The justification for the functionality described here has already been
553  * discussed in the \ref asyncevent "event handling" section of the
554  * asynchronous API documentation. In summary, libusb does not create internal
555  * threads for event processing and hence relies on your application calling
556  * into libusb at certain points in time so that pending events can be handled.
557  * In order to know precisely when libusb needs to be called into, libusb
558  * offers you a set of pollable file descriptors and information about when
559  * the next timeout expires.
560  *
561  * If you are using the asynchronous I/O API, you must take one of the two
562  * following options, otherwise your I/O will not complete.
563  *
564  * \section pollsimple The simple option
565  *
566  * If your application revolves solely around libusb and does not need to
567  * handle other event sources, you can have a program structure as follows:
568 \code
569 // initialize libusb
570 // find and open device
571 // maybe fire off some initial async I/O
572 
573 while (user_has_not_requested_exit)
574 	libusb_handle_events(ctx);
575 
576 // clean up and exit
577 \endcode
578  *
579  * With such a simple main loop, you do not have to worry about managing
580  * sets of file descriptors or handling timeouts. libusb_handle_events() will
581  * handle those details internally.
582  *
583  * \section pollmain The more advanced option
584  *
585  * \note This functionality is currently only available on Unix-like platforms.
586  * On Windows, libusb_get_pollfds() simply returns NULL. Exposing event sources
587  * on Windows will require some further thought and design.
588  *
589  * In more advanced applications, you will already have a main loop which
590  * is monitoring other event sources: network sockets, X11 events, mouse
591  * movements, etc. Through exposing a set of file descriptors, libusb is
592  * designed to cleanly integrate into such main loops.
593  *
594  * In addition to polling file descriptors for the other event sources, you
595  * take a set of file descriptors from libusb and monitor those too. When you
596  * detect activity on libusb's file descriptors, you call
597  * libusb_handle_events_timeout() in non-blocking mode.
598  *
599  * What's more, libusb may also need to handle events at specific moments in
600  * time. No file descriptor activity is generated at these times, so your
601  * own application needs to be continually aware of when the next one of these
602  * moments occurs (through calling libusb_get_next_timeout()), and then it
603  * needs to call libusb_handle_events_timeout() in non-blocking mode when
604  * these moments occur. This means that you need to adjust your
605  * poll()/select() timeout accordingly.
606  *
607  * libusb provides you with a set of file descriptors to poll and expects you
608  * to poll all of them, treating them as a single entity. The meaning of each
609  * file descriptor in the set is an internal implementation detail,
610  * platform-dependent and may vary from release to release. Don't try and
611  * interpret the meaning of the file descriptors, just do as libusb indicates,
612  * polling all of them at once.
613  *
614  * In pseudo-code, you want something that looks like:
615 \code
616 // initialise libusb
617 
618 libusb_get_pollfds(ctx)
619 while (user has not requested application exit) {
620 	libusb_get_next_timeout(ctx);
621 	poll(on libusb file descriptors plus any other event sources of interest,
622 		using a timeout no larger than the value libusb just suggested)
623 	if (poll() indicated activity on libusb file descriptors)
624 		libusb_handle_events_timeout(ctx, &zero_tv);
625 	if (time has elapsed to or beyond the libusb timeout)
626 		libusb_handle_events_timeout(ctx, &zero_tv);
627 	// handle events from other sources here
628 }
629 
630 // clean up and exit
631 \endcode
632  *
633  * \subsection polltime Notes on time-based events
634  *
635  * The above complication with having to track time and call into libusb at
636  * specific moments is a bit of a headache. For maximum compatibility, you do
637  * need to write your main loop as above, but you may decide that you can
638  * restrict the supported platforms of your application and get away with
639  * a more simplistic scheme.
640  *
641  * These time-based event complications are \b not required on the following
642  * platforms:
643  *  - Darwin
644  *  - Linux, provided that the following version requirements are satisfied:
645  *   - Linux v2.6.27 or newer, compiled with timerfd support
646  *   - glibc v2.9 or newer
647  *   - libusb v1.0.5 or newer
648  *
649  * Under these configurations, libusb_get_next_timeout() will \em always return
650  * 0, so your main loop can be simplified to:
651 \code
652 // initialise libusb
653 
654 libusb_get_pollfds(ctx)
655 while (user has not requested application exit) {
656 	poll(on libusb file descriptors plus any other event sources of interest,
657 		using any timeout that you like)
658 	if (poll() indicated activity on libusb file descriptors)
659 		libusb_handle_events_timeout(ctx, &zero_tv);
660 	// handle events from other sources here
661 }
662 
663 // clean up and exit
664 \endcode
665  *
666  * Do remember that if you simplify your main loop to the above, you will
667  * lose compatibility with some platforms (including legacy Linux platforms,
668  * and <em>any future platforms supported by libusb which may have time-based
669  * event requirements</em>). The resultant problems will likely appear as
670  * strange bugs in your application.
671  *
672  * You can use the libusb_pollfds_handle_timeouts() function to do a runtime
673  * check to see if it is safe to ignore the time-based event complications.
674  * If your application has taken the shortcut of ignoring libusb's next timeout
675  * in your main loop, then you are advised to check the return value of
676  * libusb_pollfds_handle_timeouts() during application startup, and to abort
677  * if the platform does suffer from these timing complications.
678  *
679  * \subsection fdsetchange Changes in the file descriptor set
680  *
681  * The set of file descriptors that libusb uses as event sources may change
682  * during the life of your application. Rather than having to repeatedly
683  * call libusb_get_pollfds(), you can set up notification functions for when
684  * the file descriptor set changes using libusb_set_pollfd_notifiers().
685  *
686  * \subsection mtissues Multi-threaded considerations
687  *
688  * Unfortunately, the situation is complicated further when multiple threads
689  * come into play. If two threads are monitoring the same file descriptors,
690  * the fact that only one thread will be woken up when an event occurs causes
691  * some headaches.
692  *
693  * The events lock, event waiters lock, and libusb_handle_events_locked()
694  * entities are added to solve these problems. You do not need to be concerned
695  * with these entities otherwise.
696  *
697  * See the extra documentation: \ref mtasync
698  */
699 
700 /** \page mtasync Multi-threaded applications and asynchronous I/O
701  *
702  * libusb is a thread-safe library, but extra considerations must be applied
703  * to applications which interact with libusb from multiple threads.
704  *
705  * The underlying issue that must be addressed is that all libusb I/O
706  * revolves around monitoring file descriptors through the poll()/select()
707  * system calls. This is directly exposed at the
708  * \ref asyncio "asynchronous interface" but it is important to note that the
709  * \ref syncio "synchronous interface" is implemented on top of the
710  * asynchonrous interface, therefore the same considerations apply.
711  *
712  * The issue is that if two or more threads are concurrently calling poll()
713  * or select() on libusb's file descriptors then only one of those threads
714  * will be woken up when an event arrives. The others will be completely
715  * oblivious that anything has happened.
716  *
717  * Consider the following pseudo-code, which submits an asynchronous transfer
718  * then waits for its completion. This style is one way you could implement a
719  * synchronous interface on top of the asynchronous interface (and libusb
720  * does something similar, albeit more advanced due to the complications
721  * explained on this page).
722  *
723 \code
724 void cb(struct libusb_transfer *transfer)
725 {
726 	int *completed = transfer->user_data;
727 	*completed = 1;
728 }
729 
730 void myfunc() {
731 	struct libusb_transfer *transfer;
732 	unsigned char buffer[LIBUSB_CONTROL_SETUP_SIZE];
733 	int completed = 0;
734 
735 	transfer = libusb_alloc_transfer(0);
736 	libusb_fill_control_setup(buffer,
737 		LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT, 0x04, 0x01, 0, 0);
738 	libusb_fill_control_transfer(transfer, dev, buffer, cb, &completed, 1000);
739 	libusb_submit_transfer(transfer);
740 
741 	while (!completed) {
742 		poll(libusb file descriptors, 120*1000);
743 		if (poll indicates activity)
744 			libusb_handle_events_timeout(ctx, &zero_tv);
745 	}
746 	printf("completed!");
747 	// other code here
748 }
749 \endcode
750  *
751  * Here we are <em>serializing</em> completion of an asynchronous event
752  * against a condition - the condition being completion of a specific transfer.
753  * The poll() loop has a long timeout to minimize CPU usage during situations
754  * when nothing is happening (it could reasonably be unlimited).
755  *
756  * If this is the only thread that is polling libusb's file descriptors, there
757  * is no problem: there is no danger that another thread will swallow up the
758  * event that we are interested in. On the other hand, if there is another
759  * thread polling the same descriptors, there is a chance that it will receive
760  * the event that we were interested in. In this situation, <tt>myfunc()</tt>
761  * will only realise that the transfer has completed on the next iteration of
762  * the loop, <em>up to 120 seconds later.</em> Clearly a two-minute delay is
763  * undesirable, and don't even think about using short timeouts to circumvent
764  * this issue!
765  *
766  * The solution here is to ensure that no two threads are ever polling the
767  * file descriptors at the same time. A naive implementation of this would
768  * impact the capabilities of the library, so libusb offers the scheme
769  * documented below to ensure no loss of functionality.
770  *
771  * Before we go any further, it is worth mentioning that all libusb-wrapped
772  * event handling procedures fully adhere to the scheme documented below.
773  * This includes libusb_handle_events() and its variants, and all the
774  * synchronous I/O functions - libusb hides this headache from you.
775  *
776  * \section Using libusb_handle_events() from multiple threads
777  *
778  * Even when only using libusb_handle_events() and synchronous I/O functions,
779  * you can still have a race condition. You might be tempted to solve the
780  * above with libusb_handle_events() like so:
781  *
782 \code
783 	libusb_submit_transfer(transfer);
784 
785 	while (!completed) {
786 		libusb_handle_events(ctx);
787 	}
788 	printf("completed!");
789 \endcode
790  *
791  * This however has a race between the checking of completed and
792  * libusb_handle_events() acquiring the events lock, so another thread
793  * could have completed the transfer, resulting in this thread hanging
794  * until either a timeout or another event occurs. See also commit
795  * 6696512aade99bb15d6792af90ae329af270eba6 which fixes this in the
796  * synchronous API implementation of libusb.
797  *
798  * Fixing this race requires checking the variable completed only after
799  * taking the event lock, which defeats the concept of just calling
800  * libusb_handle_events() without worrying about locking. This is why
801  * libusb-1.0.9 introduces the new libusb_handle_events_timeout_completed()
802  * and libusb_handle_events_completed() functions, which handles doing the
803  * completion check for you after they have acquired the lock:
804  *
805 \code
806 	libusb_submit_transfer(transfer);
807 
808 	while (!completed) {
809 		libusb_handle_events_completed(ctx, &completed);
810 	}
811 	printf("completed!");
812 \endcode
813  *
814  * This nicely fixes the race in our example. Note that if all you want to
815  * do is submit a single transfer and wait for its completion, then using
816  * one of the synchronous I/O functions is much easier.
