1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions. This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19
20 #define DEBUG_TYPE "instsimplify"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/ConstantRange.h"
32 #include "llvm/Support/GetElementPtrTypeIterator.h"
33 #include "llvm/Support/PatternMatch.h"
34 #include "llvm/Support/ValueHandle.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37
38 enum { RecursionLimit = 3 };
39
40 STATISTIC(NumExpand, "Number of expansions");
41 STATISTIC(NumFactor , "Number of factorizations");
42 STATISTIC(NumReassoc, "Number of reassociations");
43
44 struct Query {
45 const DataLayout *TD;
46 const TargetLibraryInfo *TLI;
47 const DominatorTree *DT;
48
QueryQuery49 Query(const DataLayout *td, const TargetLibraryInfo *tli,
50 const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
51 };
52
53 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
55 unsigned);
56 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
57 unsigned);
58 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
60 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
61
62 /// getFalse - For a boolean type, or a vector of boolean type, return false, or
63 /// a vector with every element false, as appropriate for the type.
getFalse(Type * Ty)64 static Constant *getFalse(Type *Ty) {
65 assert(Ty->getScalarType()->isIntegerTy(1) &&
66 "Expected i1 type or a vector of i1!");
67 return Constant::getNullValue(Ty);
68 }
69
70 /// getTrue - For a boolean type, or a vector of boolean type, return true, or
71 /// a vector with every element true, as appropriate for the type.
getTrue(Type * Ty)72 static Constant *getTrue(Type *Ty) {
73 assert(Ty->getScalarType()->isIntegerTy(1) &&
74 "Expected i1 type or a vector of i1!");
75 return Constant::getAllOnesValue(Ty);
76 }
77
78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
isSameCompare(Value * V,CmpInst::Predicate Pred,Value * LHS,Value * RHS)79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80 Value *RHS) {
81 CmpInst *Cmp = dyn_cast<CmpInst>(V);
82 if (!Cmp)
83 return false;
84 CmpInst::Predicate CPred = Cmp->getPredicate();
85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87 return true;
88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89 CRHS == LHS;
90 }
91
92 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
ValueDominatesPHI(Value * V,PHINode * P,const DominatorTree * DT)93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94 Instruction *I = dyn_cast<Instruction>(V);
95 if (!I)
96 // Arguments and constants dominate all instructions.
97 return true;
98
99 // If we are processing instructions (and/or basic blocks) that have not been
100 // fully added to a function, the parent nodes may still be null. Simply
101 // return the conservative answer in these cases.
102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103 return false;
104
105 // If we have a DominatorTree then do a precise test.
106 if (DT) {
107 if (!DT->isReachableFromEntry(P->getParent()))
108 return true;
109 if (!DT->isReachableFromEntry(I->getParent()))
110 return false;
111 return DT->dominates(I, P);
112 }
113
114 // Otherwise, if the instruction is in the entry block, and is not an invoke,
115 // then it obviously dominates all phi nodes.
116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117 !isa<InvokeInst>(I))
118 return true;
119
120 return false;
121 }
122
123 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124 /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
125 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127 /// Returns the simplified value, or null if no simplification was performed.
ExpandBinOp(unsigned Opcode,Value * LHS,Value * RHS,unsigned OpcToExpand,const Query & Q,unsigned MaxRecurse)128 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
129 unsigned OpcToExpand, const Query &Q,
130 unsigned MaxRecurse) {
131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
132 // Recursion is always used, so bail out at once if we already hit the limit.
133 if (!MaxRecurse--)
134 return 0;
135
136 // Check whether the expression has the form "(A op' B) op C".
137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138 if (Op0->getOpcode() == OpcodeToExpand) {
139 // It does! Try turning it into "(A op C) op' (B op C)".
140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141 // Do "A op C" and "B op C" both simplify?
142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
144 // They do! Return "L op' R" if it simplifies or is already available.
145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147 && L == B && R == A)) {
148 ++NumExpand;
149 return LHS;
150 }
151 // Otherwise return "L op' R" if it simplifies.
152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
153 ++NumExpand;
154 return V;
155 }
156 }
157 }
158
159 // Check whether the expression has the form "A op (B op' C)".
160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161 if (Op1->getOpcode() == OpcodeToExpand) {
162 // It does! Try turning it into "(A op B) op' (A op C)".
163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164 // Do "A op B" and "A op C" both simplify?
165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
167 // They do! Return "L op' R" if it simplifies or is already available.
168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170 && L == C && R == B)) {
171 ++NumExpand;
172 return RHS;
173 }
174 // Otherwise return "L op' R" if it simplifies.
175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
176 ++NumExpand;
177 return V;
178 }
179 }
180 }
181
182 return 0;
183 }
184
185 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186 /// using the operation OpCodeToExtract. For example, when Opcode is Add and
187 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188 /// Returns the simplified value, or null if no simplification was performed.
FactorizeBinOp(unsigned Opcode,Value * LHS,Value * RHS,unsigned OpcToExtract,const Query & Q,unsigned MaxRecurse)189 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
190 unsigned OpcToExtract, const Query &Q,
191 unsigned MaxRecurse) {
192 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
193 // Recursion is always used, so bail out at once if we already hit the limit.
194 if (!MaxRecurse--)
195 return 0;
196
197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201 !Op1 || Op1->getOpcode() != OpcodeToExtract)
202 return 0;
203
204 // The expression has the form "(A op' B) op (C op' D)".
205 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
207
208 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210 // commutative case, "(A op' B) op (C op' A)"?
211 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212 Value *DD = A == C ? D : C;
213 // Form "A op' (B op DD)" if it simplifies completely.
214 // Does "B op DD" simplify?
215 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
216 // It does! Return "A op' V" if it simplifies or is already available.
217 // If V equals B then "A op' V" is just the LHS. If V equals DD then
218 // "A op' V" is just the RHS.
219 if (V == B || V == DD) {
220 ++NumFactor;
221 return V == B ? LHS : RHS;
222 }
223 // Otherwise return "A op' V" if it simplifies.
224 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
225 ++NumFactor;
226 return W;
227 }
228 }
229 }
230
231 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233 // commutative case, "(A op' B) op (B op' D)"?
234 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235 Value *CC = B == D ? C : D;
236 // Form "(A op CC) op' B" if it simplifies completely..
237 // Does "A op CC" simplify?
238 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
239 // It does! Return "V op' B" if it simplifies or is already available.
240 // If V equals A then "V op' B" is just the LHS. If V equals CC then
241 // "V op' B" is just the RHS.
242 if (V == A || V == CC) {
243 ++NumFactor;
244 return V == A ? LHS : RHS;
245 }
246 // Otherwise return "V op' B" if it simplifies.
247 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
248 ++NumFactor;
249 return W;
250 }
251 }
252 }
253
254 return 0;
255 }
256
257 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258 /// operations. Returns the simpler value, or null if none was found.
SimplifyAssociativeBinOp(unsigned Opc,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)259 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
260 const Query &Q, unsigned MaxRecurse) {
261 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
262 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264 // Recursion is always used, so bail out at once if we already hit the limit.
265 if (!MaxRecurse--)
266 return 0;
267
268 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272 if (Op0 && Op0->getOpcode() == Opcode) {
273 Value *A = Op0->getOperand(0);
274 Value *B = Op0->getOperand(1);
275 Value *C = RHS;
276
277 // Does "B op C" simplify?
278 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
279 // It does! Return "A op V" if it simplifies or is already available.
280 // If V equals B then "A op V" is just the LHS.
281 if (V == B) return LHS;
282 // Otherwise return "A op V" if it simplifies.
283 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
284 ++NumReassoc;
285 return W;
286 }
287 }
288 }
289
290 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291 if (Op1 && Op1->getOpcode() == Opcode) {
292 Value *A = LHS;
293 Value *B = Op1->getOperand(0);
294 Value *C = Op1->getOperand(1);
295
296 // Does "A op B" simplify?
297 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
298 // It does! Return "V op C" if it simplifies or is already available.
299 // If V equals B then "V op C" is just the RHS.
300 if (V == B) return RHS;
301 // Otherwise return "V op C" if it simplifies.
302 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
303 ++NumReassoc;
304 return W;
305 }
306 }
307 }
308
309 // The remaining transforms require commutativity as well as associativity.
310 if (!Instruction::isCommutative(Opcode))
311 return 0;
312
313 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314 if (Op0 && Op0->getOpcode() == Opcode) {
315 Value *A = Op0->getOperand(0);
316 Value *B = Op0->getOperand(1);
317 Value *C = RHS;
318
319 // Does "C op A" simplify?
320 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
321 // It does! Return "V op B" if it simplifies or is already available.
322 // If V equals A then "V op B" is just the LHS.
323 if (V == A) return LHS;
324 // Otherwise return "V op B" if it simplifies.
325 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
326 ++NumReassoc;
327 return W;
328 }
329 }
330 }
331
332 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333 if (Op1 && Op1->getOpcode() == Opcode) {
334 Value *A = LHS;
335 Value *B = Op1->getOperand(0);
336 Value *C = Op1->getOperand(1);
337
338 // Does "C op A" simplify?
339 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
340 // It does! Return "B op V" if it simplifies or is already available.
341 // If V equals C then "B op V" is just the RHS.
342 if (V == C) return RHS;
343 // Otherwise return "B op V" if it simplifies.
344 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
345 ++NumReassoc;
346 return W;
347 }
348 }
349 }
350
351 return 0;
352 }
353
354 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
355 /// instruction as an operand, try to simplify the binop by seeing whether
356 /// evaluating it on both branches of the select results in the same value.
357 /// Returns the common value if so, otherwise returns null.
ThreadBinOpOverSelect(unsigned Opcode,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)358 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
359 const Query &Q, unsigned MaxRecurse) {
360 // Recursion is always used, so bail out at once if we already hit the limit.
361 if (!MaxRecurse--)
362 return 0;
363
364 SelectInst *SI;
365 if (isa<SelectInst>(LHS)) {
366 SI = cast<SelectInst>(LHS);
367 } else {
368 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369 SI = cast<SelectInst>(RHS);
370 }
371
372 // Evaluate the BinOp on the true and false branches of the select.
373 Value *TV;
374 Value *FV;
375 if (SI == LHS) {
376 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
378 } else {
379 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
381 }
382
383 // If they simplified to the same value, then return the common value.
384 // If they both failed to simplify then return null.
385 if (TV == FV)
386 return TV;
387
388 // If one branch simplified to undef, return the other one.
389 if (TV && isa<UndefValue>(TV))
390 return FV;
391 if (FV && isa<UndefValue>(FV))
392 return TV;
393
394 // If applying the operation did not change the true and false select values,
395 // then the result of the binop is the select itself.
396 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
397 return SI;
398
399 // If one branch simplified and the other did not, and the simplified
400 // value is equal to the unsimplified one, return the simplified value.
401 // For example, select (cond, X, X & Z) & Z -> X & Z.
402 if ((FV && !TV) || (TV && !FV)) {
403 // Check that the simplified value has the form "X op Y" where "op" is the
404 // same as the original operation.
405 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406 if (Simplified && Simplified->getOpcode() == Opcode) {
407 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408 // We already know that "op" is the same as for the simplified value. See
409 // if the operands match too. If so, return the simplified value.
410 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
413 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414 Simplified->getOperand(1) == UnsimplifiedRHS)
415 return Simplified;
416 if (Simplified->isCommutative() &&
417 Simplified->getOperand(1) == UnsimplifiedLHS &&
418 Simplified->getOperand(0) == UnsimplifiedRHS)
419 return Simplified;
420 }
421 }
422
423 return 0;
424 }
425
426 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427 /// try to simplify the comparison by seeing whether both branches of the select
428 /// result in the same value. Returns the common value if so, otherwise returns
429 /// null.
ThreadCmpOverSelect(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)430 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
431 Value *RHS, const Query &Q,
432 unsigned MaxRecurse) {
433 // Recursion is always used, so bail out at once if we already hit the limit.
434 if (!MaxRecurse--)
435 return 0;
436
437 // Make sure the select is on the LHS.
438 if (!isa<SelectInst>(LHS)) {
439 std::swap(LHS, RHS);
440 Pred = CmpInst::getSwappedPredicate(Pred);
441 }
442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443 SelectInst *SI = cast<SelectInst>(LHS);
444 Value *Cond = SI->getCondition();
445 Value *TV = SI->getTrueValue();
446 Value *FV = SI->getFalseValue();
447
448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
449 // Does "cmp TV, RHS" simplify?
450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
451 if (TCmp == Cond) {
452 // It not only simplified, it simplified to the select condition. Replace
453 // it with 'true'.
