1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines several CodeGen-specific LLVM IR analysis utilties.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Target/TargetLowering.h"
27 using namespace llvm;
28
29 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
30 /// of insertvalue or extractvalue indices that identify a member, return
31 /// the linearized index of the start of the member.
32 ///
ComputeLinearIndex(Type * Ty,const unsigned * Indices,const unsigned * IndicesEnd,unsigned CurIndex)33 unsigned llvm::ComputeLinearIndex(Type *Ty,
34 const unsigned *Indices,
35 const unsigned *IndicesEnd,
36 unsigned CurIndex) {
37 // Base case: We're done.
38 if (Indices && Indices == IndicesEnd)
39 return CurIndex;
40
41 // Given a struct type, recursively traverse the elements.
42 if (StructType *STy = dyn_cast<StructType>(Ty)) {
43 for (StructType::element_iterator EB = STy->element_begin(),
44 EI = EB,
45 EE = STy->element_end();
46 EI != EE; ++EI) {
47 if (Indices && *Indices == unsigned(EI - EB))
48 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
49 CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
50 }
51 return CurIndex;
52 }
53 // Given an array type, recursively traverse the elements.
54 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
55 Type *EltTy = ATy->getElementType();
56 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
57 if (Indices && *Indices == i)
58 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
59 CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
60 }
61 return CurIndex;
62 }
63 // We haven't found the type we're looking for, so keep searching.
64 return CurIndex + 1;
65 }
66
67 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
68 /// EVTs that represent all the individual underlying
69 /// non-aggregate types that comprise it.
70 ///
71 /// If Offsets is non-null, it points to a vector to be filled in
72 /// with the in-memory offsets of each of the individual values.
73 ///
ComputeValueVTs(const TargetLowering & TLI,Type * Ty,SmallVectorImpl<EVT> & ValueVTs,SmallVectorImpl<uint64_t> * Offsets,uint64_t StartingOffset)74 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
75 SmallVectorImpl<EVT> &ValueVTs,
76 SmallVectorImpl<uint64_t> *Offsets,
77 uint64_t StartingOffset) {
78 // Given a struct type, recursively traverse the elements.
79 if (StructType *STy = dyn_cast<StructType>(Ty)) {
80 const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
81 for (StructType::element_iterator EB = STy->element_begin(),
82 EI = EB,
83 EE = STy->element_end();
84 EI != EE; ++EI)
85 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
86 StartingOffset + SL->getElementOffset(EI - EB));
87 return;
88 }
89 // Given an array type, recursively traverse the elements.
90 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
91 Type *EltTy = ATy->getElementType();
92 uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
93 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
94 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
95 StartingOffset + i * EltSize);
96 return;
97 }
98 // Interpret void as zero return values.
99 if (Ty->isVoidTy())
100 return;
101 // Base case: we can get an EVT for this LLVM IR type.
102 ValueVTs.push_back(TLI.getValueType(Ty));
103 if (Offsets)
104 Offsets->push_back(StartingOffset);
105 }
106
107 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
ExtractTypeInfo(Value * V)108 GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
109 V = V->stripPointerCasts();
110 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
111
112 if (GV && GV->getName() == "llvm.eh.catch.all.value") {
113 assert(GV->hasInitializer() &&
114 "The EH catch-all value must have an initializer");
115 Value *Init = GV->getInitializer();
116 GV = dyn_cast<GlobalVariable>(Init);
117 if (!GV) V = cast<ConstantPointerNull>(Init);
118 }
119
120 assert((GV || isa<ConstantPointerNull>(V)) &&
121 "TypeInfo must be a global variable or NULL");
122 return GV;
123 }
124
125 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
126 /// processed uses a memory 'm' constraint.
127 bool
hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector & CInfos,const TargetLowering & TLI)128 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
129 const TargetLowering &TLI) {
130 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
131 InlineAsm::ConstraintInfo &CI = CInfos[i];
132 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
133 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
134 if (CType == TargetLowering::C_Memory)
135 return true;
136 }
137
138 // Indirect operand accesses access memory.
139 if (CI.isIndirect)
140 return true;
141 }
142
143 return false;
144 }
145
146 /// getFCmpCondCode - Return the ISD condition code corresponding to
147 /// the given LLVM IR floating-point condition code. This includes
148 /// consideration of global floating-point math flags.