817  *
818  * \section eventlock The events lock
819  *
820  * The problem is when we consider the fact that libusb exposes file
821  * descriptors to allow for you to integrate asynchronous USB I/O into
822  * existing main loops, effectively allowing you to do some work behind
823  * libusb's back. If you do take libusb's file descriptors and pass them to
824  * poll()/select() yourself, you need to be aware of the associated issues.
825  *
826  * The first concept to be introduced is the events lock. The events lock
827  * is used to serialize threads that want to handle events, such that only
828  * one thread is handling events at any one time.
829  *
830  * You must take the events lock before polling libusb file descriptors,
831  * using libusb_lock_events(). You must release the lock as soon as you have
832  * aborted your poll()/select() loop, using libusb_unlock_events().
833  *
834  * \section threadwait Letting other threads do the work for you
835  *
836  * Although the events lock is a critical part of the solution, it is not
837  * enough on it's own. You might wonder if the following is sufficient...
838 \code
839 	libusb_lock_events(ctx);
840 	while (!completed) {
841 		poll(libusb file descriptors, 120*1000);
842 		if (poll indicates activity)
843 			libusb_handle_events_timeout(ctx, &zero_tv);
844 	}
845 	libusb_unlock_events(ctx);
846 \endcode
847  * ...and the answer is that it is not. This is because the transfer in the
848  * code shown above may take a long time (say 30 seconds) to complete, and
849  * the lock is not released until the transfer is completed.
850  *
851  * Another thread with similar code that wants to do event handling may be
852  * working with a transfer that completes after a few milliseconds. Despite
853  * having such a quick completion time, the other thread cannot check that
854  * status of its transfer until the code above has finished (30 seconds later)
855  * due to contention on the lock.
856  *
857  * To solve this, libusb offers you a mechanism to determine when another
858  * thread is handling events. It also offers a mechanism to block your thread
859  * until the event handling thread has completed an event (and this mechanism
860  * does not involve polling of file descriptors).
861  *
862  * After determining that another thread is currently handling events, you
863  * obtain the <em>event waiters</em> lock using libusb_lock_event_waiters().
864  * You then re-check that some other thread is still handling events, and if
865  * so, you call libusb_wait_for_event().
866  *
867  * libusb_wait_for_event() puts your application to sleep until an event
868  * occurs, or until a thread releases the events lock. When either of these
869  * things happen, your thread is woken up, and should re-check the condition
870  * it was waiting on. It should also re-check that another thread is handling
871  * events, and if not, it should start handling events itself.
872  *
873  * This looks like the following, as pseudo-code:
874 \code
875 retry:
876 if (libusb_try_lock_events(ctx) == 0) {
877 	// we obtained the event lock: do our own event handling
878 	while (!completed) {
879 		if (!libusb_event_handling_ok(ctx)) {
880 			libusb_unlock_events(ctx);
881 			goto retry;
882 		}
883 		poll(libusb file descriptors, 120*1000);
884 		if (poll indicates activity)
885 			libusb_handle_events_locked(ctx, 0);
886 	}
887 	libusb_unlock_events(ctx);
888 } else {
889 	// another thread is doing event handling. wait for it to signal us that
890 	// an event has completed
891 	libusb_lock_event_waiters(ctx);
892 
893 	while (!completed) {
894 		// now that we have the event waiters lock, double check that another
895 		// thread is still handling events for us. (it may have ceased handling
896 		// events in the time it took us to reach this point)
897 		if (!libusb_event_handler_active(ctx)) {
898 			// whoever was handling events is no longer doing so, try again
899 			libusb_unlock_event_waiters(ctx);
900 			goto retry;
901 		}
902 
903 		libusb_wait_for_event(ctx, NULL);
904 	}
905 	libusb_unlock_event_waiters(ctx);
906 }
907 printf("completed!\n");
908 \endcode
909  *
910  * A naive look at the above code may suggest that this can only support
911  * one event waiter (hence a total of 2 competing threads, the other doing
912  * event handling), because the event waiter seems to have taken the event
913  * waiters lock while waiting for an event. However, the system does support
914  * multiple event waiters, because libusb_wait_for_event() actually drops
915  * the lock while waiting, and reaquires it before continuing.
916  *
917  * We have now implemented code which can dynamically handle situations where
918  * nobody is handling events (so we should do it ourselves), and it can also
919  * handle situations where another thread is doing event handling (so we can
920  * piggyback onto them). It is also equipped to handle a combination of
921  * the two, for example, another thread is doing event handling, but for
922  * whatever reason it stops doing so before our condition is met, so we take
923  * over the event handling.
924  *
925  * Four functions were introduced in the above pseudo-code. Their importance
926  * should be apparent from the code shown above.
927  * -# libusb_try_lock_events() is a non-blocking function which attempts
928  *    to acquire the events lock but returns a failure code if it is contended.
929  * -# libusb_event_handling_ok() checks that libusb is still happy for your
930  *    thread to be performing event handling. Sometimes, libusb needs to
931  *    interrupt the event handler, and this is how you can check if you have
932  *    been interrupted. If this function returns 0, the correct behaviour is
933  *    for you to give up the event handling lock, and then to repeat the cycle.
934  *    The following libusb_try_lock_events() will fail, so you will become an
935  *    events waiter. For more information on this, read \ref fullstory below.
936  * -# libusb_handle_events_locked() is a variant of
937  *    libusb_handle_events_timeout() that you can call while holding the
938  *    events lock. libusb_handle_events_timeout() itself implements similar
939  *    logic to the above, so be sure not to call it when you are
940  *    "working behind libusb's back", as is the case here.
941  * -# libusb_event_handler_active() determines if someone is currently
942  *    holding the events lock
943  *
944  * You might be wondering why there is no function to wake up all threads
945  * blocked on libusb_wait_for_event(). This is because libusb can do this
946  * internally: it will wake up all such threads when someone calls
947  * libusb_unlock_events() or when a transfer completes (at the point after its
948  * callback has returned).
949  *
950  * \subsection fullstory The full story
951  *
952  * The above explanation should be enough to get you going, but if you're
953  * really thinking through the issues then you may be left with some more
954  * questions regarding libusb's internals. If you're curious, read on, and if
955  * not, skip to the next section to avoid confusing yourself!
956  *
957  * The immediate question that may spring to mind is: what if one thread
958  * modifies the set of file descriptors that need to be polled while another
959  * thread is doing event handling?
960  *
961  * There are 2 situations in which this may happen.
962  * -# libusb_open() will add another file descriptor to the poll set,
963  *    therefore it is desirable to interrupt the event handler so that it
964  *    restarts, picking up the new descriptor.
965  * -# libusb_close() will remove a file descriptor from the poll set. There
966  *    are all kinds of race conditions that could arise here, so it is
967  *    important that nobody is doing event handling at this time.
968  *
969  * libusb handles these issues internally, so application developers do not
970  * have to stop their event handlers while opening/closing devices. Here's how
971  * it works, focusing on the libusb_close() situation first:
972  *
973  * -# During initialization, libusb opens an internal pipe, and it adds the read
974  *    end of this pipe to the set of file descriptors to be polled.
975  * -# During libusb_close(), libusb writes some dummy data on this control pipe.
976  *    This immediately interrupts the event handler. libusb also records
977  *    internally that it is trying to interrupt event handlers for this
978  *    high-priority event.
979  * -# At this point, some of the functions described above start behaving
980  *    differently:
981  *   - libusb_event_handling_ok() starts returning 1, indicating that it is NOT
982  *     OK for event handling to continue.
983  *   - libusb_try_lock_events() starts returning 1, indicating that another
984  *     thread holds the event handling lock, even if the lock is uncontended.
985  *   - libusb_event_handler_active() starts returning 1, indicating that
986  *     another thread is doing event handling, even if that is not true.
987  * -# The above changes in behaviour result in the event handler stopping and
988  *    giving up the events lock very quickly, giving the high-priority
989  *    libusb_close() operation a "free ride" to acquire the events lock. All
990  *    threads that are competing to do event handling become event waiters.
991  * -# With the events lock held inside libusb_close(), libusb can safely remove
992  *    a file descriptor from the poll set, in the safety of knowledge that
993  *    nobody is polling those descriptors or trying to access the poll set.
994  * -# After obtaining the events lock, the close operation completes very
995  *    quickly (usually a matter of milliseconds) and then immediately releases
996  *    the events lock.
997  * -# At the same time, the behaviour of libusb_event_handling_ok() and friends
998  *    reverts to the original, documented behaviour.
999  * -# The release of the events lock causes the threads that are waiting for
1000  *    events to be woken up and to start competing to become event handlers
1001  *    again. One of them will succeed; it will then re-obtain the list of poll
1002  *    descriptors, and USB I/O will then continue as normal.
1003  *
1004  * libusb_open() is similar, and is actually a more simplistic case. Upon a
1005  * call to libusb_open():
1006  *
1007  * -# The device is opened and a file descriptor is added to the poll set.
1008  * -# libusb sends some dummy data on the control pipe, and records that it
1009  *    is trying to modify the poll descriptor set.
1010  * -# The event handler is interrupted, and the same behaviour change as for
1011  *    libusb_close() takes effect, causing all event handling threads to become
1012  *    event waiters.
1013  * -# The libusb_open() implementation takes its free ride to the events lock.
1014  * -# Happy that it has successfully paused the events handler, libusb_open()
1015  *    releases the events lock.
1016  * -# The event waiter threads are all woken up and compete to become event
1017  *    handlers again. The one that succeeds will obtain the list of poll
1018  *    descriptors again, which will include the addition of the new device.
1019  *
1020  * \subsection concl Closing remarks
1021  *
1022  * The above may seem a little complicated, but hopefully I have made it clear
1023  * why such complications are necessary. Also, do not forget that this only
1024  * applies to applications that take libusb's file descriptors and integrate
1025  * them into their own polling loops.
1026  *
1027  * You may decide that it is OK for your multi-threaded application to ignore
1028  * some of the rules and locks detailed above, because you don't think that
1029  * two threads can ever be polling the descriptors at the same time. If that
1030  * is the case, then that's good news for you because you don't have to worry.
1031  * But be careful here; remember that the synchronous I/O functions do event
1032  * handling internally. If you have one thread doing event handling in a loop
1033  * (without implementing the rules and locking semantics documented above)
1034  * and another trying to send a synchronous USB transfer, you will end up with
1035  * two threads monitoring the same descriptors, and the above-described
1036  * undesirable behaviour occuring. The solution is for your polling thread to
1037  * play by the rules; the synchronous I/O functions do so, and this will result
1038  * in them getting along in perfect harmony.