454 TCmp = getTrue(Cond->getType());
455 } else if (!TCmp) {
456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
457 // condition then we can replace it with 'true'. Otherwise give up.
458 if (!isSameCompare(Cond, Pred, TV, RHS))
459 return 0;
460 TCmp = getTrue(Cond->getType());
461 }
462
463 // Does "cmp FV, RHS" simplify?
464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
465 if (FCmp == Cond) {
466 // It not only simplified, it simplified to the select condition. Replace
467 // it with 'false'.
468 FCmp = getFalse(Cond->getType());
469 } else if (!FCmp) {
470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
471 // condition then we can replace it with 'false'. Otherwise give up.
472 if (!isSameCompare(Cond, Pred, FV, RHS))
473 return 0;
474 FCmp = getFalse(Cond->getType());
475 }
476
477 // If both sides simplified to the same value, then use it as the result of
478 // the original comparison.
479 if (TCmp == FCmp)
480 return TCmp;
481
482 // The remaining cases only make sense if the select condition has the same
483 // type as the result of the comparison, so bail out if this is not so.
484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485 return 0;
486 // If the false value simplified to false, then the result of the compare
487 // is equal to "Cond && TCmp". This also catches the case when the false
488 // value simplified to false and the true value to true, returning "Cond".
489 if (match(FCmp, m_Zero()))
490 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
491 return V;
492 // If the true value simplified to true, then the result of the compare
493 // is equal to "Cond || FCmp".
494 if (match(TCmp, m_One()))
495 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
496 return V;
497 // Finally, if the false value simplified to true and the true value to
498 // false, then the result of the compare is equal to "!Cond".
499 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500 if (Value *V =
501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
502 Q, MaxRecurse))
503 return V;
504
505 return 0;
506 }
507
508 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510 /// it on the incoming phi values yields the same result for every value. If so
511 /// returns the common value, otherwise returns null.
ThreadBinOpOverPHI(unsigned Opcode,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)512 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
513 const Query &Q, unsigned MaxRecurse) {
514 // Recursion is always used, so bail out at once if we already hit the limit.
515 if (!MaxRecurse--)
516 return 0;
517
518 PHINode *PI;
519 if (isa<PHINode>(LHS)) {
520 PI = cast<PHINode>(LHS);
521 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
522 if (!ValueDominatesPHI(RHS, PI, Q.DT))
523 return 0;
524 } else {
525 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526 PI = cast<PHINode>(RHS);
527 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
528 if (!ValueDominatesPHI(LHS, PI, Q.DT))
529 return 0;
530 }
531
532 // Evaluate the BinOp on the incoming phi values.
533 Value *CommonValue = 0;
534 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
535 Value *Incoming = PI->getIncomingValue(i);
536 // If the incoming value is the phi node itself, it can safely be skipped.
537 if (Incoming == PI) continue;
538 Value *V = PI == LHS ?
539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
541 // If the operation failed to simplify, or simplified to a different value
542 // to previously, then give up.
543 if (!V || (CommonValue && V != CommonValue))
544 return 0;
545 CommonValue = V;
546 }
547
548 return CommonValue;
549 }
550
551 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552 /// try to simplify the comparison by seeing whether comparing with all of the
553 /// incoming phi values yields the same result every time. If so returns the
554 /// common result, otherwise returns null.
ThreadCmpOverPHI(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)555 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
556 const Query &Q, unsigned MaxRecurse) {
557 // Recursion is always used, so bail out at once if we already hit the limit.
558 if (!MaxRecurse--)
559 return 0;
560
561 // Make sure the phi is on the LHS.
562 if (!isa<PHINode>(LHS)) {
563 std::swap(LHS, RHS);
564 Pred = CmpInst::getSwappedPredicate(Pred);
565 }
566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567 PHINode *PI = cast<PHINode>(LHS);
568
569 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
570 if (!ValueDominatesPHI(RHS, PI, Q.DT))
571 return 0;
572
573 // Evaluate the BinOp on the incoming phi values.
574 Value *CommonValue = 0;
575 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
576 Value *Incoming = PI->getIncomingValue(i);
577 // If the incoming value is the phi node itself, it can safely be skipped.
578 if (Incoming == PI) continue;
579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
580 // If the operation failed to simplify, or simplified to a different value
581 // to previously, then give up.
582 if (!V || (CommonValue && V != CommonValue))
583 return 0;
584 CommonValue = V;
585 }
586
587 return CommonValue;
588 }
589
590 /// SimplifyAddInst - Given operands for an Add, see if we can
591 /// fold the result. If not, this returns null.
SimplifyAddInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const Query & Q,unsigned MaxRecurse)592 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
593 const Query &Q, unsigned MaxRecurse) {
594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596 Constant *Ops[] = { CLHS, CRHS };
597 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598 Q.TD, Q.TLI);
599 }
600
601 // Canonicalize the constant to the RHS.
602 std::swap(Op0, Op1);
603 }
604
605 // X + undef -> undef
606 if (match(Op1, m_Undef()))
607 return Op1;
608
609 // X + 0 -> X
610 if (match(Op1, m_Zero()))
611 return Op0;
612
613 // X + (Y - X) -> Y
614 // (Y - X) + X -> Y
615 // Eg: X + -X -> 0
616 Value *Y = 0;
617 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
619 return Y;
620
621 // X + ~X -> -1 since ~X = -X-1
622 if (match(Op0, m_Not(m_Specific(Op1))) ||
623 match(Op1, m_Not(m_Specific(Op0))))
624 return Constant::getAllOnesValue(Op0->getType());
625
626 /// i1 add -> xor.
627 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
628 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
629 return V;
630
631 // Try some generic simplifications for associative operations.
632 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
633 MaxRecurse))
634 return V;
635
636 // Mul distributes over Add. Try some generic simplifications based on this.
637 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
638 Q, MaxRecurse))
639 return V;
640
641 // Threading Add over selects and phi nodes is pointless, so don't bother.
642 // Threading over the select in "A + select(cond, B, C)" means evaluating
643 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644 // only if B and C are equal. If B and C are equal then (since we assume
645 // that operands have already been simplified) "select(cond, B, C)" should
646 // have been simplified to the common value of B and C already. Analysing
647 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
648 // for threading over phi nodes.
649
650 return 0;
651 }
652
SimplifyAddInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)653 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
654 const DataLayout *TD, const TargetLibraryInfo *TLI,
655 const DominatorTree *DT) {
656 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657 RecursionLimit);
658 }
659
660 /// \brief Compute the base pointer and cumulative constant offsets for V.
661 ///
662 /// This strips all constant offsets off of V, leaving it the base pointer, and
663 /// accumulates the total constant offset applied in the returned constant. It
664 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
665 /// no constant offsets applied.
666 ///
667 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
668 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
669 /// folding.
stripAndComputeConstantOffsets(const DataLayout * TD,Value * & V)670 static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
671 Value *&V) {
672 assert(V->getType()->getScalarType()->isPointerTy());
673
674 // Without DataLayout, just be conservative for now. Theoretically, more could
675 // be done in this case.
676 if (!TD)
677 return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
678
679 unsigned IntPtrWidth = TD->getPointerSizeInBits();
680 APInt Offset = APInt::getNullValue(IntPtrWidth);
681
682 // Even though we don't look through PHI nodes, we could be called on an
683 // instruction in an unreachable block, which may be on a cycle.
684 SmallPtrSet<Value *, 4> Visited;
685 Visited.insert(V);
686 do {
687 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
688 if (!GEP->isInBounds() || !GEP->accumulateConstantOffset(*TD, Offset))
689 break;
690 V = GEP->getPointerOperand();
691 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
692 V = cast<Operator>(V)->getOperand(0);
693 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
694 if (GA->mayBeOverridden())
695 break;
696 V = GA->getAliasee();
697 } else {
698 break;
699 }
700 assert(V->getType()->getScalarType()->isPointerTy() &&
701 "Unexpected operand type!");
702 } while (Visited.insert(V));
703
704 Type *IntPtrTy = TD->getIntPtrType(V->getContext());
705 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
706 if (V->getType()->isVectorTy())
707 return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
708 OffsetIntPtr);
709 return OffsetIntPtr;
710 }
711
712 /// \brief Compute the constant difference between two pointer values.
713 /// If the difference is not a constant, returns zero.
computePointerDifference(const DataLayout * TD,Value * LHS,Value * RHS)714 static Constant *computePointerDifference(const DataLayout *TD,
715 Value *LHS, Value *RHS) {
716 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
717 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
718
719 // If LHS and RHS are not related via constant offsets to the same base
720 // value, there is nothing we can do here.
721 if (LHS != RHS)
722 return 0;
723
724 // Otherwise, the difference of LHS - RHS can be computed as:
725 // LHS - RHS
726 // = (LHSOffset + Base) - (RHSOffset + Base)
727 // = LHSOffset - RHSOffset
728 return ConstantExpr::getSub(LHSOffset, RHSOffset);
729 }
730
731 /// SimplifySubInst - Given operands for a Sub, see if we can
732 /// fold the result. If not, this returns null.
SimplifySubInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const Query & Q,unsigned MaxRecurse)733 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
734 const Query &Q, unsigned MaxRecurse) {
735 if (Constant *CLHS = dyn_cast<Constant>(Op0))
736 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
737 Constant *Ops[] = { CLHS, CRHS };
738 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
739 Ops, Q.TD, Q.TLI);
740 }
741
742 // X - undef -> undef
743 // undef - X -> undef
744 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
745 return UndefValue::get(Op0->getType());
746
747 // X - 0 -> X
748 if (match(Op1, m_Zero()))
749 return Op0;
750
751 // X - X -> 0
752 if (Op0 == Op1)
753 return Constant::getNullValue(Op0->getType());
754
755 // (X*2) - X -> X
756 // (X<<1) - X -> X
757 Value *X = 0;
758 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
759 match(Op0, m_Shl(m_Specific(Op1), m_One())))
760 return Op1;
761
762 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
763 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
764 Value *Y = 0, *Z = Op1;
765 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
766 // See if "V === Y - Z" simplifies.
767 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
768 // It does! Now see if "X + V" simplifies.
769 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
770 // It does, we successfully reassociated!
771 ++NumReassoc;
772 return W;
773 }
774 // See if "V === X - Z" simplifies.
775 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
776 // It does! Now see if "Y + V" simplifies.
777 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
778 // It does, we successfully reassociated!
779 ++NumReassoc;
780 return W;
781 }
782 }
783
784 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
785 // For example, X - (X + 1) -> -1
786 X = Op0;
787 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
788 // See if "V === X - Y" simplifies.
789 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
790 // It does! Now see if "V - Z" simplifies.
791 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
792 // It does, we successfully reassociated!
793 ++NumReassoc;
794 return W;
795 }
796 // See if "V === X - Z" simplifies.
797 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
798 // It does! Now see if "V - Y" simplifies.
799 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
800 // It does, we successfully reassociated!
801 ++NumReassoc;
802 return W;
803 }
804 }
805
806 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
807 // For example, X - (X - Y) -> Y.
808 Z = Op0;
809 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
810 // See if "V === Z - X" simplifies.
811 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
812 // It does! Now see if "V + Y" simplifies.
813 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
814 // It does, we successfully reassociated!
815 ++NumReassoc;
816 return W;
817 }
818
819 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
820 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
821 match(Op1, m_Trunc(m_Value(Y))))
822 if (X->getType() == Y->getType())
823 // See if "V === X - Y" simplifies.
824 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
825 // It does! Now see if "trunc V" simplifies.
826 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
827 // It does, return the simplified "trunc V".
828 return W;
829
830 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
831 if (match(Op0, m_PtrToInt(m_Value(X))) &&
832 match(Op1, m_PtrToInt(m_Value(Y))))
833 if (Constant *Result = computePointerDifference(Q.TD, X, Y))
834 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
835
836 // Mul distributes over Sub. Try some generic simplifications based on this.
837 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
838 Q, MaxRecurse))
839 return V;
840
841 // i1 sub -> xor.
842 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
843 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
844 return V;
845
846 // Threading Sub over selects and phi nodes is pointless, so don't bother.
847 // Threading over the select in "A - select(cond, B, C)" means evaluating
848 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
849 // only if B and C are equal. If B and C are equal then (since we assume
850 // that operands have already been simplified) "select(cond, B, C)" should
851 // have been simplified to the common value of B and C already. Analysing
852 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
853 // for threading over phi nodes.
