• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LiveRangeEdit class represents changes done to a virtual register when it
11 // is spilled or split.
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "regalloc"
15 #include "llvm/CodeGen/LiveRangeEdit.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/CalcSpillWeights.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/VirtRegMap.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 
26 using namespace llvm;
27 
28 STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
30 STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
31 
anchor()32 void LiveRangeEdit::Delegate::anchor() { }
33 
createFrom(unsigned OldReg)34 LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg) {
35   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
36   if (VRM) {
37     VRM->grow();
38     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
39   }
40   LiveInterval &LI = LIS.getOrCreateInterval(VReg);
41   NewRegs.push_back(&LI);
42   return LI;
43 }
44 
checkRematerializable(VNInfo * VNI,const MachineInstr * DefMI,AliasAnalysis * aa)45 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
46                                           const MachineInstr *DefMI,
47                                           AliasAnalysis *aa) {
48   assert(DefMI && "Missing instruction");
49   ScannedRemattable = true;
50   if (!TII.isTriviallyReMaterializable(DefMI, aa))
51     return false;
52   Remattable.insert(VNI);
53   return true;
54 }
55 
scanRemattable(AliasAnalysis * aa)56 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
57   for (LiveInterval::vni_iterator I = getParent().vni_begin(),
58        E = getParent().vni_end(); I != E; ++I) {
59     VNInfo *VNI = *I;
60     if (VNI->isUnused())
61       continue;
62     MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
63     if (!DefMI)
64       continue;
65     checkRematerializable(VNI, DefMI, aa);
66   }
67   ScannedRemattable = true;
68 }
69 
anyRematerializable(AliasAnalysis * aa)70 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
71   if (!ScannedRemattable)
72     scanRemattable(aa);
73   return !Remattable.empty();
74 }
75 
76 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
77 /// OrigIdx are also available with the same value at UseIdx.
allUsesAvailableAt(const MachineInstr * OrigMI,SlotIndex OrigIdx,SlotIndex UseIdx)78 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
79                                        SlotIndex OrigIdx,
80                                        SlotIndex UseIdx) {
81   OrigIdx = OrigIdx.getRegSlot(true);
82   UseIdx = UseIdx.getRegSlot(true);
83   for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
84     const MachineOperand &MO = OrigMI->getOperand(i);
85     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
86       continue;
87 
88     // We can't remat physreg uses, unless it is a constant.
89     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
90       if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
91         continue;
92       return false;
93     }
94 
95     LiveInterval &li = LIS.getInterval(MO.getReg());
96     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
97     if (!OVNI)
98       continue;
99 
100     // Don't allow rematerialization immediately after the original def.
101     // It would be incorrect if OrigMI redefines the register.
102     // See PR14098.
103     if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
104       return false;
105 
106     if (OVNI != li.getVNInfoAt(UseIdx))
107       return false;
108   }
109   return true;
110 }
111 
canRematerializeAt(Remat & RM,SlotIndex UseIdx,bool cheapAsAMove)112 bool LiveRangeEdit::canRematerializeAt(Remat &RM,
113                                        SlotIndex UseIdx,
114                                        bool cheapAsAMove) {
115   assert(ScannedRemattable && "Call anyRematerializable first");
116 
117   // Use scanRemattable info.
118   if (!Remattable.count(RM.ParentVNI))
119     return false;
120 
121   // No defining instruction provided.
122   SlotIndex DefIdx;
123   if (RM.OrigMI)
124     DefIdx = LIS.getInstructionIndex(RM.OrigMI);
125   else {
126     DefIdx = RM.ParentVNI->def;
127     RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
128     assert(RM.OrigMI && "No defining instruction for remattable value");
129   }
130 
131   // If only cheap remats were requested, bail out early.
132   if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
133     return false;
134 
135   // Verify that all used registers are available with the same values.