1039  *
1040  * If you do have a dedicated thread doing event handling, it is perfectly
1041  * legal for it to take the event handling lock for long periods of time. Any
1042  * synchronous I/O functions you call from other threads will transparently
1043  * fall back to the "event waiters" mechanism detailed above. The only
1044  * consideration that your event handling thread must apply is the one related
1045  * to libusb_event_handling_ok(): you must call this before every poll(), and
1046  * give up the events lock if instructed.
1047  */
1048 
1049 #if !defined(TIMESPEC_TO_TIMEVAL)
1050 #define TIMESPEC_TO_TIMEVAL(tv, ts) {                   \
1051 	(tv)->tv_sec = (long)(ts)->tv_sec;                  \
1052 	(tv)->tv_usec = (long)(ts)->tv_nsec / 1000;         \
1053 }
1054 #endif
1055 
1056 /** \ingroup asyncio
1057  * Convenience function to locate the position of an isochronous packet
1058  * within the buffer of an isochronous transfer.
1059  *
1060  * This is a thorough function which loops through all preceding packets,
1061  * accumulating their lengths to find the position of the specified packet.
1062  * Typically you will assign equal lengths to each packet in the transfer,
1063  * and hence the above method is sub-optimal. You may wish to use
1064  * libusb_get_iso_packet_buffer_simple() instead.
1065  *
1066  * \param transfer a transfer
1067  * \param packet the packet to return the address of
1068  * \returns the base address of the packet buffer inside the transfer buffer,
1069  * or NULL if the packet does not exist.
1070  * \see libusb_get_iso_packet_buffer_simple()
1071  */
libusb_get_iso_packet_buffer(struct libusb_transfer * transfer,unsigned int packet)1072 unsigned char *libusb_get_iso_packet_buffer(
1073 	struct libusb_transfer *transfer, unsigned int packet)
1074 {
1075 	int i;
1076 	size_t offset = 0;
1077 	int _packet;
1078 
1079 	/* oops..slight bug in the API. packet is an unsigned int, but we use
1080 	 * signed integers almost everywhere else. range-check and convert to
1081 	 * signed to avoid compiler warnings. FIXME for libusb-2. */
1082 	if (packet > INT_MAX)
1083 		return NULL;
1084 	_packet = packet;
1085 
1086 	if (_packet >= transfer->num_iso_packets)
1087 		return NULL;
1088 
1089 	for (i = 0; i < _packet; i++)
1090 		offset += transfer->iso_packet_desc[i].length;
1091 
1092 	return transfer->buffer + offset;
1093 }
1094 
1095 /** \ingroup asyncio
1096  * Convenience function to locate the position of an isochronous packet
1097  * within the buffer of an isochronous transfer, for transfers where each
1098  * packet is of identical size.
1099  *
1100  * This function relies on the assumption that every packet within the transfer
1101  * is of identical size to the first packet. Calculating the location of
1102  * the packet buffer is then just a simple calculation:
1103  * <tt>buffer + (packet_size * packet)</tt>
1104  *
1105  * Do not use this function on transfers other than those that have identical
1106  * packet lengths for each packet.
1107  *
1108  * \param transfer a transfer
1109  * \param packet the packet to return the address of
1110  * \returns the base address of the packet buffer inside the transfer buffer,
1111  * or NULL if the packet does not exist.
1112  * \see libusb_get_iso_packet_buffer()
1113  */
libusb_get_iso_packet_buffer_simple(struct libusb_transfer * transfer,unsigned int packet)1114 unsigned char *libusb_get_iso_packet_buffer_simple(
1115 	struct libusb_transfer *transfer, unsigned int packet)
1116 {
1117 	int _packet;
1118 
1119 	/* oops..slight bug in the API. packet is an unsigned int, but we use
1120 	 * signed integers almost everywhere else. range-check and convert to
1121 	 * signed to avoid compiler warnings. FIXME for libusb-2. */
1122 	if (packet > INT_MAX)
1123 		return NULL;
1124 	_packet = packet;
1125 
1126 	if (_packet >= transfer->num_iso_packets)
1127 		return NULL;
1128 
1129 	return transfer->buffer + (transfer->iso_packet_desc[0].length * _packet);
1130 }
1131 
usbi_io_init(struct libusb_context * ctx)1132 int usbi_io_init(struct libusb_context *ctx)
1133 {
1134 	int r;
1135 
1136 	usbi_mutex_init(&ctx->flying_transfers_lock, NULL);
1137 	usbi_mutex_init(&ctx->pollfds_lock, NULL);
1138 	usbi_mutex_init(&ctx->pollfd_modify_lock, NULL);
1139 	usbi_mutex_init_recursive(&ctx->events_lock, NULL);
1140 	usbi_mutex_init(&ctx->event_waiters_lock, NULL);
1141 	usbi_cond_init(&ctx->event_waiters_cond, NULL);
1142 	list_init(&ctx->flying_transfers);
1143 	list_init(&ctx->pollfds);
1144 
1145 	/* FIXME should use an eventfd on kernels that support it */
1146 	r = usbi_pipe(ctx->ctrl_pipe);
1147 	if (r < 0) {
1148 		r = LIBUSB_ERROR_OTHER;
1149 		goto err;
1150 	}
1151 
1152 	r = usbi_add_pollfd(ctx, ctx->ctrl_pipe[0], POLLIN);
1153 	if (r < 0)
1154 		goto err_close_pipe;
1155 
1156 #ifdef USBI_TIMERFD_AVAILABLE
1157 	ctx->timerfd = timerfd_create(usbi_backend->get_timerfd_clockid(),
1158 		TFD_NONBLOCK);
1159 	if (ctx->timerfd >= 0) {
1160 		usbi_dbg("using timerfd for timeouts");
1161 		r = usbi_add_pollfd(ctx, ctx->timerfd, POLLIN);
1162 		if (r < 0) {
1163 			usbi_remove_pollfd(ctx, ctx->ctrl_pipe[0]);
1164 			close(ctx->timerfd);
1165 			goto err_close_pipe;
1166 		}
1167 	} else {
1168 		usbi_dbg("timerfd not available (code %d error %d)", ctx->timerfd, errno);
1169 		ctx->timerfd = -1;
1170 	}
1171 #endif
1172 
1173 	return 0;
1174 
1175 err_close_pipe:
1176 	usbi_close(ctx->ctrl_pipe[0]);
1177 	usbi_close(ctx->ctrl_pipe[1]);
1178 err:
1179 	usbi_mutex_destroy(&ctx->flying_transfers_lock);
1180 	usbi_mutex_destroy(&ctx->pollfds_lock);
1181 	usbi_mutex_destroy(&ctx->pollfd_modify_lock);
1182 	usbi_mutex_destroy(&ctx->events_lock);
1183 	usbi_mutex_destroy(&ctx->event_waiters_lock);
1184 	usbi_cond_destroy(&ctx->event_waiters_cond);
1185 	return r;
1186 }
1187 
usbi_io_exit(struct libusb_context * ctx)1188 void usbi_io_exit(struct libusb_context *ctx)
1189 {
1190 	usbi_remove_pollfd(ctx, ctx->ctrl_pipe[0]);
1191 	usbi_close(ctx->ctrl_pipe[0]);
1192 	usbi_close(ctx->ctrl_pipe[1]);
1193 #ifdef USBI_TIMERFD_AVAILABLE
1194 	if (usbi_using_timerfd(ctx)) {
1195 		usbi_remove_pollfd(ctx, ctx->timerfd);
1196 		close(ctx->timerfd);
1197 	}
1198 #endif
1199 	usbi_mutex_destroy(&ctx->flying_transfers_lock);
1200 	usbi_mutex_destroy(&ctx->pollfds_lock);
1201 	usbi_mutex_destroy(&ctx->pollfd_modify_lock);
1202 	usbi_mutex_destroy(&ctx->events_lock);
1203 	usbi_mutex_destroy(&ctx->event_waiters_lock);
1204 	usbi_cond_destroy(&ctx->event_waiters_cond);
1205 }
1206 
calculate_timeout(struct usbi_transfer * transfer)1207 static int calculate_timeout(struct usbi_transfer *transfer)
1208 {
1209 	int r;
1210 	struct timespec current_time;
1211 	unsigned int timeout =
1212 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(transfer)->timeout;
1213 
1214 	if (!timeout)
1215 		return 0;
1216 
1217 	r = usbi_backend->clock_gettime(USBI_CLOCK_MONOTONIC, &current_time);
1218 	if (r < 0) {
1219 		usbi_err(ITRANSFER_CTX(transfer),
1220 			"failed to read monotonic clock, errno=%d", errno);
1221 		return r;
1222 	}
1223 
1224 	current_time.tv_sec += timeout / 1000;
1225 	current_time.tv_nsec += (timeout % 1000) * 1000000;
1226 
1227 	if (current_time.tv_nsec > 1000000000) {
1228 		current_time.tv_nsec -= 1000000000;
1229 		current_time.tv_sec++;
1230 	}
1231 
1232 	TIMESPEC_TO_TIMEVAL(&transfer->timeout, &current_time);
1233 	return 0;
1234 }
1235 
1236 /* add a transfer to the (timeout-sorted) active transfers list.
1237  * returns 1 if the transfer has a timeout and it is the timeout next to
1238  * expire */
add_to_flying_list(struct usbi_transfer * transfer)1239 static int add_to_flying_list(struct usbi_transfer *transfer)
1240 {
1241 	struct usbi_transfer *cur;
1242 	struct timeval *timeout = &transfer->timeout;
1243 	struct libusb_context *ctx = ITRANSFER_CTX(transfer);
1244 	int r = 0;
1245 	int first = 1;
1246 
1247 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1248 
1249 	/* if we have no other flying transfers, start the list with this one */
1250 	if (list_empty(&ctx->flying_transfers)) {
1251 		list_add(&transfer->list, &ctx->flying_transfers);
1252 		if (timerisset(timeout))
1253 			r = 1;
1254 		goto out;
1255 	}
1256 
1257 	/* if we have infinite timeout, append to end of list */
1258 	if (!timerisset(timeout)) {
1259 		list_add_tail(&transfer->list, &ctx->flying_transfers);
1260 		goto out;
1261 	}
1262 
1263 	/* otherwise, find appropriate place in list */
1264 	list_for_each_entry(cur, &ctx->flying_transfers, list, struct usbi_transfer) {
1265 		/* find first timeout that occurs after the transfer in question */
1266 		struct timeval *cur_tv = &cur->timeout;
1267 
1268 		if (!timerisset(cur_tv) || (cur_tv->tv_sec > timeout->tv_sec) ||
1269 				(cur_tv->tv_sec == timeout->tv_sec &&
1270 					cur_tv->tv_usec > timeout->tv_usec)) {
1271 			list_add_tail(&transfer->list, &cur->list);
1272 			r = first;
1273 			goto out;
1274 		}
1275 		first = 0;
1276 	}
1277 
1278 	/* otherwise we need to be inserted at the end */
1279 	list_add_tail(&transfer->list, &ctx->flying_transfers);
1280 out:
1281 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1282 	return r;
1283 }
1284 
1285 /** \ingroup asyncio
1286  * Allocate a libusb transfer with a specified number of isochronous packet
1287  * descriptors. The returned transfer is pre-initialized for you. When the new
1288  * transfer is no longer needed, it should be freed with
1289  * libusb_free_transfer().