149 ///
getFCmpCondCode(FCmpInst::Predicate Pred)150 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
151 switch (Pred) {
152 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
153 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
154 case FCmpInst::FCMP_OGT: return ISD::SETOGT;
155 case FCmpInst::FCMP_OGE: return ISD::SETOGE;
156 case FCmpInst::FCMP_OLT: return ISD::SETOLT;
157 case FCmpInst::FCMP_OLE: return ISD::SETOLE;
158 case FCmpInst::FCMP_ONE: return ISD::SETONE;
159 case FCmpInst::FCMP_ORD: return ISD::SETO;
160 case FCmpInst::FCMP_UNO: return ISD::SETUO;
161 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
162 case FCmpInst::FCMP_UGT: return ISD::SETUGT;
163 case FCmpInst::FCMP_UGE: return ISD::SETUGE;
164 case FCmpInst::FCMP_ULT: return ISD::SETULT;
165 case FCmpInst::FCMP_ULE: return ISD::SETULE;
166 case FCmpInst::FCMP_UNE: return ISD::SETUNE;
167 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
168 default: llvm_unreachable("Invalid FCmp predicate opcode!");
169 }
170 }
171
getFCmpCodeWithoutNaN(ISD::CondCode CC)172 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
173 switch (CC) {
174 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
175 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
176 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
177 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
178 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
179 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
180 default: return CC;
181 }
182 }
183
184 /// getICmpCondCode - Return the ISD condition code corresponding to
185 /// the given LLVM IR integer condition code.
186 ///
getICmpCondCode(ICmpInst::Predicate Pred)187 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
188 switch (Pred) {
189 case ICmpInst::ICMP_EQ: return ISD::SETEQ;
190 case ICmpInst::ICMP_NE: return ISD::SETNE;
191 case ICmpInst::ICMP_SLE: return ISD::SETLE;
192 case ICmpInst::ICMP_ULE: return ISD::SETULE;
193 case ICmpInst::ICMP_SGE: return ISD::SETGE;
194 case ICmpInst::ICMP_UGE: return ISD::SETUGE;
195 case ICmpInst::ICMP_SLT: return ISD::SETLT;
196 case ICmpInst::ICMP_ULT: return ISD::SETULT;
197 case ICmpInst::ICMP_SGT: return ISD::SETGT;
198 case ICmpInst::ICMP_UGT: return ISD::SETUGT;
199 default:
200 llvm_unreachable("Invalid ICmp predicate opcode!");
201 }
202 }
203
204
205 /// getNoopInput - If V is a noop (i.e., lowers to no machine code), look
206 /// through it (and any transitive noop operands to it) and return its input
207 /// value. This is used to determine if a tail call can be formed.
208 ///
getNoopInput(const Value * V,const TargetLowering & TLI)209 static const Value *getNoopInput(const Value *V, const TargetLowering &TLI) {
210 // If V is not an instruction, it can't be looked through.
211 const Instruction *I = dyn_cast<Instruction>(V);
212 if (I == 0 || !I->hasOneUse() || I->getNumOperands() == 0) return V;
213
214 Value *Op = I->getOperand(0);
215
216 // Look through truly no-op truncates.
217 if (isa<TruncInst>(I) &&
218 TLI.isTruncateFree(I->getOperand(0)->getType(), I->getType()))
219 return getNoopInput(I->getOperand(0), TLI);
220
221 // Look through truly no-op bitcasts.
222 if (isa<BitCastInst>(I)) {
223 // No type change at all.
224 if (Op->getType() == I->getType())
225 return getNoopInput(Op, TLI);
226
227 // Pointer to pointer cast.
228 if (Op->getType()->isPointerTy() && I->getType()->isPointerTy())
229 return getNoopInput(Op, TLI);
230
231 if (isa<VectorType>(Op->getType()) && isa<VectorType>(I->getType()) &&
232 TLI.isTypeLegal(EVT::getEVT(Op->getType())) &&
233 TLI.isTypeLegal(EVT::getEVT(I->getType())))
234 return getNoopInput(Op, TLI);
235 }
236
237 // Look through inttoptr.
238 if (isa<IntToPtrInst>(I) && !isa<VectorType>(I->getType())) {
239 // Make sure this isn't a truncating or extending cast. We could support
240 // this eventually, but don't bother for now.