136   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
137     return false;
138 
139   return true;
140 }
141 
rematerializeAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,const Remat & RM,const TargetRegisterInfo & tri,bool Late)142 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
143                                          MachineBasicBlock::iterator MI,
144                                          unsigned DestReg,
145                                          const Remat &RM,
146                                          const TargetRegisterInfo &tri,
147                                          bool Late) {
148   assert(RM.OrigMI && "Invalid remat");
149   TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
150   Rematted.insert(RM.ParentVNI);
151   return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
152            .getRegSlot();
153 }
154 
eraseVirtReg(unsigned Reg)155 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
156   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
157     LIS.removeInterval(Reg);
158 }
159 
foldAsLoad(LiveInterval * LI,SmallVectorImpl<MachineInstr * > & Dead)160 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
161                                SmallVectorImpl<MachineInstr*> &Dead) {
162   MachineInstr *DefMI = 0, *UseMI = 0;
163 
164   // Check that there is a single def and a single use.
165   for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg),
166        E = MRI.reg_nodbg_end(); I != E; ++I) {
167     MachineOperand &MO = I.getOperand();
168     MachineInstr *MI = MO.getParent();
169     if (MO.isDef()) {
170       if (DefMI && DefMI != MI)
171         return false;
172       if (!MI->canFoldAsLoad())
173         return false;
174       DefMI = MI;
175     } else if (!MO.isUndef()) {
176       if (UseMI && UseMI != MI)
177         return false;
178       // FIXME: Targets don't know how to fold subreg uses.
179       if (MO.getSubReg())
180         return false;
181       UseMI = MI;
182     }
183   }
184   if (!DefMI || !UseMI)
185     return false;
186 
187   // Since we're moving the DefMI load, make sure we're not extending any live
188   // ranges.
189   if (!allUsesAvailableAt(DefMI,
190                           LIS.getInstructionIndex(DefMI),
191                           LIS.getInstructionIndex(UseMI)))
192     return false;
193 
194   // We also need to make sure it is safe to move the load.
195   // Assume there are stores between DefMI and UseMI.
196   bool SawStore = true;
197   if (!DefMI->isSafeToMove(&TII, 0, SawStore))
198     return false;
199 
200   DEBUG(dbgs() << "Try to fold single def: " << *DefMI
201                << "       into single use: " << *UseMI);
202 
203   SmallVector<unsigned, 8> Ops;
204   if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
205     return false;
206 
207   MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
208   if (!FoldMI)
209     return false;
210   DEBUG(dbgs() << "                folded: " << *FoldMI);
211   LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
212   UseMI->eraseFromParent();
213   DefMI->addRegisterDead(LI->reg, 0);
214   Dead.push_back(DefMI);
215   ++NumDCEFoldedLoads;
216   return true;
217 }
218 
eliminateDeadDefs(SmallVectorImpl<MachineInstr * > & Dead,ArrayRef<unsigned> RegsBeingSpilled)219 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
220                                       ArrayRef<unsigned> RegsBeingSpilled) {
221   SetVector<LiveInterval*,
222             SmallVector<LiveInterval*, 8>,
223             SmallPtrSet<LiveInterval*, 8> > ToShrink;
224 
225   for (;;) {
226     // Erase all dead defs.
227     while (!Dead.empty()) {
228       MachineInstr *MI = Dead.pop_back_val();
229       assert(MI->allDefsAreDead() && "Def isn't really dead");
230       SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
231 
232       // Never delete inline asm.
233       if (MI->isInlineAsm()) {
234         DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
235         continue;
236       }
237 
238       // Use the same criteria as DeadMachineInstructionElim.
239       bool SawStore = false;
240       if (!MI->isSafeToMove(&TII, 0, SawStore)) {
241         DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
242         continue;
243       }
244 
245       DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
246 
247       // Collect virtual registers to be erased after MI is gone.
248       SmallVector<unsigned, 8> RegsToErase;
249       bool ReadsPhysRegs = false;
250 
251       // Check for live intervals that may shrink
252       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
253              MOE = MI->operands_end(); MOI != MOE; ++MOI) {
254         if (!MOI->isReg())
255           continue;
256         unsigned Reg = MOI->getReg();
257         if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
258           // Check if MI reads any unreserved physregs.