1290  *
1291  * Transfers intended for non-isochronous endpoints (e.g. control, bulk,
1292  * interrupt) should specify an iso_packets count of zero.
1293  *
1294  * For transfers intended for isochronous endpoints, specify an appropriate
1295  * number of packet descriptors to be allocated as part of the transfer.
1296  * The returned transfer is not specially initialized for isochronous I/O;
1297  * you are still required to set the
1298  * \ref libusb_transfer::num_iso_packets "num_iso_packets" and
1299  * \ref libusb_transfer::type "type" fields accordingly.
1300  *
1301  * It is safe to allocate a transfer with some isochronous packets and then
1302  * use it on a non-isochronous endpoint. If you do this, ensure that at time
1303  * of submission, num_iso_packets is 0 and that type is set appropriately.
1304  *
1305  * \param iso_packets number of isochronous packet descriptors to allocate
1306  * \returns a newly allocated transfer, or NULL on error
1307  */
1308 DEFAULT_VISIBILITY
libusb_alloc_transfer(int iso_packets)1309 struct libusb_transfer * LIBUSB_CALL libusb_alloc_transfer(
1310 	int iso_packets)
1311 {
1312 	size_t os_alloc_size = usbi_backend->transfer_priv_size
1313 		+ (usbi_backend->add_iso_packet_size * iso_packets);
1314 	size_t alloc_size = sizeof(struct usbi_transfer)
1315 		+ sizeof(struct libusb_transfer)
1316 		+ (sizeof(struct libusb_iso_packet_descriptor) * iso_packets)
1317 		+ os_alloc_size;
1318 	struct usbi_transfer *itransfer = malloc(alloc_size);
1319 	if (!itransfer)
1320 		return NULL;
1321 
1322 	memset(itransfer, 0, alloc_size);
1323 	itransfer->num_iso_packets = iso_packets;
1324 	usbi_mutex_init(&itransfer->lock, NULL);
1325 	return USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1326 }
1327 
1328 /** \ingroup asyncio
1329  * Free a transfer structure. This should be called for all transfers
1330  * allocated with libusb_alloc_transfer().
1331  *
1332  * If the \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
1333  * "LIBUSB_TRANSFER_FREE_BUFFER" flag is set and the transfer buffer is
1334  * non-NULL, this function will also free the transfer buffer using the
1335  * standard system memory allocator (e.g. free()).
1336  *
1337  * It is legal to call this function with a NULL transfer. In this case,
1338  * the function will simply return safely.
1339  *
1340  * It is not legal to free an active transfer (one which has been submitted
1341  * and has not yet completed).
1342  *
1343  * \param transfer the transfer to free
1344  */
libusb_free_transfer(struct libusb_transfer * transfer)1345 void API_EXPORTED libusb_free_transfer(struct libusb_transfer *transfer)
1346 {
1347 	struct usbi_transfer *itransfer;
1348 	if (!transfer)
1349 		return;
1350 
1351 	if (transfer->flags & LIBUSB_TRANSFER_FREE_BUFFER && transfer->buffer)
1352 		free(transfer->buffer);
1353 
1354 	itransfer = LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1355 	usbi_mutex_destroy(&itransfer->lock);
1356 	free(itransfer);
1357 }
1358 
1359 /** \ingroup asyncio
1360  * Submit a transfer. This function will fire off the USB transfer and then
1361  * return immediately.
1362  *
1363  * \param transfer the transfer to submit
1364  * \returns 0 on success
1365  * \returns LIBUSB_ERROR_NO_DEVICE if the device has been disconnected
1366  * \returns LIBUSB_ERROR_BUSY if the transfer has already been submitted.
1367  * \returns LIBUSB_ERROR_NOT_SUPPORTED if the transfer flags are not supported
1368  * by the operating system.
1369  * \returns another LIBUSB_ERROR code on other failure
1370  */
libusb_submit_transfer(struct libusb_transfer * transfer)1371 int API_EXPORTED libusb_submit_transfer(struct libusb_transfer *transfer)
1372 {
1373 	struct libusb_context *ctx = TRANSFER_CTX(transfer);
1374 	struct usbi_transfer *itransfer =
1375 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1376 	int r;
1377 	int first;
1378 
1379 	usbi_mutex_lock(&itransfer->lock);
1380 	itransfer->transferred = 0;
1381 	itransfer->flags = 0;
1382 	r = calculate_timeout(itransfer);
1383 	if (r < 0) {
1384 		r = LIBUSB_ERROR_OTHER;
1385 		goto out;
1386 	}
1387 
1388 	first = add_to_flying_list(itransfer);
1389 	r = usbi_backend->submit_transfer(itransfer);
1390 	if (r) {
1391 		usbi_mutex_lock(&ctx->flying_transfers_lock);
1392 		list_del(&itransfer->list);
1393 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
1394 	}
1395 #ifdef USBI_TIMERFD_AVAILABLE
1396 	else if (first && usbi_using_timerfd(ctx)) {
1397 		/* if this transfer has the lowest timeout of all active transfers,
1398 		 * rearm the timerfd with this transfer's timeout */
1399 		const struct itimerspec it = { {0, 0},
1400 			{ itransfer->timeout.tv_sec, itransfer->timeout.tv_usec * 1000 } };
1401 		usbi_dbg("arm timerfd for timeout in %dms (first in line)", transfer->timeout);
1402 		r = timerfd_settime(ctx->timerfd, TFD_TIMER_ABSTIME, &it, NULL);
1403 		if (r < 0)
1404 			r = LIBUSB_ERROR_OTHER;
1405 	}
1406 #else
1407 	(void)first;
1408 #endif
1409 
1410 out:
1411 	usbi_mutex_unlock(&itransfer->lock);
1412 	return r;
1413 }
1414 
1415 /** \ingroup asyncio
1416  * Asynchronously cancel a previously submitted transfer.
1417  * This function returns immediately, but this does not indicate cancellation
1418  * is complete. Your callback function will be invoked at some later time
1419  * with a transfer status of
1420  * \ref libusb_transfer_status::LIBUSB_TRANSFER_CANCELLED
1421  * "LIBUSB_TRANSFER_CANCELLED."
1422  *
1423  * \param transfer the transfer to cancel
1424  * \returns 0 on success
1425  * \returns LIBUSB_ERROR_NOT_FOUND if the transfer is already complete or
1426  * cancelled.
1427  * \returns a LIBUSB_ERROR code on failure
1428  */
libusb_cancel_transfer(struct libusb_transfer * transfer)1429 int API_EXPORTED libusb_cancel_transfer(struct libusb_transfer *transfer)
1430 {
1431 	struct usbi_transfer *itransfer =
1432 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1433 	int r;
1434 
1435 	usbi_dbg("");
1436 	usbi_mutex_lock(&itransfer->lock);
1437 	r = usbi_backend->cancel_transfer(itransfer);
1438 	if (r < 0) {
1439 		if (r != LIBUSB_ERROR_NOT_FOUND)
1440 			usbi_err(TRANSFER_CTX(transfer),
1441 				"cancel transfer failed error %d", r);
1442 		else
1443 			usbi_dbg("cancel transfer failed error %d", r);
1444 
1445 		if (r == LIBUSB_ERROR_NO_DEVICE)
1446 			itransfer->flags |= USBI_TRANSFER_DEVICE_DISAPPEARED;
1447 	}
1448 
1449 	itransfer->flags |= USBI_TRANSFER_CANCELLING;
1450 
1451 	usbi_mutex_unlock(&itransfer->lock);
1452 	return r;
1453 }
1454 
1455 #ifdef USBI_TIMERFD_AVAILABLE
disarm_timerfd(struct libusb_context * ctx)1456 static int disarm_timerfd(struct libusb_context *ctx)
1457 {
1458 	const struct itimerspec disarm_timer = { { 0, 0 }, { 0, 0 } };
1459 	int r;
1460 
1461 	usbi_dbg("");
1462 	r = timerfd_settime(ctx->timerfd, 0, &disarm_timer, NULL);
1463 	if (r < 0)
1464 		return LIBUSB_ERROR_OTHER;
1465 	else
1466 		return 0;
1467 }
1468 
1469 /* iterates through the flying transfers, and rearms the timerfd based on the
1470  * next upcoming timeout.
1471  * must be called with flying_list locked.
1472  * returns 0 if there was no timeout to arm, 1 if the next timeout was armed,
1473  * or a LIBUSB_ERROR code on failure.
1474  */
arm_timerfd_for_next_timeout(struct libusb_context * ctx)1475 static int arm_timerfd_for_next_timeout(struct libusb_context *ctx)
1476 {
1477 	struct usbi_transfer *transfer;
1478 
1479 	list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
1480 		struct timeval *cur_tv = &transfer->timeout;
1481 
1482 		/* if we've reached transfers of infinite timeout, then we have no
1483 		 * arming to do */
1484 		if (!timerisset(cur_tv))
1485 			return 0;
1486 
1487 		/* act on first transfer that is not already cancelled */
1488 		if (!(transfer->flags & USBI_TRANSFER_TIMED_OUT)) {
1489 			int r;
1490 			const struct itimerspec it = { {0, 0},
1491 				{ cur_tv->tv_sec, cur_tv->tv_usec * 1000 } };
1492 			usbi_dbg("next timeout originally %dms", USBI_TRANSFER_TO_LIBUSB_TRANSFER(transfer)->timeout);
1493 			r = timerfd_settime(ctx->timerfd, TFD_TIMER_ABSTIME, &it, NULL);
1494 			if (r < 0)
1495 				return LIBUSB_ERROR_OTHER;
1496 			return 1;
1497 		}
1498 	}
1499 
1500 	return 0;
1501 }
1502 #else
disarm_timerfd(struct libusb_context * ctx)1503 static int disarm_timerfd(struct libusb_context *ctx)
1504 {
1505 	(void)ctx;
1506 	return 0;
1507 }
arm_timerfd_for_next_timeout(struct libusb_context * ctx)1508 static int arm_timerfd_for_next_timeout(struct libusb_context *ctx)
1509 {
1510 	(void)ctx;
1511 	return 0;
1512 }
1513 #endif
1514 
1515 /* Handle completion of a transfer (completion might be an error condition).
1516  * This will invoke the user-supplied callback function, which may end up
1517  * freeing the transfer. Therefore you cannot use the transfer structure
1518  * after calling this function, and you should free all backend-specific
1519  * data before calling it.