854
855 return 0;
856 }
857
SimplifySubInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)858 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
859 const DataLayout *TD, const TargetLibraryInfo *TLI,
860 const DominatorTree *DT) {
861 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
862 RecursionLimit);
863 }
864
865 /// Given operands for an FAdd, see if we can fold the result. If not, this
866 /// returns null.
SimplifyFAddInst(Value * Op0,Value * Op1,FastMathFlags FMF,const Query & Q,unsigned MaxRecurse)867 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
868 const Query &Q, unsigned MaxRecurse) {
869 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
870 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
871 Constant *Ops[] = { CLHS, CRHS };
872 return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
873 Ops, Q.TD, Q.TLI);
874 }
875
876 // Canonicalize the constant to the RHS.
877 std::swap(Op0, Op1);
878 }
879
880 // fadd X, -0 ==> X
881 if (match(Op1, m_NegZero()))
882 return Op0;
883
884 // fadd X, 0 ==> X, when we know X is not -0
885 if (match(Op1, m_Zero()) &&
886 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
887 return Op0;
888
889 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
890 // where nnan and ninf have to occur at least once somewhere in this
891 // expression
892 Value *SubOp = 0;
893 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
894 SubOp = Op1;
895 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
896 SubOp = Op0;
897 if (SubOp) {
898 Instruction *FSub = cast<Instruction>(SubOp);
899 if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
900 (FMF.noInfs() || FSub->hasNoInfs()))
901 return Constant::getNullValue(Op0->getType());
902 }
903
904 return 0;
905 }
906
907 /// Given operands for an FSub, see if we can fold the result. If not, this
908 /// returns null.
SimplifyFSubInst(Value * Op0,Value * Op1,FastMathFlags FMF,const Query & Q,unsigned MaxRecurse)909 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
910 const Query &Q, unsigned MaxRecurse) {
911 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
912 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
913 Constant *Ops[] = { CLHS, CRHS };
914 return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
915 Ops, Q.TD, Q.TLI);
916 }
917 }
918
919 // fsub X, 0 ==> X
920 if (match(Op1, m_Zero()))
921 return Op0;
922
923 // fsub X, -0 ==> X, when we know X is not -0
924 if (match(Op1, m_NegZero()) &&
925 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
926 return Op0;
927
928 // fsub 0, (fsub -0.0, X) ==> X
929 Value *X;
930 if (match(Op0, m_AnyZero())) {
931 if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
932 return X;
933 if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
934 return X;
935 }
936
937 // fsub nnan ninf x, x ==> 0.0
938 if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
939 return Constant::getNullValue(Op0->getType());
940
941 return 0;
942 }
943
944 /// Given the operands for an FMul, see if we can fold the result
SimplifyFMulInst(Value * Op0,Value * Op1,FastMathFlags FMF,const Query & Q,unsigned MaxRecurse)945 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
946 FastMathFlags FMF,
947 const Query &Q,
948 unsigned MaxRecurse) {
949 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
950 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
951 Constant *Ops[] = { CLHS, CRHS };
952 return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
953 Ops, Q.TD, Q.TLI);
954 }
955
956 // Canonicalize the constant to the RHS.
957 std::swap(Op0, Op1);
958 }
959
960 // fmul X, 1.0 ==> X
961 if (match(Op1, m_FPOne()))
962 return Op0;
963
964 // fmul nnan nsz X, 0 ==> 0
965 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
966 return Op1;
967
968 return 0;
969 }
970
971 /// SimplifyMulInst - Given operands for a Mul, see if we can
972 /// fold the result. If not, this returns null.
SimplifyMulInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)973 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
974 unsigned MaxRecurse) {
975 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
976 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
977 Constant *Ops[] = { CLHS, CRHS };
978 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
979 Ops, Q.TD, Q.TLI);
980 }
981
982 // Canonicalize the constant to the RHS.
983 std::swap(Op0, Op1);
984 }
985
986 // X * undef -> 0
987 if (match(Op1, m_Undef()))
988 return Constant::getNullValue(Op0->getType());
989
990 // X * 0 -> 0
991 if (match(Op1, m_Zero()))
992 return Op1;
993
994 // X * 1 -> X
995 if (match(Op1, m_One()))
996 return Op0;
997
998 // (X / Y) * Y -> X if the division is exact.
999 Value *X = 0;
1000 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
1001 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
1002 return X;
1003
1004 // i1 mul -> and.
1005 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
1006 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
1007 return V;
1008
1009 // Try some generic simplifications for associative operations.
1010 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
1011 MaxRecurse))
1012 return V;
1013
1014 // Mul distributes over Add. Try some generic simplifications based on this.
1015 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
1016 Q, MaxRecurse))
1017 return V;
1018
1019 // If the operation is with the result of a select instruction, check whether
1020 // operating on either branch of the select always yields the same value.
1021 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1022 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
1023 MaxRecurse))
1024 return V;
1025
1026 // If the operation is with the result of a phi instruction, check whether
1027 // operating on all incoming values of the phi always yields the same value.
1028 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1029 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
1030 MaxRecurse))
1031 return V;
1032
1033 return 0;
1034 }
1035
SimplifyFAddInst(Value * Op0,Value * Op1,FastMathFlags FMF,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1036 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1037 const DataLayout *TD, const TargetLibraryInfo *TLI,
1038 const DominatorTree *DT) {
1039 return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1040 }
1041
SimplifyFSubInst(Value * Op0,Value * Op1,FastMathFlags FMF,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1042 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1043 const DataLayout *TD, const TargetLibraryInfo *TLI,
1044 const DominatorTree *DT) {
1045 return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1046 }
1047
SimplifyFMulInst(Value * Op0,Value * Op1,FastMathFlags FMF,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1048 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
1049 FastMathFlags FMF,
1050 const DataLayout *TD,
1051 const TargetLibraryInfo *TLI,
1052 const DominatorTree *DT) {
1053 return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1054 }
1055
SimplifyMulInst(Value * Op0,Value * Op1,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1056 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
1057 const TargetLibraryInfo *TLI,
1058 const DominatorTree *DT) {
1059 return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1060 }
1061
1062 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
1063 /// fold the result. If not, this returns null.
SimplifyDiv(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1064 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1065 const Query &Q, unsigned MaxRecurse) {
1066 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1067 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1068 Constant *Ops[] = { C0, C1 };
1069 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1070 }
1071 }
1072
1073 bool isSigned = Opcode == Instruction::SDiv;
1074
1075 // X / undef -> undef
1076 if (match(Op1, m_Undef()))
1077 return Op1;
1078
1079 // undef / X -> 0
1080 if (match(Op0, m_Undef()))
1081 return Constant::getNullValue(Op0->getType());
1082
1083 // 0 / X -> 0, we don't need to preserve faults!
1084 if (match(Op0, m_Zero()))
1085 return Op0;
1086
1087 // X / 1 -> X
1088 if (match(Op1, m_One()))
1089 return Op0;
1090
1091 if (Op0->getType()->isIntegerTy(1))
1092 // It can't be division by zero, hence it must be division by one.
1093 return Op0;
1094
1095 // X / X -> 1
1096 if (Op0 == Op1)
1097 return ConstantInt::get(Op0->getType(), 1);
1098
1099 // (X * Y) / Y -> X if the multiplication does not overflow.
1100 Value *X = 0, *Y = 0;
1101 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1102 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1103 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1104 // If the Mul knows it does not overflow, then we are good to go.
1105 if ((isSigned && Mul->hasNoSignedWrap()) ||
1106 (!isSigned && Mul->hasNoUnsignedWrap()))
1107 return X;
1108 // If X has the form X = A / Y then X * Y cannot overflow.
1109 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1110 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1111 return X;
1112 }
1113
1114 // (X rem Y) / Y -> 0
1115 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1116 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1117 return Constant::getNullValue(Op0->getType());
1118
1119 // If the operation is with the result of a select instruction, check whether
1120 // operating on either branch of the select always yields the same value.
1121 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1122 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1123 return V;
1124
1125 // If the operation is with the result of a phi instruction, check whether
1126 // operating on all incoming values of the phi always yields the same value.
1127 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1128 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1129 return V;
1130
1131 return 0;
1132 }
1133
1134 /// SimplifySDivInst - Given operands for an SDiv, see if we can
1135 /// fold the result. If not, this returns null.
SimplifySDivInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1136 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1137 unsigned MaxRecurse) {
1138 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1139 return V;
1140
1141 return 0;
1142 }
1143
SimplifySDivInst(Value * Op0,Value * Op1,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1144 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1145 const TargetLibraryInfo *TLI,
1146 const DominatorTree *DT) {
1147 return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1148 }
1149
1150 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
1151 /// fold the result. If not, this returns null.
SimplifyUDivInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1152 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1153 unsigned MaxRecurse) {
1154 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1155 return V;
1156
1157 return 0;
1158 }
1159
SimplifyUDivInst(Value * Op0,Value * Op1,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1160 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1161 const TargetLibraryInfo *TLI,
1162 const DominatorTree *DT) {
1163 return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1164 }
1165
SimplifyFDivInst(Value * Op0,Value * Op1,const Query & Q,unsigned)1166 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1167 unsigned) {
1168 // undef / X -> undef (the undef could be a snan).
1169 if (match(Op0, m_Undef()))
1170 return Op0;
1171
1172 // X / undef -> undef
1173 if (match(Op1, m_Undef()))
1174 return Op1;
1175
1176 return 0;
1177 }
1178
SimplifyFDivInst(Value * Op0,Value * Op1,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1179 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1180 const TargetLibraryInfo *TLI,
1181 const DominatorTree *DT) {
1182 return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1183 }
1184
1185 /// SimplifyRem - Given operands for an SRem or URem, see if we can
1186 /// fold the result. If not, this returns null.
SimplifyRem(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1187 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1188 const Query &Q, unsigned MaxRecurse) {
1189 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1190 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1191 Constant *Ops[] = { C0, C1 };
1192 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1193 }
1194 }
1195
1196 // X % undef -> undef
1197 if (match(Op1, m_Undef()))
1198 return Op1;
1199
1200 // undef % X -> 0
1201 if (match(Op0, m_Undef()))
1202 return Constant::getNullValue(Op0->getType());
1203
1204 // 0 % X -> 0, we don't need to preserve faults!
1205 if (match(Op0, m_Zero()))
1206 return Op0;
1207
1208 // X % 0 -> undef, we don't need to preserve faults!
1209 if (match(Op1, m_Zero()))
1210 return UndefValue::get(Op0->getType());
1211
1212 // X % 1 -> 0
1213 if (match(Op1, m_One()))
1214 return Constant::getNullValue(Op0->getType());
1215
1216 if (Op0->getType()->isIntegerTy(1))
1217 // It can't be remainder by zero, hence it must be remainder by one.
1218 return Constant::getNullValue(Op0->getType());
1219
1220 // X % X -> 0
1221 if (Op0 == Op1)
1222 return Constant::getNullValue(Op0->getType());
1223
1224 // If the operation is with the result of a select instruction, check whether
1225 // operating on either branch of the select always yields the same value.
1226 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1227 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1228 return V;
1229
1230 // If the operation is with the result of a phi instruction, check whether
1231 // operating on all incoming values of the phi always yields the same value.
1232 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1233 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1234 return V;
1235
1236 return 0;
1237 }
1238
1239 /// SimplifySRemInst - Given operands for an SRem, see if we can
1240 /// fold the result. If not, this returns null.
SimplifySRemInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1241 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1242 unsigned MaxRecurse) {
1243 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1244 return V;
1245
1246 return 0;
1247 }
1248
SimplifySRemInst(Value * Op0,Value * Op1,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1249 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1250 const TargetLibraryInfo *TLI,
1251 const DominatorTree *DT) {
1252 return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1253 }
1254
1255 /// SimplifyURemInst - Given operands for a URem, see if we can
1256 /// fold the result. If not, this returns null.
SimplifyURemInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1257 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1258 unsigned MaxRecurse) {
1259 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1260 return V;
1261
1262 return 0;
1263 }
1264
SimplifyURemInst(Value * Op0,Value * Op1,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1265 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1266 const TargetLibraryInfo *TLI,
1267 const DominatorTree *DT) {
1268 return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1269 }
1270
SimplifyFRemInst(Value * Op0,Value * Op1,const Query &,unsigned)1271 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
1272 unsigned) {
1273 // undef % X -> undef (the undef could be a snan).
1274 if (match(Op0, m_Undef()))
1275 return Op0;
1276
1277 // X % undef -> undef
1278 if (match(Op1, m_Undef()))
1279 return Op1;
1280
1281 return 0;
1282 }
1283
SimplifyFRemInst(Value * Op0,Value * Op1,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1284 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1285 const TargetLibraryInfo *TLI,
1286 const DominatorTree *DT) {
1287 return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1288 }
1289
1290 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1291 /// fold the result. If not, this returns null.