241 if (TLI.getPointerTy().getSizeInBits() ==
242 cast<IntegerType>(Op->getType())->getBitWidth())
243 return getNoopInput(Op, TLI);
244 }
245
246 // Look through ptrtoint.
247 if (isa<PtrToIntInst>(I) && !isa<VectorType>(I->getType())) {
248 // Make sure this isn't a truncating or extending cast. We could support
249 // this eventually, but don't bother for now.
250 if (TLI.getPointerTy().getSizeInBits() ==
251 cast<IntegerType>(I->getType())->getBitWidth())
252 return getNoopInput(Op, TLI);
253 }
254
255
256 // Otherwise it's not something we can look through.
257 return V;
258 }
259
260
261 /// Test if the given instruction is in a position to be optimized
262 /// with a tail-call. This roughly means that it's in a block with
263 /// a return and there's nothing that needs to be scheduled
264 /// between it and the return.
265 ///
266 /// This function only tests target-independent requirements.
isInTailCallPosition(ImmutableCallSite CS,const TargetLowering & TLI)267 bool llvm::isInTailCallPosition(ImmutableCallSite CS,const TargetLowering &TLI){
268 const Instruction *I = CS.getInstruction();
269 const BasicBlock *ExitBB = I->getParent();
270 const TerminatorInst *Term = ExitBB->getTerminator();
271 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
272
273 // The block must end in a return statement or unreachable.
274 //
275 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
276 // an unreachable, for now. The way tailcall optimization is currently
277 // implemented means it will add an epilogue followed by a jump. That is
278 // not profitable. Also, if the callee is a special function (e.g.
279 // longjmp on x86), it can end up causing miscompilation that has not
280 // been fully understood.
281 if (!Ret &&
282 (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt ||
283 !isa<UnreachableInst>(Term)))
284 return false;
285
286 // If I will have a chain, make sure no other instruction that will have a
287 // chain interposes between I and the return.
288 if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
289 !isSafeToSpeculativelyExecute(I))
290 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
291 --BBI) {
292 if (&*BBI == I)
293 break;
294 // Debug info intrinsics do not get in the way of tail call optimization.
295 if (isa<DbgInfoIntrinsic>(BBI))
296 continue;
297 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
298 !isSafeToSpeculativelyExecute(BBI))
299 return false;
300 }
301
302 // If the block ends with a void return or unreachable, it doesn't matter
303 // what the call's return type is.
304 if (!Ret || Ret->getNumOperands() == 0) return true;
305
306 // If the return value is undef, it doesn't matter what the call's
307 // return type is.
308 if (isa<UndefValue>(Ret->getOperand(0))) return true;
309
310 // Conservatively require the attributes of the call to match those of
311 // the return. Ignore noalias because it doesn't affect the call sequence.
312 const Function *F = ExitBB->getParent();
313 AttributeSet CallerAttrs = F->getAttributes();
314 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
315 removeAttribute(Attribute::NoAlias) !=
316 AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
317 removeAttribute(Attribute::NoAlias))
318 return false;
319
320 // It's not safe to eliminate the sign / zero extension of the return value.
321 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
322 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
323 return false;
324
325 // Otherwise, make sure the unmodified return value of I is the return value.
326 // We handle two cases: multiple return values + scalars.
327 Value *RetVal = Ret->getOperand(0);
328 if (!isa<InsertValueInst>(RetVal) || !isa<StructType>(RetVal->getType()))
329 // Handle scalars first.
330 return getNoopInput(Ret->getOperand(0), TLI) == I;
331
332 // If this is an aggregate return, look through the insert/extract values and
333 // see if each is transparent.
334 for (unsigned i = 0, e =cast<StructType>(RetVal->getType())->getNumElements();
335 i != e; ++i) {
336 const Value *InScalar = FindInsertedValue(RetVal, i);
337 if (InScalar == 0) return false;
338 InScalar = getNoopInput(InScalar, TLI);
339
340 // If the scalar value being inserted is an extractvalue of the right index
341 // from the call, then everything is good.
342 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(InScalar);
343 if (EVI == 0 || EVI->getOperand(0) != I || EVI->getNumIndices() != 1 ||
344 EVI->getIndices()[0] != i)
345 return false;
346 }
347
348 return true;
349 }
350