1520  * Do not call this function with the usbi_transfer lock held. User-specified
1521  * callback functions may attempt to directly resubmit the transfer, which
1522  * will attempt to take the lock. */
usbi_handle_transfer_completion(struct usbi_transfer * itransfer,enum libusb_transfer_status status)1523 int usbi_handle_transfer_completion(struct usbi_transfer *itransfer,
1524 	enum libusb_transfer_status status)
1525 {
1526 	struct libusb_transfer *transfer =
1527 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1528 	struct libusb_context *ctx = TRANSFER_CTX(transfer);
1529 	uint8_t flags;
1530 	int r = 0;
1531 
1532 	/* FIXME: could be more intelligent with the timerfd here. we don't need
1533 	 * to disarm the timerfd if there was no timer running, and we only need
1534 	 * to rearm the timerfd if the transfer that expired was the one with
1535 	 * the shortest timeout. */
1536 
1537 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1538 	list_del(&itransfer->list);
1539 	if (usbi_using_timerfd(ctx))
1540 		r = arm_timerfd_for_next_timeout(ctx);
1541 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1542 
1543 	if (usbi_using_timerfd(ctx)) {
1544 		if (r < 0)
1545 			return r;
1546 		r = disarm_timerfd(ctx);
1547 		if (r < 0)
1548 			return r;
1549 	}
1550 
1551 	if (status == LIBUSB_TRANSFER_COMPLETED
1552 			&& transfer->flags & LIBUSB_TRANSFER_SHORT_NOT_OK) {
1553 		int rqlen = transfer->length;
1554 		if (transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL)
1555 			rqlen -= LIBUSB_CONTROL_SETUP_SIZE;
1556 		if (rqlen != itransfer->transferred) {
1557 			usbi_dbg("interpreting short transfer as error");
1558 			status = LIBUSB_TRANSFER_ERROR;
1559 		}
1560 	}
1561 
1562 	flags = transfer->flags;
1563 	transfer->status = status;
1564 	transfer->actual_length = itransfer->transferred;
1565 	usbi_dbg("transfer %p has callback %p", transfer, transfer->callback);
1566 	if (transfer->callback)
1567 		transfer->callback(transfer);
1568 	/* transfer might have been freed by the above call, do not use from
1569 	 * this point. */
1570 	if (flags & LIBUSB_TRANSFER_FREE_TRANSFER)
1571 		libusb_free_transfer(transfer);
1572 	usbi_mutex_lock(&ctx->event_waiters_lock);
1573 	usbi_cond_broadcast(&ctx->event_waiters_cond);
1574 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1575 	return 0;
1576 }
1577 
1578 /* Similar to usbi_handle_transfer_completion() but exclusively for transfers
1579  * that were asynchronously cancelled. The same concerns w.r.t. freeing of
1580  * transfers exist here.
1581  * Do not call this function with the usbi_transfer lock held. User-specified
1582  * callback functions may attempt to directly resubmit the transfer, which
1583  * will attempt to take the lock. */
usbi_handle_transfer_cancellation(struct usbi_transfer * transfer)1584 int usbi_handle_transfer_cancellation(struct usbi_transfer *transfer)
1585 {
1586 	/* if the URB was cancelled due to timeout, report timeout to the user */
1587 	if (transfer->flags & USBI_TRANSFER_TIMED_OUT) {
1588 		usbi_dbg("detected timeout cancellation");
1589 		return usbi_handle_transfer_completion(transfer, LIBUSB_TRANSFER_TIMED_OUT);
1590 	}
1591 
1592 	/* otherwise its a normal async cancel */
1593 	return usbi_handle_transfer_completion(transfer, LIBUSB_TRANSFER_CANCELLED);
1594 }
1595 
1596 /** \ingroup poll
1597  * Attempt to acquire the event handling lock. This lock is used to ensure that
1598  * only one thread is monitoring libusb event sources at any one time.
1599  *
1600  * You only need to use this lock if you are developing an application
1601  * which calls poll() or select() on libusb's file descriptors directly.
1602  * If you stick to libusb's event handling loop functions (e.g.
1603  * libusb_handle_events()) then you do not need to be concerned with this
1604  * locking.
1605  *
1606  * While holding this lock, you are trusted to actually be handling events.
1607  * If you are no longer handling events, you must call libusb_unlock_events()
1608  * as soon as possible.
1609  *
1610  * \param ctx the context to operate on, or NULL for the default context
1611  * \returns 0 if the lock was obtained successfully
1612  * \returns 1 if the lock was not obtained (i.e. another thread holds the lock)
1613  * \see \ref mtasync
1614  */
libusb_try_lock_events(libusb_context * ctx)1615 int API_EXPORTED libusb_try_lock_events(libusb_context *ctx)
1616 {
1617 	int r;
1618 	USBI_GET_CONTEXT(ctx);
1619 
1620 	/* is someone else waiting to modify poll fds? if so, don't let this thread
1621 	 * start event handling */
1622 	usbi_mutex_lock(&ctx->pollfd_modify_lock);
1623 	r = ctx->pollfd_modify;
1624 	usbi_mutex_unlock(&ctx->pollfd_modify_lock);
1625 	if (r) {
1626 		usbi_dbg("someone else is modifying poll fds");
1627 		return 1;
1628 	}
1629 
1630 	r = usbi_mutex_trylock(&ctx->events_lock);
1631 	if (r)
1632 		return 1;
1633 
1634 	ctx->event_handler_active = 1;
1635 	return 0;
1636 }
1637 
1638 /** \ingroup poll
1639  * Acquire the event handling lock, blocking until successful acquisition if
1640  * it is contended. This lock is used to ensure that only one thread is
1641  * monitoring libusb event sources at any one time.
1642  *
1643  * You only need to use this lock if you are developing an application
1644  * which calls poll() or select() on libusb's file descriptors directly.
1645  * If you stick to libusb's event handling loop functions (e.g.
1646  * libusb_handle_events()) then you do not need to be concerned with this
1647  * locking.
1648  *
1649  * While holding this lock, you are trusted to actually be handling events.
1650  * If you are no longer handling events, you must call libusb_unlock_events()
1651  * as soon as possible.
1652  *
1653  * \param ctx the context to operate on, or NULL for the default context
1654  * \see \ref mtasync
1655  */
libusb_lock_events(libusb_context * ctx)1656 void API_EXPORTED libusb_lock_events(libusb_context *ctx)
1657 {
1658 	USBI_GET_CONTEXT(ctx);
1659 	usbi_mutex_lock(&ctx->events_lock);
1660 	ctx->event_handler_active = 1;
1661 }
1662 
1663 /** \ingroup poll
1664  * Release the lock previously acquired with libusb_try_lock_events() or
1665  * libusb_lock_events(). Releasing this lock will wake up any threads blocked
1666  * on libusb_wait_for_event().
1667  *
1668  * \param ctx the context to operate on, or NULL for the default context
1669  * \see \ref mtasync
1670  */
libusb_unlock_events(libusb_context * ctx)1671 void API_EXPORTED libusb_unlock_events(libusb_context *ctx)
1672 {
1673 	USBI_GET_CONTEXT(ctx);
1674 	ctx->event_handler_active = 0;
1675 	usbi_mutex_unlock(&ctx->events_lock);
1676 
1677 	/* FIXME: perhaps we should be a bit more efficient by not broadcasting
1678 	 * the availability of the events lock when we are modifying pollfds
1679 	 * (check ctx->pollfd_modify)? */
1680 	usbi_mutex_lock(&ctx->event_waiters_lock);
1681 	usbi_cond_broadcast(&ctx->event_waiters_cond);
1682 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1683 }
1684 
1685 /** \ingroup poll
1686  * Determine if it is still OK for this thread to be doing event handling.
1687  *
1688  * Sometimes, libusb needs to temporarily pause all event handlers, and this
1689  * is the function you should use before polling file descriptors to see if
1690  * this is the case.
1691  *
1692  * If this function instructs your thread to give up the events lock, you
1693  * should just continue the usual logic that is documented in \ref mtasync.
1694  * On the next iteration, your thread will fail to obtain the events lock,
1695  * and will hence become an event waiter.
1696  *
1697  * This function should be called while the events lock is held: you don't
1698  * need to worry about the results of this function if your thread is not
1699  * the current event handler.
1700  *
1701  * \param ctx the context to operate on, or NULL for the default context
1702  * \returns 1 if event handling can start or continue
1703  * \returns 0 if this thread must give up the events lock
1704  * \see \ref fullstory "Multi-threaded I/O: the full story"
1705  */
libusb_event_handling_ok(libusb_context * ctx)1706 int API_EXPORTED libusb_event_handling_ok(libusb_context *ctx)
1707 {
1708 	int r;
1709 	USBI_GET_CONTEXT(ctx);
1710 
1711 	/* is someone else waiting to modify poll fds? if so, don't let this thread
1712 	 * continue event handling */
1713 	usbi_mutex_lock(&ctx->pollfd_modify_lock);
1714 	r = ctx->pollfd_modify;
1715 	usbi_mutex_unlock(&ctx->pollfd_modify_lock);
1716 	if (r) {
1717 		usbi_dbg("someone else is modifying poll fds");
1718 		return 0;
1719 	}
1720 
1721 	return 1;
1722 }
1723 
1724 
1725 /** \ingroup poll
1726  * Determine if an active thread is handling events (i.e. if anyone is holding
1727  * the event handling lock).
1728  *
1729  * \param ctx the context to operate on, or NULL for the default context
1730  * \returns 1 if a thread is handling events
1731  * \returns 0 if there are no threads currently handling events
1732  * \see \ref mtasync
1733  */
libusb_event_handler_active(libusb_context * ctx)1734 int API_EXPORTED libusb_event_handler_active(libusb_context *ctx)
1735 {
1736 	int r;
1737 	USBI_GET_CONTEXT(ctx);
1738 
1739 	/* is someone else waiting to modify poll fds? if so, don't let this thread
1740 	 * start event handling -- indicate that event handling is happening */
1741 	usbi_mutex_lock(&ctx->pollfd_modify_lock);
1742 	r = ctx->pollfd_modify;
1743 	usbi_mutex_unlock(&ctx->pollfd_modify_lock);
1744 	if (r) {
1745 		usbi_dbg("someone else is modifying poll fds");
1746 		return 1;
1747 	}
1748 
1749 	return ctx->event_handler_active;
1750 }
1751 
1752 /** \ingroup poll
1753  * Acquire the event waiters lock. This lock is designed to be obtained under
1754  * the situation where you want to be aware when events are completed, but
1755  * some other thread is event handling so calling libusb_handle_events() is not
1756  * allowed.
1757  *
1758  * You then obtain this lock, re-check that another thread is still handling
1759  * events, then call libusb_wait_for_event().
1760  *
1761  * You only need to use this lock if you are developing an application
1762  * which calls poll() or select() on libusb's file descriptors directly,
1763  * <b>and</b> may potentially be handling events from 2 threads simultaenously.
1764  * If you stick to libusb's event handling loop functions (e.g.
1765  * libusb_handle_events()) then you do not need to be concerned with this
1766  * locking.