SimplifyShift(unsigned Opcode,Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1292 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1293 const Query &Q, unsigned MaxRecurse) {
1294 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1295 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1296 Constant *Ops[] = { C0, C1 };
1297 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1298 }
1299 }
1300
1301 // 0 shift by X -> 0
1302 if (match(Op0, m_Zero()))
1303 return Op0;
1304
1305 // X shift by 0 -> X
1306 if (match(Op1, m_Zero()))
1307 return Op0;
1308
1309 // X shift by undef -> undef because it may shift by the bitwidth.
1310 if (match(Op1, m_Undef()))
1311 return Op1;
1312
1313 // Shifting by the bitwidth or more is undefined.
1314 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1315 if (CI->getValue().getLimitedValue() >=
1316 Op0->getType()->getScalarSizeInBits())
1317 return UndefValue::get(Op0->getType());
1318
1319 // If the operation is with the result of a select instruction, check whether
1320 // operating on either branch of the select always yields the same value.
1321 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1322 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1323 return V;
1324
1325 // If the operation is with the result of a phi instruction, check whether
1326 // operating on all incoming values of the phi always yields the same value.
1327 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1328 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1329 return V;
1330
1331 return 0;
1332 }
1333
1334 /// SimplifyShlInst - Given operands for an Shl, see if we can
1335 /// fold the result. If not, this returns null.
SimplifyShlInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const Query & Q,unsigned MaxRecurse)1336 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1337 const Query &Q, unsigned MaxRecurse) {
1338 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1339 return V;
1340
1341 // undef << X -> 0
1342 if (match(Op0, m_Undef()))
1343 return Constant::getNullValue(Op0->getType());
1344
1345 // (X >> A) << A -> X
1346 Value *X;
1347 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1348 return X;
1349 return 0;
1350 }
1351
SimplifyShlInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1352 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1353 const DataLayout *TD, const TargetLibraryInfo *TLI,
1354 const DominatorTree *DT) {
1355 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1356 RecursionLimit);
1357 }
1358
1359 /// SimplifyLShrInst - Given operands for an LShr, see if we can
1360 /// fold the result. If not, this returns null.
SimplifyLShrInst(Value * Op0,Value * Op1,bool isExact,const Query & Q,unsigned MaxRecurse)1361 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1362 const Query &Q, unsigned MaxRecurse) {
1363 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
1364 return V;
1365
1366 // undef >>l X -> 0
1367 if (match(Op0, m_Undef()))
1368 return Constant::getNullValue(Op0->getType());
1369
1370 // (X << A) >> A -> X
1371 Value *X;
1372 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1373 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1374 return X;
1375
1376 return 0;
1377 }
1378
SimplifyLShrInst(Value * Op0,Value * Op1,bool isExact,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1379 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1380 const DataLayout *TD,
1381 const TargetLibraryInfo *TLI,
1382 const DominatorTree *DT) {
1383 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1384 RecursionLimit);
1385 }
1386
1387 /// SimplifyAShrInst - Given operands for an AShr, see if we can
1388 /// fold the result. If not, this returns null.
SimplifyAShrInst(Value * Op0,Value * Op1,bool isExact,const Query & Q,unsigned MaxRecurse)1389 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1390 const Query &Q, unsigned MaxRecurse) {
1391 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
1392 return V;
1393
1394 // all ones >>a X -> all ones
1395 if (match(Op0, m_AllOnes()))
1396 return Op0;
1397
1398 // undef >>a X -> all ones
1399 if (match(Op0, m_Undef()))
1400 return Constant::getAllOnesValue(Op0->getType());
1401
1402 // (X << A) >> A -> X
1403 Value *X;
1404 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1405 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1406 return X;
1407
1408 return 0;
1409 }
1410
SimplifyAShrInst(Value * Op0,Value * Op1,bool isExact,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1411 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1412 const DataLayout *TD,
1413 const TargetLibraryInfo *TLI,
1414 const DominatorTree *DT) {
1415 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1416 RecursionLimit);
1417 }
1418
1419 /// SimplifyAndInst - Given operands for an And, see if we can
1420 /// fold the result. If not, this returns null.
SimplifyAndInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1421 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1422 unsigned MaxRecurse) {
1423 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1424 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1425 Constant *Ops[] = { CLHS, CRHS };
1426 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1427 Ops, Q.TD, Q.TLI);
1428 }
1429
1430 // Canonicalize the constant to the RHS.
1431 std::swap(Op0, Op1);
1432 }
1433
1434 // X & undef -> 0
1435 if (match(Op1, m_Undef()))
1436 return Constant::getNullValue(Op0->getType());
1437
1438 // X & X = X
1439 if (Op0 == Op1)
1440 return Op0;
1441
1442 // X & 0 = 0
1443 if (match(Op1, m_Zero()))
1444 return Op1;
1445
1446 // X & -1 = X
1447 if (match(Op1, m_AllOnes()))
1448 return Op0;
1449
1450 // A & ~A = ~A & A = 0
1451 if (match(Op0, m_Not(m_Specific(Op1))) ||
1452 match(Op1, m_Not(m_Specific(Op0))))
1453 return Constant::getNullValue(Op0->getType());
1454
1455 // (A | ?) & A = A
1456 Value *A = 0, *B = 0;
1457 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1458 (A == Op1 || B == Op1))
1459 return Op1;
1460
1461 // A & (A | ?) = A
1462 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1463 (A == Op0 || B == Op0))
1464 return Op0;
1465
1466 // A & (-A) = A if A is a power of two or zero.
1467 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1468 match(Op1, m_Neg(m_Specific(Op0)))) {
1469 if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
1470 return Op0;
1471 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
1472 return Op1;
1473 }
1474
1475 // Try some generic simplifications for associative operations.
1476 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1477 MaxRecurse))
1478 return V;
1479
1480 // And distributes over Or. Try some generic simplifications based on this.
1481 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1482 Q, MaxRecurse))
1483 return V;
1484
1485 // And distributes over Xor. Try some generic simplifications based on this.
1486 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1487 Q, MaxRecurse))
1488 return V;
1489
1490 // Or distributes over And. Try some generic simplifications based on this.
1491 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1492 Q, MaxRecurse))
1493 return V;
1494
1495 // If the operation is with the result of a select instruction, check whether
1496 // operating on either branch of the select always yields the same value.
1497 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1498 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1499 MaxRecurse))
1500 return V;
1501
1502 // If the operation is with the result of a phi instruction, check whether
1503 // operating on all incoming values of the phi always yields the same value.
1504 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1505 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1506 MaxRecurse))
1507 return V;
1508
1509 return 0;
1510 }
1511
SimplifyAndInst(Value * Op0,Value * Op1,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1512 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
1513 const TargetLibraryInfo *TLI,
1514 const DominatorTree *DT) {
1515 return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1516 }
1517
1518 /// SimplifyOrInst - Given operands for an Or, see if we can
1519 /// fold the result. If not, this returns null.
SimplifyOrInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1520 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1521 unsigned MaxRecurse) {
1522 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1523 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1524 Constant *Ops[] = { CLHS, CRHS };
1525 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1526 Ops, Q.TD, Q.TLI);
1527 }
1528
1529 // Canonicalize the constant to the RHS.
1530 std::swap(Op0, Op1);
1531 }
1532
1533 // X | undef -> -1
1534 if (match(Op1, m_Undef()))
1535 return Constant::getAllOnesValue(Op0->getType());
1536
1537 // X | X = X
1538 if (Op0 == Op1)
1539 return Op0;
1540
1541 // X | 0 = X
1542 if (match(Op1, m_Zero()))
1543 return Op0;
1544
1545 // X | -1 = -1
1546 if (match(Op1, m_AllOnes()))
1547 return Op1;
1548
1549 // A | ~A = ~A | A = -1
1550 if (match(Op0, m_Not(m_Specific(Op1))) ||
1551 match(Op1, m_Not(m_Specific(Op0))))
1552 return Constant::getAllOnesValue(Op0->getType());
1553
1554 // (A & ?) | A = A
1555 Value *A = 0, *B = 0;
1556 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1557 (A == Op1 || B == Op1))
1558 return Op1;
1559
1560 // A | (A & ?) = A
1561 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1562 (A == Op0 || B == Op0))
1563 return Op0;
1564
1565 // ~(A & ?) | A = -1
1566 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1567 (A == Op1 || B == Op1))
1568 return Constant::getAllOnesValue(Op1->getType());
1569
1570 // A | ~(A & ?) = -1
1571 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1572 (A == Op0 || B == Op0))
1573 return Constant::getAllOnesValue(Op0->getType());
1574
1575 // Try some generic simplifications for associative operations.
1576 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1577 MaxRecurse))
1578 return V;
1579
1580 // Or distributes over And. Try some generic simplifications based on this.
1581 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1582 MaxRecurse))
1583 return V;
1584
1585 // And distributes over Or. Try some generic simplifications based on this.
1586 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1587 Q, MaxRecurse))
1588 return V;
1589
1590 // If the operation is with the result of a select instruction, check whether
1591 // operating on either branch of the select always yields the same value.
1592 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1593 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1594 MaxRecurse))
1595 return V;
1596
1597 // If the operation is with the result of a phi instruction, check whether
1598 // operating on all incoming values of the phi always yields the same value.
1599 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1600 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1601 return V;
1602
1603 return 0;
1604 }
1605
SimplifyOrInst(Value * Op0,Value * Op1,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1606 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
1607 const TargetLibraryInfo *TLI,
1608 const DominatorTree *DT) {
1609 return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1610 }
1611
1612 /// SimplifyXorInst - Given operands for a Xor, see if we can
1613 /// fold the result. If not, this returns null.
SimplifyXorInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1614 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1615 unsigned MaxRecurse) {
1616 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1617 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1618 Constant *Ops[] = { CLHS, CRHS };
1619 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1620 Ops, Q.TD, Q.TLI);
1621 }
1622
1623 // Canonicalize the constant to the RHS.
1624 std::swap(Op0, Op1);
1625 }
1626
1627 // A ^ undef -> undef
1628 if (match(Op1, m_Undef()))
1629 return Op1;
1630
1631 // A ^ 0 = A
1632 if (match(Op1, m_Zero()))
1633 return Op0;
1634
1635 // A ^ A = 0
1636 if (Op0 == Op1)
1637 return Constant::getNullValue(Op0->getType());
1638
1639 // A ^ ~A = ~A ^ A = -1
1640 if (match(Op0, m_Not(m_Specific(Op1))) ||
1641 match(Op1, m_Not(m_Specific(Op0))))
1642 return Constant::getAllOnesValue(Op0->getType());
1643
1644 // Try some generic simplifications for associative operations.
1645 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1646 MaxRecurse))
1647 return V;
1648
1649 // And distributes over Xor. Try some generic simplifications based on this.
1650 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1651 Q, MaxRecurse))
1652 return V;
1653
1654 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1655 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1656 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1657 // only if B and C are equal. If B and C are equal then (since we assume
1658 // that operands have already been simplified) "select(cond, B, C)" should
1659 // have been simplified to the common value of B and C already. Analysing
1660 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1661 // for threading over phi nodes.
1662
1663 return 0;
1664 }
1665
SimplifyXorInst(Value * Op0,Value * Op1,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1666 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
1667 const TargetLibraryInfo *TLI,
1668 const DominatorTree *DT) {
1669 return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1670 }
1671
GetCompareTy(Value * Op)1672 static Type *GetCompareTy(Value *Op) {
1673 return CmpInst::makeCmpResultType(Op->getType());
1674 }
1675
1676 /// ExtractEquivalentCondition - Rummage around inside V looking for something
1677 /// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1678 /// otherwise return null. Helper function for analyzing max/min idioms.
ExtractEquivalentCondition(Value * V,CmpInst::Predicate Pred,Value * LHS,Value * RHS)1679 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1680 Value *LHS, Value *RHS) {
1681 SelectInst *SI = dyn_cast<SelectInst>(V);
1682 if (!SI)
1683 return 0;
1684 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1685 if (!Cmp)
1686 return 0;
1687 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1688 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1689 return Cmp;
1690 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1691 LHS == CmpRHS && RHS == CmpLHS)
1692 return Cmp;
1693 return 0;
1694 }
1695
1696 // A significant optimization not implemented here is assuming that alloca
1697 // addresses are not equal to incoming argument values. They don't *alias*,
1698 // as we say, but that doesn't mean they aren't equal, so we take a
1699 // conservative approach.
1700 //
1701 // This is inspired in part by C++11 5.10p1:
1702 // "Two pointers of the same type compare equal if and only if they are both
1703 // null, both point to the same function, or both represent the same
1704 // address."
1705 //
1706 // This is pretty permissive.
1707 //
1708 // It's also partly due to C11 6.5.9p6:
1709 // "Two pointers compare equal if and only if both are null pointers, both are
1710 // pointers to the same object (including a pointer to an object and a
1711 // subobject at its beginning) or function, both are pointers to one past the
1712 // last element of the same array object, or one is a pointer to one past the
1713 // end of one array object and the other is a pointer to the start of a
1714 // different array object that happens to immediately follow the first array
1715 // object in the address space.)
1716 //
1717 // C11's version is more restrictive, however there's no reason why an argument
1718 // couldn't be a one-past-the-end value for a stack object in the caller and be
1719 // equal to the beginning of a stack object in the callee.
1720 //
1721 // If the C and C++ standards are ever made sufficiently restrictive in this
1722 // area, it may be possible to update LLVM's semantics accordingly and reinstate
1723 // this optimization.
computePointerICmp(const DataLayout * TD,const TargetLibraryInfo * TLI,CmpInst::Predicate Pred,Value * LHS,Value * RHS)1724 static Constant *computePointerICmp(const DataLayout *TD,
1725 const TargetLibraryInfo *TLI,
1726 CmpInst::Predicate Pred,
1727 Value *LHS, Value *RHS) {
1728 // First, skip past any trivial no-ops.
1729 LHS = LHS->stripPointerCasts();
1730 RHS = RHS->stripPointerCasts();
1731
1732 // A non-null pointer is not equal to a null pointer.
1733 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
1734 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1735 return ConstantInt::get(GetCompareTy(LHS),
1736 !CmpInst::isTrueWhenEqual(Pred));
1737
1738 // We can only fold certain predicates on pointer comparisons.
1739 switch (Pred) {
1740 default:
1741 return 0;
1742
1743 // Equality comaprisons are easy to fold.
1744 case CmpInst::ICMP_EQ:
1745 case CmpInst::ICMP_NE:
1746 break;
1747
1748 // We can only handle unsigned relational comparisons because 'inbounds' on
1749 // a GEP only protects against unsigned wrapping.
1750 case CmpInst::ICMP_UGT:
1751 case CmpInst::ICMP_UGE:
1752 case CmpInst::ICMP_ULT:
1753 case CmpInst::ICMP_ULE:
1754 // However, we have to switch them to their signed variants to handle
1755 // negative indices from the base pointer.
1756 Pred = ICmpInst::getSignedPredicate(Pred);
1757 break;
1758 }
1759
1760 // Strip off any constant offsets so that we can reason about them.
1761 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1762 // here and compare base addresses like AliasAnalysis does, however there are
1763 // numerous hazards. AliasAnalysis and its utilities rely on special rules
1764 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1765 // doesn't need to guarantee pointer inequality when it says NoAlias.
1766 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1767 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
1768
1769 // If LHS and RHS are related via constant offsets to the same base
1770 // value, we can replace it with an icmp which just compares the offsets.
1771 if (LHS == RHS)
1772 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
1773
1774 // Various optimizations for (in)equality comparisons.
1775 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1776 // Different non-empty allocations that exist at the same time have
1777 // different addresses (if the program can tell). Global variables always
1778 // exist, so they always exist during the lifetime of each other and all
1779 // allocas. Two different allocas usually have different addresses...
1780 //
1781 // However, if there's an @llvm.stackrestore dynamically in between two
1782 // allocas, they may have the same address. It's tempting to reduce the
1783 // scope of the problem by only looking at *static* allocas here. That would
1784 // cover the majority of allocas while significantly reducing the likelihood
1785 // of having an @llvm.stackrestore pop up in the middle. However, it's not
1786 // actually impossible for an @llvm.stackrestore to pop up in the middle of
1787 // an entry block. Also, if we have a block that's not attached to a
1788 // function, we can't tell if it's "static" under the current definition.
1789 // Theoretically, this problem could be fixed by creating a new kind of
1790 // instruction kind specifically for static allocas. Such a new instruction
1791 // could be required to be at the top of the entry block, thus preventing it
1792 // from being subject to a @llvm.stackrestore. Instcombine could even
1793 // convert regular allocas into these special allocas. It'd be nifty.
1794 // However, until then, this problem remains open.
1795 //
1796 // So, we'll assume that two non-empty allocas have different addresses
1797 // for now.
1798 //
1799 // With all that, if the offsets are within the bounds of their allocations
1800 // (and not one-past-the-end! so we can't use inbounds!), and their
1801 // allocations aren't the same, the pointers are not equal.
1802 //
1803 // Note that it's not necessary to check for LHS being a global variable
1804 // address, due to canonicalization and constant folding.
1805 if (isa<AllocaInst>(LHS) &&
1806 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
1807 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
1808 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
1809 uint64_t LHSSize, RHSSize;
1810 if (LHSOffsetCI && RHSOffsetCI &&
1811 getObjectSize(LHS, LHSSize, TD, TLI) &&
1812 getObjectSize(RHS, RHSSize, TD, TLI)) {
1813 const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
1814 const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
1815 if (!LHSOffsetValue.isNegative() &&
1816 !RHSOffsetValue.isNegative() &&
1817 LHSOffsetValue.ult(LHSSize) &&
1818 RHSOffsetValue.ult(RHSSize)) {
1819 return ConstantInt::get(GetCompareTy(LHS),
1820 !CmpInst::isTrueWhenEqual(Pred));
1821 }
1822 }
1823
1824 // Repeat the above check but this time without depending on DataLayout
1825 // or being able to compute a precise size.
1826 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
1827 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
1828 LHSOffset->isNullValue() &&
1829 RHSOffset->isNullValue())
1830 return ConstantInt::get(GetCompareTy(LHS),
1831 !CmpInst::isTrueWhenEqual(Pred));
1832 }
1833 }
1834
1835 // Otherwise, fail.
1836 return 0;
1837 }
1838
1839 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1840 /// fold the result. If not, this returns null.
SimplifyICmpInst(unsigned Predicate,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)1841 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1842 const Query &Q, unsigned MaxRecurse) {
1843 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1844 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1845
1846 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1847 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1848 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
1849
1850 // If we have a constant, make sure it is on the RHS.
1851 std::swap(LHS, RHS);
1852 Pred = CmpInst::getSwappedPredicate(Pred);
1853 }
1854
1855 Type *ITy = GetCompareTy(LHS); // The return type.
1856 Type *OpTy = LHS->getType(); // The operand type.
1857
1858 // icmp X, X -> true/false
1859 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1860 // because X could be 0.
1861 if (LHS == RHS || isa<UndefValue>(RHS))
1862 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1863
1864 // Special case logic when the operands have i1 type.
1865 if (OpTy->getScalarType()->isIntegerTy(1)) {
1866 switch (Pred) {
1867 default: break;
1868 case ICmpInst::ICMP_EQ:
1869 // X == 1 -> X
1870 if (match(RHS, m_One()))
1871 return LHS;
1872 break;
1873 case ICmpInst::ICMP_NE:
1874 // X != 0 -> X
1875 if (match(RHS, m_Zero()))
1876 return LHS;
1877 break;
1878 case ICmpInst::ICMP_UGT:
1879 // X >u 0 -> X
1880 if (match(RHS, m_Zero()))
1881 return LHS;
1882 break;
1883 case ICmpInst::ICMP_UGE:
1884 // X >=u 1 -> X
1885 if (match(RHS, m_One()))
1886 return LHS;
1887 break;
1888 case ICmpInst::ICMP_SLT:
1889 // X <s 0 -> X
1890 if (match(RHS, m_Zero()))
1891 return LHS;
1892 break;
1893 case ICmpInst::ICMP_SLE:
1894 // X <=s -1 -> X
1895 if (match(RHS, m_One()))
1896 return LHS;
1897 break;
1898 }
1899 }
1900
1901 // If we are comparing with zero then try hard since this is a common case.
1902 if (match(RHS, m_Zero())) {
1903 bool LHSKnownNonNegative, LHSKnownNegative;
1904 switch (Pred) {
1905 default: llvm_unreachable("Unknown ICmp predicate!");
1906 case ICmpInst::ICMP_ULT:
1907 return getFalse(ITy);
1908 case ICmpInst::ICMP_UGE:
1909 return getTrue(ITy);
1910 case ICmpInst::ICMP_EQ:
1911 case ICmpInst::ICMP_ULE:
1912 if (isKnownNonZero(LHS, Q.TD))
1913 return getFalse(ITy);
1914 break;
1915 case ICmpInst::ICMP_NE:
1916 case ICmpInst::ICMP_UGT:
1917 if (isKnownNonZero(LHS, Q.TD))
1918 return getTrue(ITy);
1919 break;
1920 case ICmpInst::ICMP_SLT:
1921 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1922 if (LHSKnownNegative)
1923 return getTrue(ITy);
1924 if (LHSKnownNonNegative)
1925 return getFalse(ITy);
1926 break;
1927 case ICmpInst::ICMP_SLE:
1928 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1929 if (LHSKnownNegative)
1930 return getTrue(ITy);
1931 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1932 return getFalse(ITy);
1933 break;
1934 case ICmpInst::ICMP_SGE:
1935 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1936 if (LHSKnownNegative)
1937 return getFalse(ITy);
1938 if (LHSKnownNonNegative)
1939 return getTrue(ITy);
1940 break;
1941 case ICmpInst::ICMP_SGT:
1942 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1943 if (LHSKnownNegative)
1944 return getFalse(ITy);
1945 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1946 return getTrue(ITy);
1947 break;
1948 }
1949 }
1950
1951 // See if we are doing a comparison with a constant integer.
1952 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1953 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1954 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1955 if (RHS_CR.isEmptySet())
1956 return ConstantInt::getFalse(CI->getContext());
1957 if (RHS_CR.isFullSet())
1958 return ConstantInt::getTrue(CI->getContext());
1959
1960 // Many binary operators with constant RHS have easy to compute constant
1961 // range. Use them to check whether the comparison is a tautology.
1962 uint32_t Width = CI->getBitWidth();
1963 APInt Lower = APInt(Width, 0);
1964 APInt Upper = APInt(Width, 0);
1965 ConstantInt *CI2;
1966 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1967 // 'urem x, CI2' produces [0, CI2).
1968 Upper = CI2->getValue();
1969 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1970 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1971 Upper = CI2->getValue().abs();
1972 Lower = (-Upper) + 1;
1973 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1974 // 'udiv CI2, x' produces [0, CI2].
1975 Upper = CI2->getValue() + 1;
1976 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1977 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1978 APInt NegOne = APInt::getAllOnesValue(Width);
1979 if (!CI2->isZero())
1980 Upper = NegOne.udiv(CI2->getValue()) + 1;
1981 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1982 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1983 APInt IntMin = APInt::getSignedMinValue(Width);
1984 APInt IntMax = APInt::getSignedMaxValue(Width);
1985 APInt Val = CI2->getValue().abs();
1986 if (!Val.isMinValue()) {
1987 Lower = IntMin.sdiv(Val);
1988 Upper = IntMax.sdiv(Val) + 1;
1989 }
1990 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1991 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1992 APInt NegOne = APInt::getAllOnesValue(Width);
1993 if (CI2->getValue().ult(Width))
1994 Upper = NegOne.lshr(CI2->getValue()) + 1;
1995 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1996 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1997 APInt IntMin = APInt::getSignedMinValue(Width);
1998 APInt IntMax = APInt::getSignedMaxValue(Width);
1999 if (CI2->getValue().ult(Width)) {
2000 Lower = IntMin.ashr(CI2->getValue());
2001 Upper = IntMax.ashr(CI2->getValue()) + 1;
2002 }
2003 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
2004 // 'or x, CI2' produces [CI2, UINT_MAX].
2005 Lower = CI2->getValue();
2006 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
2007 // 'and x, CI2' produces [0, CI2].
2008 Upper = CI2->getValue() + 1;
2009 }
2010 if (Lower != Upper) {
2011 ConstantRange LHS_CR = ConstantRange(Lower, Upper);
2012 if (RHS_CR.contains(LHS_CR))
2013 return ConstantInt::getTrue(RHS->getContext());
2014 if (RHS_CR.inverse().contains(LHS_CR))
2015 return ConstantInt::getFalse(RHS->getContext());
2016 }
2017 }
2018
2019 // Compare of cast, for example (zext X) != 0 -> X != 0
2020 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2021 Instruction *LI = cast<CastInst>(LHS);
2022 Value *SrcOp = LI->getOperand(0);
2023 Type *SrcTy = SrcOp->getType();
2024 Type *DstTy = LI->getType();
2025
2026 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2027 // if the integer type is the same size as the pointer type.