1767  *
1768  * \param ctx the context to operate on, or NULL for the default context
1769  * \see \ref mtasync
1770  */
libusb_lock_event_waiters(libusb_context * ctx)1771 void API_EXPORTED libusb_lock_event_waiters(libusb_context *ctx)
1772 {
1773 	USBI_GET_CONTEXT(ctx);
1774 	usbi_mutex_lock(&ctx->event_waiters_lock);
1775 }
1776 
1777 /** \ingroup poll
1778  * Release the event waiters lock.
1779  * \param ctx the context to operate on, or NULL for the default context
1780  * \see \ref mtasync
1781  */
libusb_unlock_event_waiters(libusb_context * ctx)1782 void API_EXPORTED libusb_unlock_event_waiters(libusb_context *ctx)
1783 {
1784 	USBI_GET_CONTEXT(ctx);
1785 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1786 }
1787 
1788 /** \ingroup poll
1789  * Wait for another thread to signal completion of an event. Must be called
1790  * with the event waiters lock held, see libusb_lock_event_waiters().
1791  *
1792  * This function will block until any of the following conditions are met:
1793  * -# The timeout expires
1794  * -# A transfer completes
1795  * -# A thread releases the event handling lock through libusb_unlock_events()
1796  *
1797  * Condition 1 is obvious. Condition 2 unblocks your thread <em>after</em>
1798  * the callback for the transfer has completed. Condition 3 is important
1799  * because it means that the thread that was previously handling events is no
1800  * longer doing so, so if any events are to complete, another thread needs to
1801  * step up and start event handling.
1802  *
1803  * This function releases the event waiters lock before putting your thread
1804  * to sleep, and reacquires the lock as it is being woken up.
1805  *
1806  * \param ctx the context to operate on, or NULL for the default context
1807  * \param tv maximum timeout for this blocking function. A NULL value
1808  * indicates unlimited timeout.
1809  * \returns 0 after a transfer completes or another thread stops event handling
1810  * \returns 1 if the timeout expired
1811  * \see \ref mtasync
1812  */
libusb_wait_for_event(libusb_context * ctx,struct timeval * tv)1813 int API_EXPORTED libusb_wait_for_event(libusb_context *ctx, struct timeval *tv)
1814 {
1815 	struct timespec timeout;
1816 	int r;
1817 
1818 	USBI_GET_CONTEXT(ctx);
1819 	if (tv == NULL) {
1820 		usbi_cond_wait(&ctx->event_waiters_cond, &ctx->event_waiters_lock);
1821 		return 0;
1822 	}
1823 
1824 	r = usbi_backend->clock_gettime(USBI_CLOCK_REALTIME, &timeout);
1825 	if (r < 0) {
1826 		usbi_err(ctx, "failed to read realtime clock, error %d", errno);
1827 		return LIBUSB_ERROR_OTHER;
1828 	}
1829 
1830 	timeout.tv_sec += tv->tv_sec;
1831 	timeout.tv_nsec += tv->tv_usec * 1000;
1832 	if (timeout.tv_nsec > 1000000000) {
1833 		timeout.tv_nsec -= 1000000000;
1834 		timeout.tv_sec++;
1835 	}
1836 
1837 	r = usbi_cond_timedwait(&ctx->event_waiters_cond,
1838 		&ctx->event_waiters_lock, &timeout);
1839 	return (r == ETIMEDOUT);
1840 }
1841 
handle_timeout(struct usbi_transfer * itransfer)1842 static void handle_timeout(struct usbi_transfer *itransfer)
1843 {
1844 	struct libusb_transfer *transfer =
1845 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1846 	int r;
1847 
1848 	itransfer->flags |= USBI_TRANSFER_TIMED_OUT;
1849 	r = libusb_cancel_transfer(transfer);
1850 	if (r < 0)
1851 		usbi_warn(TRANSFER_CTX(transfer),
1852 			"async cancel failed %d errno=%d", r, errno);
1853 }
1854 
handle_timeouts_locked(struct libusb_context * ctx)1855 static int handle_timeouts_locked(struct libusb_context *ctx)
1856 {
1857 	int r;
1858 	struct timespec systime_ts;
1859 	struct timeval systime;
1860 	struct usbi_transfer *transfer;
1861 
1862 	if (list_empty(&ctx->flying_transfers))
1863 		return 0;
1864 
1865 	/* get current time */
1866 	r = usbi_backend->clock_gettime(USBI_CLOCK_MONOTONIC, &systime_ts);
1867 	if (r < 0)
1868 		return r;
1869 
1870 	TIMESPEC_TO_TIMEVAL(&systime, &systime_ts);
1871 
1872 	/* iterate through flying transfers list, finding all transfers that
1873 	 * have expired timeouts */
1874 	list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
1875 		struct timeval *cur_tv = &transfer->timeout;
1876 
1877 		/* if we've reached transfers of infinite timeout, we're all done */
1878 		if (!timerisset(cur_tv))
1879 			return 0;
1880 
1881 		/* ignore timeouts we've already handled */
1882 		if (transfer->flags & (USBI_TRANSFER_TIMED_OUT | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
1883 			continue;
1884 
1885 		/* if transfer has non-expired timeout, nothing more to do */
1886 		if ((cur_tv->tv_sec > systime.tv_sec) ||
1887 				(cur_tv->tv_sec == systime.tv_sec &&
1888 					cur_tv->tv_usec > systime.tv_usec))
1889 			return 0;
1890 
1891 		/* otherwise, we've got an expired timeout to handle */
1892 		handle_timeout(transfer);
1893 	}
1894 	return 0;
1895 }
1896 
handle_timeouts(struct libusb_context * ctx)1897 static int handle_timeouts(struct libusb_context *ctx)
1898 {
1899 	int r;
1900 	USBI_GET_CONTEXT(ctx);
1901 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1902 	r = handle_timeouts_locked(ctx);
1903 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1904 	return r;
1905 }
1906 
1907 #ifdef USBI_TIMERFD_AVAILABLE
handle_timerfd_trigger(struct libusb_context * ctx)1908 static int handle_timerfd_trigger(struct libusb_context *ctx)
1909 {
1910 	int r;
1911 
1912 	r = disarm_timerfd(ctx);
1913 	if (r < 0)
1914 		return r;
1915 
1916 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1917 
1918 	/* process the timeout that just happened */
1919 	r = handle_timeouts_locked(ctx);
1920 	if (r < 0)
1921 		goto out;
1922 
1923 	/* arm for next timeout*/
1924 	r = arm_timerfd_for_next_timeout(ctx);
1925 
1926 out:
1927 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1928 	return r;
1929 }
1930 #endif
1931 
1932 /* do the actual event handling. assumes that no other thread is concurrently
1933  * doing the same thing. */
handle_events(struct libusb_context * ctx,struct timeval * tv)1934 static int handle_events(struct libusb_context *ctx, struct timeval *tv)
1935 {
1936 	int r;
1937 	struct usbi_pollfd *ipollfd;
1938 	POLL_NFDS_TYPE nfds = 0;
1939 	struct pollfd *fds;
1940 	int i = -1;
1941 	int timeout_ms;
1942 
1943 	usbi_mutex_lock(&ctx->pollfds_lock);
1944 	list_for_each_entry(ipollfd, &ctx->pollfds, list, struct usbi_pollfd)
1945 		nfds++;
1946 
1947 	/* TODO: malloc when number of fd's changes, not on every poll */
1948 	fds = malloc(sizeof(*fds) * nfds);
1949 	if (!fds) {
1950 		usbi_mutex_unlock(&ctx->pollfds_lock);
1951 		return LIBUSB_ERROR_NO_MEM;
1952 	}
1953 
1954 	list_for_each_entry(ipollfd, &ctx->pollfds, list, struct usbi_pollfd) {
1955 		struct libusb_pollfd *pollfd = &ipollfd->pollfd;
1956 		int fd = pollfd->fd;
1957 		i++;
1958 		fds[i].fd = fd;
1959 		fds[i].events = pollfd->events;
1960 		fds[i].revents = 0;
1961 	}
1962 	usbi_mutex_unlock(&ctx->pollfds_lock);
1963 
1964 	timeout_ms = (tv->tv_sec * 1000) + (tv->tv_usec / 1000);
1965 
1966 	/* round up to next millisecond */
1967 	if (tv->tv_usec % 1000)
1968 		timeout_ms++;
1969 
1970 	usbi_dbg("poll() %d fds with timeout in %dms", nfds, timeout_ms);
1971 	r = usbi_poll(fds, nfds, timeout_ms);
1972 	usbi_dbg("poll() returned %d", r);
1973 	if (r == 0) {
1974 		free(fds);
1975 		return handle_timeouts(ctx);
1976 	} else if (r == -1 && errno == EINTR) {
1977 		free(fds);
1978 		return LIBUSB_ERROR_INTERRUPTED;
1979 	} else if (r < 0) {
1980 		free(fds);
1981 		usbi_err(ctx, "poll failed %d err=%d\n", r, errno);
1982 		return LIBUSB_ERROR_IO;
1983 	}
1984 
1985 	/* fd[0] is always the ctrl pipe */
1986 	if (fds[0].revents) {
1987 		/* another thread wanted to interrupt event handling, and it succeeded!
1988 		 * handle any other events that cropped up at the same time, and
1989 		 * simply return */
1990 		usbi_dbg("caught a fish on the control pipe");
1991 
1992 		if (r == 1) {
1993 			r = 0;
1994 			goto handled;
1995 		} else {
1996 			/* prevent OS backend from trying to handle events on ctrl pipe */
1997 			fds[0].revents = 0;
1998 			r--;
1999 		}
2000 	}
2001 
2002 #ifdef USBI_TIMERFD_AVAILABLE
2003 	/* on timerfd configurations, fds[1] is the timerfd */
2004 	if (usbi_using_timerfd(ctx) && fds[1].revents) {
2005 		/* timerfd indicates that a timeout has expired */
2006 		int ret;
2007 		usbi_dbg("timerfd triggered");
2008 
2009 		ret = handle_timerfd_trigger(ctx);
2010 		if (ret < 0) {
2011 			/* return error code */
2012 			r = ret;
2013 			goto handled;
2014 		} else if (r == 1) {
2015 			/* no more active file descriptors, nothing more to do */
2016 			r = 0;
2017 			goto handled;
2018 		} else {
2019 			/* more events pending...