2028 if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
2029 Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
2030 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2031 // Transfer the cast to the constant.
2032 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2033 ConstantExpr::getIntToPtr(RHSC, SrcTy),
2034 Q, MaxRecurse-1))
2035 return V;
2036 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2037 if (RI->getOperand(0)->getType() == SrcTy)
2038 // Compare without the cast.
2039 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2040 Q, MaxRecurse-1))
2041 return V;
2042 }
2043 }
2044
2045 if (isa<ZExtInst>(LHS)) {
2046 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2047 // same type.
2048 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2049 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2050 // Compare X and Y. Note that signed predicates become unsigned.
2051 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2052 SrcOp, RI->getOperand(0), Q,
2053 MaxRecurse-1))
2054 return V;
2055 }
2056 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2057 // too. If not, then try to deduce the result of the comparison.
2058 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2059 // Compute the constant that would happen if we truncated to SrcTy then
2060 // reextended to DstTy.
2061 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2062 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2063
2064 // If the re-extended constant didn't change then this is effectively
2065 // also a case of comparing two zero-extended values.
2066 if (RExt == CI && MaxRecurse)
2067 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2068 SrcOp, Trunc, Q, MaxRecurse-1))
2069 return V;
2070
2071 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2072 // there. Use this to work out the result of the comparison.
2073 if (RExt != CI) {
2074 switch (Pred) {
2075 default: llvm_unreachable("Unknown ICmp predicate!");
2076 // LHS <u RHS.
2077 case ICmpInst::ICMP_EQ:
2078 case ICmpInst::ICMP_UGT:
2079 case ICmpInst::ICMP_UGE:
2080 return ConstantInt::getFalse(CI->getContext());
2081
2082 case ICmpInst::ICMP_NE:
2083 case ICmpInst::ICMP_ULT:
2084 case ICmpInst::ICMP_ULE:
2085 return ConstantInt::getTrue(CI->getContext());
2086
2087 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
2088 // is non-negative then LHS <s RHS.
2089 case ICmpInst::ICMP_SGT:
2090 case ICmpInst::ICMP_SGE:
2091 return CI->getValue().isNegative() ?
2092 ConstantInt::getTrue(CI->getContext()) :
2093 ConstantInt::getFalse(CI->getContext());
2094
2095 case ICmpInst::ICMP_SLT:
2096 case ICmpInst::ICMP_SLE:
2097 return CI->getValue().isNegative() ?
2098 ConstantInt::getFalse(CI->getContext()) :
2099 ConstantInt::getTrue(CI->getContext());
2100 }
2101 }
2102 }
2103 }
2104
2105 if (isa<SExtInst>(LHS)) {
2106 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2107 // same type.
2108 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2109 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2110 // Compare X and Y. Note that the predicate does not change.
2111 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2112 Q, MaxRecurse-1))
2113 return V;
2114 }
2115 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2116 // too. If not, then try to deduce the result of the comparison.
2117 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2118 // Compute the constant that would happen if we truncated to SrcTy then
2119 // reextended to DstTy.
2120 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2121 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2122
2123 // If the re-extended constant didn't change then this is effectively
2124 // also a case of comparing two sign-extended values.
2125 if (RExt == CI && MaxRecurse)
2126 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
2127 return V;
2128
2129 // Otherwise the upper bits of LHS are all equal, while RHS has varying
2130 // bits there. Use this to work out the result of the comparison.
2131 if (RExt != CI) {
2132 switch (Pred) {
2133 default: llvm_unreachable("Unknown ICmp predicate!");
2134 case ICmpInst::ICMP_EQ:
2135 return ConstantInt::getFalse(CI->getContext());
2136 case ICmpInst::ICMP_NE:
2137 return ConstantInt::getTrue(CI->getContext());
2138
2139 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
2140 // LHS >s RHS.
2141 case ICmpInst::ICMP_SGT:
2142 case ICmpInst::ICMP_SGE:
2143 return CI->getValue().isNegative() ?
2144 ConstantInt::getTrue(CI->getContext()) :
2145 ConstantInt::getFalse(CI->getContext());
2146 case ICmpInst::ICMP_SLT:
2147 case ICmpInst::ICMP_SLE:
2148 return CI->getValue().isNegative() ?
2149 ConstantInt::getFalse(CI->getContext()) :
2150 ConstantInt::getTrue(CI->getContext());
2151
2152 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
2153 // LHS >u RHS.
2154 case ICmpInst::ICMP_UGT:
2155 case ICmpInst::ICMP_UGE:
2156 // Comparison is true iff the LHS <s 0.
2157 if (MaxRecurse)
2158 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2159 Constant::getNullValue(SrcTy),
2160 Q, MaxRecurse-1))
2161 return V;
2162 break;
2163 case ICmpInst::ICMP_ULT:
2164 case ICmpInst::ICMP_ULE:
2165 // Comparison is true iff the LHS >=s 0.
2166 if (MaxRecurse)
2167 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2168 Constant::getNullValue(SrcTy),
2169 Q, MaxRecurse-1))
2170 return V;
2171 break;
2172 }
2173 }
2174 }
2175 }
2176 }
2177
2178 // Special logic for binary operators.
2179 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2180 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2181 if (MaxRecurse && (LBO || RBO)) {
2182 // Analyze the case when either LHS or RHS is an add instruction.
2183 Value *A = 0, *B = 0, *C = 0, *D = 0;
2184 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2185 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2186 if (LBO && LBO->getOpcode() == Instruction::Add) {
2187 A = LBO->getOperand(0); B = LBO->getOperand(1);
2188 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2189 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2190 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2191 }
2192 if (RBO && RBO->getOpcode() == Instruction::Add) {
2193 C = RBO->getOperand(0); D = RBO->getOperand(1);
2194 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2195 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2196 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2197 }
2198
2199 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2200 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2201 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2202 Constant::getNullValue(RHS->getType()),
2203 Q, MaxRecurse-1))
2204 return V;
2205
2206 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2207 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2208 if (Value *V = SimplifyICmpInst(Pred,
2209 Constant::getNullValue(LHS->getType()),
2210 C == LHS ? D : C, Q, MaxRecurse-1))
2211 return V;
2212
2213 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2214 if (A && C && (A == C || A == D || B == C || B == D) &&
2215 NoLHSWrapProblem && NoRHSWrapProblem) {
2216 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2217 Value *Y, *Z;
2218 if (A == C) {
2219 // C + B == C + D -> B == D
2220 Y = B;
2221 Z = D;
2222 } else if (A == D) {
2223 // D + B == C + D -> B == C
2224 Y = B;
2225 Z = C;
2226 } else if (B == C) {
2227 // A + C == C + D -> A == D
2228 Y = A;
2229 Z = D;
2230 } else {
2231 assert(B == D);
2232 // A + D == C + D -> A == C
2233 Y = A;
2234 Z = C;
2235 }
2236 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2237 return V;
2238 }
2239 }
2240
2241 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2242 bool KnownNonNegative, KnownNegative;
2243 switch (Pred) {
2244 default:
2245 break;
2246 case ICmpInst::ICMP_SGT:
2247 case ICmpInst::ICMP_SGE:
2248 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2249 if (!KnownNonNegative)
2250 break;
2251 // fall-through
2252 case ICmpInst::ICMP_EQ:
2253 case ICmpInst::ICMP_UGT:
2254 case ICmpInst::ICMP_UGE:
2255 return getFalse(ITy);
2256 case ICmpInst::ICMP_SLT:
2257 case ICmpInst::ICMP_SLE:
2258 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2259 if (!KnownNonNegative)
2260 break;
2261 // fall-through
2262 case ICmpInst::ICMP_NE:
2263 case ICmpInst::ICMP_ULT:
2264 case ICmpInst::ICMP_ULE:
2265 return getTrue(ITy);
2266 }
2267 }
2268 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2269 bool KnownNonNegative, KnownNegative;
2270 switch (Pred) {
2271 default:
2272 break;
2273 case ICmpInst::ICMP_SGT:
2274 case ICmpInst::ICMP_SGE:
2275 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2276 if (!KnownNonNegative)
2277 break;
2278 // fall-through
2279 case ICmpInst::ICMP_NE:
2280 case ICmpInst::ICMP_UGT:
2281 case ICmpInst::ICMP_UGE:
2282 return getTrue(ITy);
2283 case ICmpInst::ICMP_SLT:
2284 case ICmpInst::ICMP_SLE:
2285 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2286 if (!KnownNonNegative)
2287 break;
2288 // fall-through
2289 case ICmpInst::ICMP_EQ:
2290 case ICmpInst::ICMP_ULT:
2291 case ICmpInst::ICMP_ULE:
2292 return getFalse(ITy);
2293 }
2294 }
2295
2296 // x udiv y <=u x.
2297 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2298 // icmp pred (X /u Y), X
2299 if (Pred == ICmpInst::ICMP_UGT)
2300 return getFalse(ITy);
2301 if (Pred == ICmpInst::ICMP_ULE)
2302 return getTrue(ITy);
2303 }
2304
2305 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2306 LBO->getOperand(1) == RBO->getOperand(1)) {
2307 switch (LBO->getOpcode()) {
2308 default: break;
2309 case Instruction::UDiv:
2310 case Instruction::LShr:
2311 if (ICmpInst::isSigned(Pred))
2312 break;
2313 // fall-through
2314 case Instruction::SDiv:
2315 case Instruction::AShr:
2316 if (!LBO->isExact() || !RBO->isExact())
2317 break;
2318 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2319 RBO->getOperand(0), Q, MaxRecurse-1))
2320 return V;
2321 break;
2322 case Instruction::Shl: {
2323 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2324 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2325 if (!NUW && !NSW)
2326 break;
2327 if (!NSW && ICmpInst::isSigned(Pred))
2328 break;
2329 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2330 RBO->getOperand(0), Q, MaxRecurse-1))
2331 return V;
2332 break;
2333 }
2334 }
2335 }
2336
2337 // Simplify comparisons involving max/min.
2338 Value *A, *B;
2339 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2340 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2341
2342 // Signed variants on "max(a,b)>=a -> true".
2343 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2344 if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2345 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2346 // We analyze this as smax(A, B) pred A.
2347 P = Pred;
2348 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2349 (A == LHS || B == LHS)) {
2350 if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2351 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2352 // We analyze this as smax(A, B) swapped-pred A.
2353 P = CmpInst::getSwappedPredicate(Pred);
2354 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2355 (A == RHS || B == RHS)) {
2356 if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2357 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2358 // We analyze this as smax(-A, -B) swapped-pred -A.
2359 // Note that we do not need to actually form -A or -B thanks to EqP.
2360 P = CmpInst::getSwappedPredicate(Pred);
2361 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2362 (A == LHS || B == LHS)) {
2363 if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2364 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2365 // We analyze this as smax(-A, -B) pred -A.
2366 // Note that we do not need to actually form -A or -B thanks to EqP.
2367 P = Pred;
2368 }
2369 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2370 // Cases correspond to "max(A, B) p A".
2371 switch (P) {
2372 default:
2373 break;
2374 case CmpInst::ICMP_EQ:
2375 case CmpInst::ICMP_SLE:
2376 // Equivalent to "A EqP B". This may be the same as the condition tested
2377 // in the max/min; if so, we can just return that.
2378 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2379 return V;
2380 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2381 return V;
2382 // Otherwise, see if "A EqP B" simplifies.
2383 if (MaxRecurse)
2384 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2385 return V;
2386 break;
2387 case CmpInst::ICMP_NE:
2388 case CmpInst::ICMP_SGT: {
2389 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2390 // Equivalent to "A InvEqP B". This may be the same as the condition
2391 // tested in the max/min; if so, we can just return that.
2392 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2393 return V;
2394 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2395 return V;
2396 // Otherwise, see if "A InvEqP B" simplifies.
2397 if (MaxRecurse)
2398 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2399 return V;
2400 break;
2401 }
2402 case CmpInst::ICMP_SGE:
2403 // Always true.
2404 return getTrue(ITy);
2405 case CmpInst::ICMP_SLT:
2406 // Always false.
2407 return getFalse(ITy);
2408 }
2409 }
2410
2411 // Unsigned variants on "max(a,b)>=a -> true".