2020 			 * prevent OS backend from trying to handle events on timerfd */
2021 			fds[1].revents = 0;
2022 			r--;
2023 		}
2024 	}
2025 #endif
2026 
2027 	r = usbi_backend->handle_events(ctx, fds, nfds, r);
2028 	if (r)
2029 		usbi_err(ctx, "backend handle_events failed with error %d", r);
2030 
2031 handled:
2032 	free(fds);
2033 	return r;
2034 }
2035 
2036 /* returns the smallest of:
2037  *  1. timeout of next URB
2038  *  2. user-supplied timeout
2039  * returns 1 if there is an already-expired timeout, otherwise returns 0
2040  * and populates out
2041  */
get_next_timeout(libusb_context * ctx,struct timeval * tv,struct timeval * out)2042 static int get_next_timeout(libusb_context *ctx, struct timeval *tv,
2043 	struct timeval *out)
2044 {
2045 	struct timeval timeout;
2046 	int r = libusb_get_next_timeout(ctx, &timeout);
2047 	if (r) {
2048 		/* timeout already expired? */
2049 		if (!timerisset(&timeout))
2050 			return 1;
2051 
2052 		/* choose the smallest of next URB timeout or user specified timeout */
2053 		if (timercmp(&timeout, tv, <))
2054 			*out = timeout;
2055 		else
2056 			*out = *tv;
2057 	} else {
2058 		*out = *tv;
2059 	}
2060 	return 0;
2061 }
2062 
2063 /** \ingroup poll
2064  * Handle any pending events.
2065  *
2066  * libusb determines "pending events" by checking if any timeouts have expired
2067  * and by checking the set of file descriptors for activity.
2068  *
2069  * If a zero timeval is passed, this function will handle any already-pending
2070  * events and then immediately return in non-blocking style.
2071  *
2072  * If a non-zero timeval is passed and no events are currently pending, this
2073  * function will block waiting for events to handle up until the specified
2074  * timeout. If an event arrives or a signal is raised, this function will
2075  * return early.
2076  *
2077  * If the parameter completed is not NULL then <em>after obtaining the event
2078  * handling lock</em> this function will return immediately if the integer
2079  * pointed to is not 0. This allows for race free waiting for the completion
2080  * of a specific transfer.
2081  *
2082  * \param ctx the context to operate on, or NULL for the default context
2083  * \param tv the maximum time to block waiting for events, or an all zero
2084  * timeval struct for non-blocking mode
2085  * \param completed pointer to completion integer to check, or NULL
2086  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2087  * \see \ref mtasync
2088  */
libusb_handle_events_timeout_completed(libusb_context * ctx,struct timeval * tv,int * completed)2089 int API_EXPORTED libusb_handle_events_timeout_completed(libusb_context *ctx,
2090 	struct timeval *tv, int *completed)
2091 {
2092 	int r;
2093 	struct timeval poll_timeout;
2094 
2095 	USBI_GET_CONTEXT(ctx);
2096 	r = get_next_timeout(ctx, tv, &poll_timeout);
2097 	if (r) {
2098 		/* timeout already expired */
2099 		return handle_timeouts(ctx);
2100 	}
2101 
2102 retry:
2103 	if (libusb_try_lock_events(ctx) == 0) {
2104 		if (completed == NULL || !*completed) {
2105 			/* we obtained the event lock: do our own event handling */
2106 			usbi_dbg("doing our own event handling");
2107 			r = handle_events(ctx, &poll_timeout);
2108 		}
2109 		libusb_unlock_events(ctx);
2110 		return r;
2111 	}
2112 
2113 	/* another thread is doing event handling. wait for thread events that
2114 	 * notify event completion. */
2115 	libusb_lock_event_waiters(ctx);
2116 
2117 	if (completed && *completed)
2118 		goto already_done;
2119 
2120 	if (!libusb_event_handler_active(ctx)) {
2121 		/* we hit a race: whoever was event handling earlier finished in the
2122 		 * time it took us to reach this point. try the cycle again. */
2123 		libusb_unlock_event_waiters(ctx);
2124 		usbi_dbg("event handler was active but went away, retrying");
2125 		goto retry;
2126 	}
2127 
2128 	usbi_dbg("another thread is doing event handling");
2129 	r = libusb_wait_for_event(ctx, &poll_timeout);
2130 
2131 already_done:
2132 	libusb_unlock_event_waiters(ctx);
2133 
2134 	if (r < 0)
2135 		return r;
2136 	else if (r == 1)
2137 		return handle_timeouts(ctx);
2138 	else
2139 		return 0;
2140 }
2141 
2142 /** \ingroup poll
2143  * Handle any pending events
2144  *
2145  * Like libusb_handle_events_timeout_completed(), but without the completed
2146  * parameter, calling this function is equivalent to calling
2147  * libusb_handle_events_timeout_completed() with a NULL completed parameter.
2148  *
2149  * This function is kept primarily for backwards compatibility.
2150  * All new code should call libusb_handle_events_completed() or
2151  * libusb_handle_events_timeout_completed() to avoid race conditions.
2152  *
2153  * \param ctx the context to operate on, or NULL for the default context
2154  * \param tv the maximum time to block waiting for events, or an all zero
2155  * timeval struct for non-blocking mode
2156  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2157  */
libusb_handle_events_timeout(libusb_context * ctx,struct timeval * tv)2158 int API_EXPORTED libusb_handle_events_timeout(libusb_context *ctx,
2159 	struct timeval *tv)
2160 {
2161 	return libusb_handle_events_timeout_completed(ctx, tv, NULL);
2162 }
2163 
2164 /** \ingroup poll
2165  * Handle any pending events in blocking mode. There is currently a timeout
2166  * hardcoded at 60 seconds but we plan to make it unlimited in future. For
2167  * finer control over whether this function is blocking or non-blocking, or
2168  * for control over the timeout, use libusb_handle_events_timeout_completed()
2169  * instead.
2170  *
2171  * This function is kept primarily for backwards compatibility.
2172  * All new code should call libusb_handle_events_completed() or
2173  * libusb_handle_events_timeout_completed() to avoid race conditions.
2174  *
2175  * \param ctx the context to operate on, or NULL for the default context
2176  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2177  */
libusb_handle_events(libusb_context * ctx)2178 int API_EXPORTED libusb_handle_events(libusb_context *ctx)
2179 {
2180 	struct timeval tv;
2181 	tv.tv_sec = 60;
2182 	tv.tv_usec = 0;
2183 	return libusb_handle_events_timeout_completed(ctx, &tv, NULL);
2184 }
2185 
2186 /** \ingroup poll
2187  * Handle any pending events in blocking mode.
2188  *
2189  * Like libusb_handle_events(), with the addition of a completed parameter
2190  * to allow for race free waiting for the completion of a specific transfer.
2191  *
2192  * See libusb_handle_events_timeout_completed() for details on the completed
2193  * parameter.
2194  *
2195  * \param ctx the context to operate on, or NULL for the default context
2196  * \param completed pointer to completion integer to check, or NULL
2197  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2198  * \see \ref mtasync
2199  */
libusb_handle_events_completed(libusb_context * ctx,int * completed)2200 int API_EXPORTED libusb_handle_events_completed(libusb_context *ctx,
2201 	int *completed)
2202 {
2203 	struct timeval tv;
2204 	tv.tv_sec = 60;
2205 	tv.tv_usec = 0;
2206 	return libusb_handle_events_timeout_completed(ctx, &tv, completed);
2207 }
2208 
2209 /** \ingroup poll
2210  * Handle any pending events by polling file descriptors, without checking if
2211  * any other threads are already doing so. Must be called with the event lock
2212  * held, see libusb_lock_events().
2213  *
2214  * This function is designed to be called under the situation where you have
2215  * taken the event lock and are calling poll()/select() directly on libusb's
2216  * file descriptors (as opposed to using libusb_handle_events() or similar).
2217  * You detect events on libusb's descriptors, so you then call this function
2218  * with a zero timeout value (while still holding the event lock).
2219  *
2220  * \param ctx the context to operate on, or NULL for the default context
2221  * \param tv the maximum time to block waiting for events, or zero for
2222  * non-blocking mode
2223  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2224  * \see \ref mtasync
2225  */
libusb_handle_events_locked(libusb_context * ctx,struct timeval * tv)2226 int API_EXPORTED libusb_handle_events_locked(libusb_context *ctx,
2227 	struct timeval *tv)
2228 {
2229 	int r;
2230 	struct timeval poll_timeout;
2231 
2232 	USBI_GET_CONTEXT(ctx);
2233 	r = get_next_timeout(ctx, tv, &poll_timeout);
2234 	if (r) {
2235 		/* timeout already expired */
2236 		return handle_timeouts(ctx);
2237 	}
2238 
2239 	return handle_events(ctx, &poll_timeout);
2240 }
2241 
2242 /** \ingroup poll
2243  * Determines whether your application must apply special timing considerations
2244  * when monitoring libusb's file descriptors.
2245  *
2246  * This function is only useful for applications which retrieve and poll
2247  * libusb's file descriptors in their own main loop (\ref pollmain).
2248  *
2249  * Ordinarily, libusb's event handler needs to be called into at specific
2250  * moments in time (in addition to times when there is activity on the file
2251  * descriptor set). The usual approach is to use libusb_get_next_timeout()
2252  * to learn about when the next timeout occurs, and to adjust your
2253  * poll()/select() timeout accordingly so that you can make a call into the
2254  * library at that time.
2255  *
2256  * Some platforms supported by libusb do not come with this baggage - any
2257  * events relevant to timing will be represented by activity on the file
2258  * descriptor set, and libusb_get_next_timeout() will always return 0.
2259  * This function allows you to detect whether you are running on such a
2260  * platform.
2261  *
2262  * Since v1.0.5.
2263  *
2264  * \param ctx the context to operate on, or NULL for the default context
2265  * \returns 0 if you must call into libusb at times determined by
2266  * libusb_get_next_timeout(), or 1 if all timeout events are handled internally
2267  * or through regular activity on the file descriptors.
2268  * \see \ref pollmain "Polling libusb file descriptors for event handling"
2269  */
libusb_pollfds_handle_timeouts(libusb_context * ctx)2270 int API_EXPORTED libusb_pollfds_handle_timeouts(libusb_context *ctx)
2271 {
2272 #if defined(USBI_TIMERFD_AVAILABLE)
2273 	USBI_GET_CONTEXT(ctx);
2274 	return usbi_using_timerfd(ctx);
2275 #else
2276 	(void)ctx;
2277 	return 0;
2278 #endif
2279 }
2280 
2281 /** \ingroup poll
2282  * Determine the next internal timeout that libusb needs to handle. You only
2283  * need to use this function if you are calling poll() or select() or similar
2284  * on libusb's file descriptors yourself - you do not need to use it if you
2285  * are calling libusb_handle_events() or a variant directly.
2286  *
2287  * You should call this function in your main loop in order to determine how
2288  * long to wait for select() or poll() to return results. libusb needs to be
2289  * called into at this timeout, so you should use it as an upper bound on
2290  * your select() or poll() call.
2291  *
2292  * When the timeout has expired, call into libusb_handle_events_timeout()
2293  * (perhaps in non-blocking mode) so that libusb can handle the timeout.
2294  *
2295  * This function may return 1 (success) and an all-zero timeval. If this is
2296  * the case, it indicates that libusb has a timeout that has already expired
2297  * so you should call libusb_handle_events_timeout() or similar immediately.