2412 P = CmpInst::BAD_ICMP_PREDICATE;
2413 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2414 if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2415 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2416 // We analyze this as umax(A, B) pred A.
2417 P = Pred;
2418 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2419 (A == LHS || B == LHS)) {
2420 if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2421 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2422 // We analyze this as umax(A, B) swapped-pred A.
2423 P = CmpInst::getSwappedPredicate(Pred);
2424 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2425 (A == RHS || B == RHS)) {
2426 if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2427 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2428 // We analyze this as umax(-A, -B) swapped-pred -A.
2429 // Note that we do not need to actually form -A or -B thanks to EqP.
2430 P = CmpInst::getSwappedPredicate(Pred);
2431 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2432 (A == LHS || B == LHS)) {
2433 if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2434 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2435 // We analyze this as umax(-A, -B) pred -A.
2436 // Note that we do not need to actually form -A or -B thanks to EqP.
2437 P = Pred;
2438 }
2439 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2440 // Cases correspond to "max(A, B) p A".
2441 switch (P) {
2442 default:
2443 break;
2444 case CmpInst::ICMP_EQ:
2445 case CmpInst::ICMP_ULE:
2446 // Equivalent to "A EqP B". This may be the same as the condition tested
2447 // in the max/min; if so, we can just return that.
2448 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2449 return V;
2450 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2451 return V;
2452 // Otherwise, see if "A EqP B" simplifies.
2453 if (MaxRecurse)
2454 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2455 return V;
2456 break;
2457 case CmpInst::ICMP_NE:
2458 case CmpInst::ICMP_UGT: {
2459 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2460 // Equivalent to "A InvEqP B". This may be the same as the condition
2461 // tested in the max/min; if so, we can just return that.
2462 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2463 return V;
2464 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2465 return V;
2466 // Otherwise, see if "A InvEqP B" simplifies.
2467 if (MaxRecurse)
2468 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2469 return V;
2470 break;
2471 }
2472 case CmpInst::ICMP_UGE:
2473 // Always true.
2474 return getTrue(ITy);
2475 case CmpInst::ICMP_ULT:
2476 // Always false.
2477 return getFalse(ITy);
2478 }
2479 }
2480
2481 // Variants on "max(x,y) >= min(x,z)".
2482 Value *C, *D;
2483 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2484 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2485 (A == C || A == D || B == C || B == D)) {
2486 // max(x, ?) pred min(x, ?).
2487 if (Pred == CmpInst::ICMP_SGE)
2488 // Always true.
2489 return getTrue(ITy);
2490 if (Pred == CmpInst::ICMP_SLT)
2491 // Always false.
2492 return getFalse(ITy);
2493 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2494 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2495 (A == C || A == D || B == C || B == D)) {
2496 // min(x, ?) pred max(x, ?).
2497 if (Pred == CmpInst::ICMP_SLE)
2498 // Always true.
2499 return getTrue(ITy);
2500 if (Pred == CmpInst::ICMP_SGT)
2501 // Always false.
2502 return getFalse(ITy);
2503 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2504 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2505 (A == C || A == D || B == C || B == D)) {
2506 // max(x, ?) pred min(x, ?).
2507 if (Pred == CmpInst::ICMP_UGE)
2508 // Always true.
2509 return getTrue(ITy);
2510 if (Pred == CmpInst::ICMP_ULT)
2511 // Always false.
2512 return getFalse(ITy);
2513 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2514 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2515 (A == C || A == D || B == C || B == D)) {
2516 // min(x, ?) pred max(x, ?).
2517 if (Pred == CmpInst::ICMP_ULE)
2518 // Always true.
2519 return getTrue(ITy);
2520 if (Pred == CmpInst::ICMP_UGT)
2521 // Always false.
2522 return getFalse(ITy);
2523 }
2524
2525 // Simplify comparisons of related pointers using a powerful, recursive
2526 // GEP-walk when we have target data available..
2527 if (LHS->getType()->isPointerTy())
2528 if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
2529 return C;
2530
2531 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2532 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2533 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2534 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2535 (ICmpInst::isEquality(Pred) ||
2536 (GLHS->isInBounds() && GRHS->isInBounds() &&
2537 Pred == ICmpInst::getSignedPredicate(Pred)))) {
2538 // The bases are equal and the indices are constant. Build a constant
2539 // expression GEP with the same indices and a null base pointer to see
2540 // what constant folding can make out of it.
2541 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2542 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2543 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2544
2545 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2546 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2547 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2548 }
2549 }
2550 }
2551
2552 // If the comparison is with the result of a select instruction, check whether
2553 // comparing with either branch of the select always yields the same value.
2554 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2555 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2556 return V;
2557
2558 // If the comparison is with the result of a phi instruction, check whether
2559 // doing the compare with each incoming phi value yields a common result.
2560 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2561 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2562 return V;
2563
2564 return 0;
2565 }
2566
SimplifyICmpInst(unsigned Predicate,Value * LHS,Value * RHS,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2567 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2568 const DataLayout *TD,
2569 const TargetLibraryInfo *TLI,
2570 const DominatorTree *DT) {
2571 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2572 RecursionLimit);
2573 }
2574
2575 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2576 /// fold the result. If not, this returns null.
SimplifyFCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)2577 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2578 const Query &Q, unsigned MaxRecurse) {
2579 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2580 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2581
2582 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2583 if (Constant *CRHS = dyn_cast<Constant>(RHS))
2584 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
2585
2586 // If we have a constant, make sure it is on the RHS.
2587 std::swap(LHS, RHS);
2588 Pred = CmpInst::getSwappedPredicate(Pred);
2589 }
2590
2591 // Fold trivial predicates.
2592 if (Pred == FCmpInst::FCMP_FALSE)
2593 return ConstantInt::get(GetCompareTy(LHS), 0);
2594 if (Pred == FCmpInst::FCMP_TRUE)
2595 return ConstantInt::get(GetCompareTy(LHS), 1);
2596
2597 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
2598 return UndefValue::get(GetCompareTy(LHS));
2599
2600 // fcmp x,x -> true/false. Not all compares are foldable.
2601 if (LHS == RHS) {
2602 if (CmpInst::isTrueWhenEqual(Pred))
2603 return ConstantInt::get(GetCompareTy(LHS), 1);
2604 if (CmpInst::isFalseWhenEqual(Pred))
2605 return ConstantInt::get(GetCompareTy(LHS), 0);
2606 }
2607
2608 // Handle fcmp with constant RHS
2609 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2610 // If the constant is a nan, see if we can fold the comparison based on it.
2611 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2612 if (CFP->getValueAPF().isNaN()) {
2613 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
2614 return ConstantInt::getFalse(CFP->getContext());
2615 assert(FCmpInst::isUnordered(Pred) &&
2616 "Comparison must be either ordered or unordered!");
2617 // True if unordered.
2618 return ConstantInt::getTrue(CFP->getContext());
2619 }
2620 // Check whether the constant is an infinity.
2621 if (CFP->getValueAPF().isInfinity()) {
2622 if (CFP->getValueAPF().isNegative()) {
2623 switch (Pred) {
2624 case FCmpInst::FCMP_OLT:
2625 // No value is ordered and less than negative infinity.
2626 return ConstantInt::getFalse(CFP->getContext());
2627 case FCmpInst::FCMP_UGE:
2628 // All values are unordered with or at least negative infinity.
2629 return ConstantInt::getTrue(CFP->getContext());
2630 default:
2631 break;
2632 }
2633 } else {
2634 switch (Pred) {
2635 case FCmpInst::FCMP_OGT:
2636 // No value is ordered and greater than infinity.
2637 return ConstantInt::getFalse(CFP->getContext());
2638 case FCmpInst::FCMP_ULE:
2639 // All values are unordered with and at most infinity.
2640 return ConstantInt::getTrue(CFP->getContext());
2641 default:
2642 break;
2643 }
2644 }
2645 }
2646 }
2647 }
2648
2649 // If the comparison is with the result of a select instruction, check whether
2650 // comparing with either branch of the select always yields the same value.
2651 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2652 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2653 return V;
2654
2655 // If the comparison is with the result of a phi instruction, check whether
2656 // doing the compare with each incoming phi value yields a common result.
2657 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2658 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2659 return V;
2660
2661 return 0;
2662 }
2663
SimplifyFCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2664 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2665 const DataLayout *TD,
2666 const TargetLibraryInfo *TLI,
2667 const DominatorTree *DT) {
2668 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2669 RecursionLimit);
2670 }
2671
2672 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2673 /// the result. If not, this returns null.
SimplifySelectInst(Value * CondVal,Value * TrueVal,Value * FalseVal,const Query & Q,unsigned MaxRecurse)2674 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2675 Value *FalseVal, const Query &Q,
2676 unsigned MaxRecurse) {
2677 // select true, X, Y -> X
2678 // select false, X, Y -> Y
2679 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2680 return CB->getZExtValue() ? TrueVal : FalseVal;
2681
2682 // select C, X, X -> X
2683 if (TrueVal == FalseVal)
2684 return TrueVal;
2685
2686 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
2687 if (isa<Constant>(TrueVal))
2688 return TrueVal;
2689 return FalseVal;
2690 }
2691 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
2692 return FalseVal;
2693 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
2694 return TrueVal;
2695
2696 return 0;
2697 }
2698
SimplifySelectInst(Value * Cond,Value * TrueVal,Value * FalseVal,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2699 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
2700 const DataLayout *TD,
2701 const TargetLibraryInfo *TLI,
2702 const DominatorTree *DT) {
2703 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2704 RecursionLimit);
2705 }
2706
2707 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2708 /// fold the result. If not, this returns null.
SimplifyGEPInst(ArrayRef<Value * > Ops,const Query & Q,unsigned)2709 static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
2710 // The type of the GEP pointer operand.
2711 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2712 // The GEP pointer operand is not a pointer, it's a vector of pointers.
2713 if (!PtrTy)
2714 return 0;
2715
2716 // getelementptr P -> P.
2717 if (Ops.size() == 1)
2718 return Ops[0];
2719
2720 if (isa<UndefValue>(Ops[0])) {
2721 // Compute the (pointer) type returned by the GEP instruction.
2722 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2723 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2724 return UndefValue::get(GEPTy);
2725 }
2726
2727 if (Ops.size() == 2) {
2728 // getelementptr P, 0 -> P.
2729 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2730 if (C->isZero())
2731 return Ops[0];
2732 // getelementptr P, N -> P if P points to a type of zero size.
2733 if (Q.TD) {
2734 Type *Ty = PtrTy->getElementType();
2735 if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
2736 return Ops[0];
2737 }
2738 }
2739
2740 // Check to see if this is constant foldable.
2741 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2742 if (!isa<Constant>(Ops[i]))
2743 return 0;
2744
2745 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2746 }
2747
SimplifyGEPInst(ArrayRef<Value * > Ops,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2748 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
2749 const TargetLibraryInfo *TLI,
2750 const DominatorTree *DT) {
2751 return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2752 }
2753
2754 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2755 /// can fold the result. If not, this returns null.
SimplifyInsertValueInst(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const Query & Q,unsigned)2756 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2757 ArrayRef<unsigned> Idxs, const Query &Q,
2758 unsigned) {
2759 if (Constant *CAgg = dyn_cast<Constant>(Agg))
2760 if (Constant *CVal = dyn_cast<Constant>(Val))
2761 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2762
2763 // insertvalue x, undef, n -> x
2764 if (match(Val, m_Undef()))
2765 return Agg;
2766
2767 // insertvalue x, (extractvalue y, n), n
2768 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2769 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2770 EV->getIndices() == Idxs) {
2771 // insertvalue undef, (extractvalue y, n), n -> y
2772 if (match(Agg, m_Undef()))
2773 return EV->getAggregateOperand();
2774
2775 // insertvalue y, (extractvalue y, n), n -> y
2776 if (Agg == EV->getAggregateOperand())
2777 return Agg;
2778 }
2779
2780 return 0;
2781 }
2782
SimplifyInsertValueInst(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2783 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2784 ArrayRef<unsigned> Idxs,
2785 const DataLayout *TD,
2786 const TargetLibraryInfo *TLI,
2787 const DominatorTree *DT) {
2788 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2789 RecursionLimit);
2790 }
2791
2792 /// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
SimplifyPHINode(PHINode * PN,const Query & Q)2793 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
2794 // If all of the PHI's incoming values are the same then replace the PHI node
2795 // with the common value.
2796 Value *CommonValue = 0;
2797 bool HasUndefInput = false;
2798 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2799 Value *Incoming = PN->getIncomingValue(i);
2800 // If the incoming value is the phi node itself, it can safely be skipped.
2801 if (Incoming == PN) continue;
2802 if (isa<UndefValue>(Incoming)) {
2803 // Remember that we saw an undef value, but otherwise ignore them.
2804 HasUndefInput = true;
2805 continue;
2806 }
2807 if (CommonValue && Incoming != CommonValue)
2808 return 0; // Not the same, bail out.
2809 CommonValue = Incoming;
2810 }
2811
2812 // If CommonValue is null then all of the incoming values were either undef or
2813 // equal to the phi node itself.
2814 if (!CommonValue)
2815 return UndefValue::get(PN->getType());
2816
2817 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2818 // instruction, we cannot return X as the result of the PHI node unless it
2819 // dominates the PHI block.
2820 if (HasUndefInput)
2821 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
2822
2823 return CommonValue;
2824 }
2825
SimplifyTruncInst(Value * Op,Type * Ty,const Query & Q,unsigned)2826 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2827 if (Constant *C = dyn_cast<Constant>(Op))
2828 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2829
2830 return 0;
2831 }
2832
SimplifyTruncInst(Value * Op,Type * Ty,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2833 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
2834 const TargetLibraryInfo *TLI,
2835 const DominatorTree *DT) {
2836 return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2837 }
2838
2839 //=== Helper functions for higher up the class hierarchy.
2840
2841 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2842 /// fold the result. If not, this returns null.
SimplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)2843 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2844 const Query &Q, unsigned MaxRecurse) {
2845 switch (Opcode) {
2846 case Instruction::Add:
2847 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2848 Q, MaxRecurse);
2849 case Instruction::FAdd:
2850 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2851
2852 case Instruction::Sub:
2853 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2854 Q, MaxRecurse);
2855 case Instruction::FSub:
2856 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2857
2858 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
2859 case Instruction::FMul:
2860 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2861 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2862 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2863 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2864 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2865 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2866 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
2867 case Instruction::Shl:
2868 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2869 Q, MaxRecurse);
2870 case Instruction::LShr:
2871 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2872 case Instruction::AShr:
2873 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2874 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2875 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2876 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
2877 default:
2878 if (Constant *CLHS = dyn_cast<Constant>(LHS))
2879 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2880 Constant *COps[] = {CLHS, CRHS};
2881 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2882 Q.TLI);
2883 }
2884
2885 // If the operation is associative, try some generic simplifications.
2886 if (Instruction::isAssociative(Opcode))
2887 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
2888 return V;
2889
2890 // If the operation is with the result of a select instruction check whether
2891 // operating on either branch of the select always yields the same value.
2892 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2893 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
2894 return V;
2895
2896 // If the operation is with the result of a phi instruction, check whether
2897 // operating on all incoming values of the phi always yields the same value.
2898 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2899 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
2900 return V;
2901
2902 return 0;
2903 }
2904 }
2905
SimplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2906 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2907 const DataLayout *TD, const TargetLibraryInfo *TLI,
2908 const DominatorTree *DT) {
2909 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
2910 }
2911
2912 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2913 /// fold the result.
SimplifyCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)2914 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2915 const Query &Q, unsigned MaxRecurse) {
2916 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2917 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2918 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2919 }
2920
SimplifyCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2921 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2922 const DataLayout *TD, const TargetLibraryInfo *TLI,
2923 const DominatorTree *DT) {
2924 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2925 RecursionLimit);
2926 }
2927
IsIdempotent(Intrinsic::ID ID)2928 static bool IsIdempotent(Intrinsic::ID ID) {
2929 switch (ID) {
2930 default: return false;
2931
2932 // Unary idempotent: f(f(x)) = f(x)
2933 case Intrinsic::fabs:
2934 case Intrinsic::floor:
2935 case Intrinsic::ceil:
2936 case Intrinsic::trunc:
2937 case Intrinsic::rint:
2938 case Intrinsic::nearbyint:
2939 return true;
2940 }
2941 }
2942
2943 template <typename IterTy>
SimplifyIntrinsic(Intrinsic::ID IID,IterTy ArgBegin,IterTy ArgEnd,const Query & Q,unsigned MaxRecurse)2944 static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
2945 const Query &Q, unsigned MaxRecurse) {
2946 // Perform idempotent optimizations
2947 if (!IsIdempotent(IID))
2948 return 0;
2949
2950 // Unary Ops
2951 if (std::distance(ArgBegin, ArgEnd) == 1)
2952 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
2953 if (II->getIntrinsicID() == IID)
2954 return II;
2955
2956 return 0;
2957 }
2958
2959 template <typename IterTy>
SimplifyCall(Value * V,IterTy ArgBegin,IterTy ArgEnd,const Query & Q,unsigned MaxRecurse)2960 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
2961 const Query &Q, unsigned MaxRecurse) {
2962 Type *Ty = V->getType();
2963 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
2964 Ty = PTy->getElementType();
2965 FunctionType *FTy = cast<FunctionType>(Ty);
2966
2967 // call undef -> undef
2968 if (isa<UndefValue>(V))
2969 return UndefValue::get(FTy->getReturnType());
2970
2971 Function *F = dyn_cast<Function>(V);
2972 if (!F)
2973 return 0;
2974
2975 if (unsigned IID = F->getIntrinsicID())
2976 if (Value *Ret =
2977 SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
2978 return Ret;
2979
2980 if (!canConstantFoldCallTo(F))
2981 return 0;
2982
2983 SmallVector<Constant *, 4> ConstantArgs;
2984 ConstantArgs.reserve(ArgEnd - ArgBegin);
2985 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
2986 Constant *C = dyn_cast<Constant>(*I);
2987 if (!C)
2988 return 0;
2989 ConstantArgs.push_back(C);
2990 }
2991
2992 return ConstantFoldCall(F, ConstantArgs, Q.TLI);
2993 }
2994
SimplifyCall(Value * V,User::op_iterator ArgBegin,User::op_iterator ArgEnd,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2995 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
2996 User::op_iterator ArgEnd, const DataLayout *TD,
2997 const TargetLibraryInfo *TLI,
2998 const DominatorTree *DT) {
2999 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT),
3000 RecursionLimit);
3001 }
3002
SimplifyCall(Value * V,ArrayRef<Value * > Args,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)3003 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
3004 const DataLayout *TD, const TargetLibraryInfo *TLI,
3005 const DominatorTree *DT) {
3006 return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT),
3007 RecursionLimit);
3008 }
3009
3010 /// SimplifyInstruction - See if we can compute a simplified version of this
3011 /// instruction. If not, this returns null.
SimplifyInstruction(Instruction * I,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)3012 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
3013 const TargetLibraryInfo *TLI,
3014 const DominatorTree *DT) {
3015 Value *Result;
3016
3017 switch (I->getOpcode()) {
3018 default:
3019 Result = ConstantFoldInstruction(I, TD, TLI);
3020 break;
3021 case Instruction::FAdd:
3022 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
3023 I->getFastMathFlags(), TD, TLI, DT);
3024 break;
3025 case Instruction::Add:
3026 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
3027 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3028 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
3029 TD, TLI, DT);
3030 break;
3031 case Instruction::FSub:
3032 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
3033 I->getFastMathFlags(), TD, TLI, DT);
3034 break;
3035 case Instruction::Sub:
3036 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
3037 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3038 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
3039 TD, TLI, DT);
3040 break;
3041 case Instruction::FMul:
3042 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
3043 I->getFastMathFlags(), TD, TLI, DT);
3044 break;
3045 case Instruction::Mul:
3046 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3047 break;
3048 case Instruction::SDiv:
3049 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3050 break;
3051 case Instruction::UDiv:
3052 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3053 break;
3054 case Instruction::FDiv:
3055 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3056 break;
3057 case Instruction::SRem:
3058 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3059 break;
3060 case Instruction::URem:
3061 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3062 break;
3063 case Instruction::FRem:
3064 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3065 break;
3066 case Instruction::Shl:
3067 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
3068 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3069 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
3070 TD, TLI, DT);
3071 break;
3072 case Instruction::LShr:
3073 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
3074 cast<BinaryOperator>(I)->isExact(),
3075 TD, TLI, DT);
3076 break;
3077 case Instruction::AShr:
3078 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
3079 cast<BinaryOperator>(I)->isExact(),
3080 TD, TLI, DT);
3081 break;
3082 case Instruction::And:
3083 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3084 break;
3085 case Instruction::Or:
3086 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3087 break;
3088 case Instruction::Xor:
3089 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3090 break;
3091 case Instruction::ICmp:
3092 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
3093 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3094 break;
3095 case Instruction::FCmp:
3096 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
3097 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3098 break;
3099 case Instruction::Select:
3100 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
3101 I->getOperand(2), TD, TLI, DT);
3102 break;
3103 case Instruction::GetElementPtr: {
3104 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
3105 Result = SimplifyGEPInst(Ops, TD, TLI, DT);
3106 break;
3107 }
3108 case Instruction::InsertValue: {
3109 InsertValueInst *IV = cast<InsertValueInst>(I);
3110 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
3111 IV->getInsertedValueOperand(),
3112 IV->getIndices(), TD, TLI, DT);
3113 break;
3114 }
3115 case Instruction::PHI:
3116 Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
3117 break;
3118 case Instruction::Call: {
3119 CallSite CS(cast<CallInst>(I));
3120 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
3121 TD, TLI, DT);
3122 break;
3123 }
3124 case Instruction::Trunc:
3125 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
3126 break;
3127 }
3128
3129 /// If called on unreachable code, the above logic may report that the
3130 /// instruction simplified to itself. Make life easier for users by
3131 /// detecting that case here, returning a safe value instead.
3132 return Result == I ? UndefValue::get(I->getType()) : Result;
3133 }
3134
3135 /// \brief Implementation of recursive simplification through an instructions
3136 /// uses.
3137 ///
3138 /// This is the common implementation of the recursive simplification routines.
3139 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
3140 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
3141 /// instructions to process and attempt to simplify it using
3142 /// InstructionSimplify.
3143 ///
3144 /// This routine returns 'true' only when *it* simplifies something. The passed
3145 /// in simplified value does not count toward this.
replaceAndRecursivelySimplifyImpl(Instruction * I,Value * SimpleV,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)3146 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
3147 const DataLayout *TD,
3148 const TargetLibraryInfo *TLI,
3149 const DominatorTree *DT) {
3150 bool Simplified = false;
3151 SmallSetVector<Instruction *, 8> Worklist;
3152
3153 // If we have an explicit value to collapse to, do that round of the
3154 // simplification loop by hand initially.
3155 if (SimpleV) {
3156 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3157 ++UI)
3158 if (*UI != I)
3159 Worklist.insert(cast<Instruction>(*UI));
3160
3161 // Replace the instruction with its simplified value.
3162 I->replaceAllUsesWith(SimpleV);
3163
3164 // Gracefully handle edge cases where the instruction is not wired into any
3165 // parent block.
3166 if (I->getParent())
3167 I->eraseFromParent();
3168 } else {
3169 Worklist.insert(I);
3170 }
3171
3172 // Note that we must test the size on each iteration, the worklist can grow.
3173 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
3174 I = Worklist[Idx];
3175
3176 // See if this instruction simplifies.
3177 SimpleV = SimplifyInstruction(I, TD, TLI, DT);
3178 if (!SimpleV)
3179 continue;
3180
3181 Simplified = true;
3182
3183 // Stash away all the uses of the old instruction so we can check them for
3184 // recursive simplifications after a RAUW. This is cheaper than checking all
3185 // uses of To on the recursive step in most cases.
3186 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3187 ++UI)
3188 Worklist.insert(cast<Instruction>(*UI));
3189
3190 // Replace the instruction with its simplified value.
3191 I->replaceAllUsesWith(SimpleV);
3192
3193 // Gracefully handle edge cases where the instruction is not wired into any
3194 // parent block.
3195 if (I->getParent())
3196 I->eraseFromParent();
3197 }
3198 return Simplified;
3199 }
3200
recursivelySimplifyInstruction(Instruction * I,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)3201 bool llvm::recursivelySimplifyInstruction(Instruction *I,
3202 const DataLayout *TD,
3203 const TargetLibraryInfo *TLI,
3204 const DominatorTree *DT) {
3205 return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
3206 }
3207
replaceAndRecursivelySimplify(Instruction * I,Value * SimpleV,const DataLayout * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)3208 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
3209 const DataLayout *TD,
3210 const TargetLibraryInfo *TLI,
3211 const DominatorTree *DT) {
3212 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
3213 assert(SimpleV && "Must provide a simplified value.");
3214 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
3215 }
3216