2298  * A return code of 0 indicates that there are no pending timeouts.
2299  *
2300  * On some platforms, this function will always returns 0 (no pending
2301  * timeouts). See \ref polltime.
2302  *
2303  * \param ctx the context to operate on, or NULL for the default context
2304  * \param tv output location for a relative time against the current
2305  * clock in which libusb must be called into in order to process timeout events
2306  * \returns 0 if there are no pending timeouts, 1 if a timeout was returned,
2307  * or LIBUSB_ERROR_OTHER on failure
2308  */
libusb_get_next_timeout(libusb_context * ctx,struct timeval * tv)2309 int API_EXPORTED libusb_get_next_timeout(libusb_context *ctx,
2310 	struct timeval *tv)
2311 {
2312 	struct usbi_transfer *transfer;
2313 	struct timespec cur_ts;
2314 	struct timeval cur_tv;
2315 	struct timeval *next_timeout;
2316 	int r;
2317 	int found = 0;
2318 
2319 	USBI_GET_CONTEXT(ctx);
2320 	if (usbi_using_timerfd(ctx))
2321 		return 0;
2322 
2323 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2324 	if (list_empty(&ctx->flying_transfers)) {
2325 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
2326 		usbi_dbg("no URBs, no timeout!");
2327 		return 0;
2328 	}
2329 
2330 	/* find next transfer which hasn't already been processed as timed out */
2331 	list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
2332 		if (transfer->flags & (USBI_TRANSFER_TIMED_OUT | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
2333 			continue;
2334 
2335 		/* no timeout for this transfer? */
2336 		if (!timerisset(&transfer->timeout))
2337 			continue;
2338 
2339 		found = 1;
2340 		break;
2341 	}
2342 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2343 
2344 	if (!found) {
2345 		usbi_dbg("no URB with timeout or all handled by OS; no timeout!");
2346 		return 0;
2347 	}
2348 
2349 	next_timeout = &transfer->timeout;
2350 
2351 	r = usbi_backend->clock_gettime(USBI_CLOCK_MONOTONIC, &cur_ts);
2352 	if (r < 0) {
2353 		usbi_err(ctx, "failed to read monotonic clock, errno=%d", errno);
2354 		return LIBUSB_ERROR_OTHER;
2355 	}
2356 	TIMESPEC_TO_TIMEVAL(&cur_tv, &cur_ts);
2357 
2358 	if (!timercmp(&cur_tv, next_timeout, <)) {
2359 		usbi_dbg("first timeout already expired");
2360 		timerclear(tv);
2361 	} else {
2362 		timersub(next_timeout, &cur_tv, tv);
2363 		usbi_dbg("next timeout in %d.%06ds", tv->tv_sec, tv->tv_usec);
2364 	}
2365 
2366 	return 1;
2367 }
2368 
2369 /** \ingroup poll
2370  * Register notification functions for file descriptor additions/removals.
2371  * These functions will be invoked for every new or removed file descriptor
2372  * that libusb uses as an event source.
2373  *
2374  * To remove notifiers, pass NULL values for the function pointers.
2375  *
2376  * Note that file descriptors may have been added even before you register
2377  * these notifiers (e.g. at libusb_init() time).
2378  *
2379  * Additionally, note that the removal notifier may be called during
2380  * libusb_exit() (e.g. when it is closing file descriptors that were opened
2381  * and added to the poll set at libusb_init() time). If you don't want this,
2382  * remove the notifiers immediately before calling libusb_exit().
2383  *
2384  * \param ctx the context to operate on, or NULL for the default context
2385  * \param added_cb pointer to function for addition notifications
2386  * \param removed_cb pointer to function for removal notifications
2387  * \param user_data User data to be passed back to callbacks (useful for
2388  * passing context information)
2389  */
libusb_set_pollfd_notifiers(libusb_context * ctx,libusb_pollfd_added_cb added_cb,libusb_pollfd_removed_cb removed_cb,void * user_data)2390 void API_EXPORTED libusb_set_pollfd_notifiers(libusb_context *ctx,
2391 	libusb_pollfd_added_cb added_cb, libusb_pollfd_removed_cb removed_cb,
2392 	void *user_data)
2393 {
2394 	USBI_GET_CONTEXT(ctx);
2395 	ctx->fd_added_cb = added_cb;
2396 	ctx->fd_removed_cb = removed_cb;
2397 	ctx->fd_cb_user_data = user_data;
2398 }
2399 
2400 /* Add a file descriptor to the list of file descriptors to be monitored.
2401  * events should be specified as a bitmask of events passed to poll(), e.g.
2402  * POLLIN and/or POLLOUT. */
usbi_add_pollfd(struct libusb_context * ctx,int fd,short events)2403 int usbi_add_pollfd(struct libusb_context *ctx, int fd, short events)
2404 {
2405 	struct usbi_pollfd *ipollfd = malloc(sizeof(*ipollfd));
2406 	if (!ipollfd)
2407 		return LIBUSB_ERROR_NO_MEM;
2408 
2409 	usbi_dbg("add fd %d events %d", fd, events);
2410 	ipollfd->pollfd.fd = fd;
2411 	ipollfd->pollfd.events = events;
2412 	usbi_mutex_lock(&ctx->pollfds_lock);
2413 	list_add_tail(&ipollfd->list, &ctx->pollfds);
2414 	usbi_mutex_unlock(&ctx->pollfds_lock);
2415 
2416 	if (ctx->fd_added_cb)
2417 		ctx->fd_added_cb(fd, events, ctx->fd_cb_user_data);
2418 	return 0;
2419 }
2420 
2421 /* Remove a file descriptor from the list of file descriptors to be polled. */
usbi_remove_pollfd(struct libusb_context * ctx,int fd)2422 void usbi_remove_pollfd(struct libusb_context *ctx, int fd)
2423 {
2424 	struct usbi_pollfd *ipollfd;
2425 	int found = 0;
2426 
2427 	usbi_dbg("remove fd %d", fd);
2428 	usbi_mutex_lock(&ctx->pollfds_lock);
2429 	list_for_each_entry(ipollfd, &ctx->pollfds, list, struct usbi_pollfd)
2430 		if (ipollfd->pollfd.fd == fd) {
2431 			found = 1;
2432 			break;
2433 		}
2434 
2435 	if (!found) {
2436 		usbi_dbg("couldn't find fd %d to remove", fd);
2437 		usbi_mutex_unlock(&ctx->pollfds_lock);
2438 		return;
2439 	}
2440 
2441 	list_del(&ipollfd->list);
2442 	usbi_mutex_unlock(&ctx->pollfds_lock);
2443 	free(ipollfd);
2444 	if (ctx->fd_removed_cb)
2445 		ctx->fd_removed_cb(fd, ctx->fd_cb_user_data);
2446 }
2447 
2448 /** \ingroup poll
2449  * Retrieve a list of file descriptors that should be polled by your main loop
2450  * as libusb event sources.
2451  *
2452  * The returned list is NULL-terminated and should be freed with free() when
2453  * done. The actual list contents must not be touched.
2454  *
2455  * As file descriptors are a Unix-specific concept, this function is not
2456  * available on Windows and will always return NULL.
2457  *
2458  * \param ctx the context to operate on, or NULL for the default context
2459  * \returns a NULL-terminated list of libusb_pollfd structures
2460  * \returns NULL on error
2461  * \returns NULL on platforms where the functionality is not available
2462  */
2463 DEFAULT_VISIBILITY
libusb_get_pollfds(libusb_context * ctx)2464 const struct libusb_pollfd ** LIBUSB_CALL libusb_get_pollfds(
2465 	libusb_context *ctx)
2466 {
2467 #ifndef OS_WINDOWS
2468 	struct libusb_pollfd **ret = NULL;
2469 	struct usbi_pollfd *ipollfd;
2470 	size_t i = 0;
2471 	size_t cnt = 0;
2472 	USBI_GET_CONTEXT(ctx);
2473 
2474 	usbi_mutex_lock(&ctx->pollfds_lock);
2475 	list_for_each_entry(ipollfd, &ctx->pollfds, list, struct usbi_pollfd)
2476 		cnt++;
2477 
2478 	ret = calloc(cnt + 1, sizeof(struct libusb_pollfd *));
2479 	if (!ret)
2480 		goto out;
2481 
2482 	list_for_each_entry(ipollfd, &ctx->pollfds, list, struct usbi_pollfd)
2483 		ret[i++] = (struct libusb_pollfd *) ipollfd;
2484 	ret[cnt] = NULL;
2485 
2486 out:
2487 	usbi_mutex_unlock(&ctx->pollfds_lock);
2488 	return (const struct libusb_pollfd **) ret;
2489 #else
2490 	usbi_err(ctx, "external polling of libusb's internal descriptors "\
2491 		"is not yet supported on Windows platforms");
2492 	return NULL;
2493 #endif
2494 }
2495 
2496 /* Backends call this from handle_events to report disconnection of a device.
2497  * The transfers get cancelled appropriately.
2498  */
usbi_handle_disconnect(struct libusb_device_handle * handle)2499 void usbi_handle_disconnect(struct libusb_device_handle *handle)
2500 {
2501 	struct usbi_transfer *cur;
2502 	struct usbi_transfer *to_cancel;
2503 
2504 	usbi_dbg("device %d.%d",
2505 		handle->dev->bus_number, handle->dev->device_address);
2506 
2507 	/* terminate all pending transfers with the LIBUSB_TRANSFER_NO_DEVICE
2508 	 * status code.
2509 	 *
2510 	 * this is a bit tricky because:
2511 	 * 1. we can't do transfer completion while holding flying_transfers_lock
2512 	 * 2. the transfers list can change underneath us - if we were to build a
2513 	 *    list of transfers to complete (while holding look), the situation
2514 	 *    might be different by the time we come to free them
2515 	 *
2516 	 * so we resort to a loop-based approach as below
2517 	 * FIXME: is this still potentially racy?
2518 	 */
2519 
2520 	while (1) {
2521 		usbi_mutex_lock(&HANDLE_CTX(handle)->flying_transfers_lock);
2522 		to_cancel = NULL;
2523 		list_for_each_entry(cur, &HANDLE_CTX(handle)->flying_transfers, list, struct usbi_transfer)
2524 			if (USBI_TRANSFER_TO_LIBUSB_TRANSFER(cur)->dev_handle == handle) {
2525 				to_cancel = cur;
2526 				break;
2527 			}
2528 		usbi_mutex_unlock(&HANDLE_CTX(handle)->flying_transfers_lock);
2529 
2530 		if (!to_cancel)
2531 			break;
2532 
2533 		usbi_backend->clear_transfer_priv(to_cancel);
2534 		usbi_handle_transfer_completion(to_cancel, LIBUSB_TRANSFER_NO_DEVICE);
2535 	}
2536 
2537 }
2538