259           if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
260             ReadsPhysRegs = true;
261           continue;
262         }
263         LiveInterval &LI = LIS.getInterval(Reg);
264 
265         // Shrink read registers, unless it is likely to be expensive and
266         // unlikely to change anything. We typically don't want to shrink the
267         // PIC base register that has lots of uses everywhere.
268         // Always shrink COPY uses that probably come from live range splitting.
269         if (MI->readsVirtualRegister(Reg) &&
270             (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
271              LI.killedAt(Idx)))
272           ToShrink.insert(&LI);
273 
274         // Remove defined value.
275         if (MOI->isDef()) {
276           if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
277             if (TheDelegate)
278               TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
279             LI.removeValNo(VNI);
280             if (LI.empty())
281               RegsToErase.push_back(Reg);
282           }
283         }
284       }
285 
286       // Currently, we don't support DCE of physreg live ranges. If MI reads
287       // any unreserved physregs, don't erase the instruction, but turn it into
288       // a KILL instead. This way, the physreg live ranges don't end up
289       // dangling.
290       // FIXME: It would be better to have something like shrinkToUses() for
291       // physregs. That could potentially enable more DCE and it would free up
292       // the physreg. It would not happen often, though.
293       if (ReadsPhysRegs) {
294         MI->setDesc(TII.get(TargetOpcode::KILL));
295         // Remove all operands that aren't physregs.
296         for (unsigned i = MI->getNumOperands(); i; --i) {
297           const MachineOperand &MO = MI->getOperand(i-1);
298           if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
299             continue;
300           MI->RemoveOperand(i-1);
301         }
302         DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
303       } else {
304         if (TheDelegate)
305           TheDelegate->LRE_WillEraseInstruction(MI);
306         LIS.RemoveMachineInstrFromMaps(MI);
307         MI->eraseFromParent();
308         ++NumDCEDeleted;
309       }
310 
311       // Erase any virtregs that are now empty and unused. There may be <undef>
312       // uses around. Keep the empty live range in that case.
313       for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
314         unsigned Reg = RegsToErase[i];
315         if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
316           ToShrink.remove(&LIS.getInterval(Reg));
317           eraseVirtReg(Reg);
318         }
319       }
320     }
321 
322     if (ToShrink.empty())
323       break;
324 
325     // Shrink just one live interval. Then delete new dead defs.
326     LiveInterval *LI = ToShrink.back();
327     ToShrink.pop_back();
328     if (foldAsLoad(LI, Dead))
329       continue;
330     if (TheDelegate)
331       TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
332     if (!LIS.shrinkToUses(LI, &Dead))
333       continue;
334 
335     // Don't create new intervals for a register being spilled.
336     // The new intervals would have to be spilled anyway so its not worth it.
337     // Also they currently aren't spilled so creating them and not spilling
338     // them results in incorrect code.
339     bool BeingSpilled = false;
340     for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
341       if (LI->reg == RegsBeingSpilled[i]) {
342         BeingSpilled = true;
343         break;
344       }
345     }
346 
347     if (BeingSpilled) continue;
348 
349     // LI may have been separated, create new intervals.
350     LI->RenumberValues(LIS);
351     ConnectedVNInfoEqClasses ConEQ(LIS);
352     unsigned NumComp = ConEQ.Classify(LI);
353     if (NumComp <= 1)
354       continue;
355     ++NumFracRanges;
356     bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
357     DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
358     SmallVector<LiveInterval*, 8> Dups(1, LI);
359     for (unsigned i = 1; i != NumComp; ++i) {
360       Dups.push_back(&createFrom(LI->reg));
361       // If LI is an original interval that hasn't been split yet, make the new
362       // intervals their own originals instead of referring to LI. The original
363       // interval must contain all the split products, and LI doesn't.
364       if (IsOriginal)
365         VRM->setIsSplitFromReg(Dups.back()->reg, 0);
366       if (TheDelegate)
367         TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
368     }
369     ConEQ.Distribute(&Dups[0], MRI);
370     DEBUG({
371       for (unsigned i = 0; i != NumComp; ++i)
372         dbgs() << '\t' << *Dups[i] << '\n';
373     });
374   }
375 }
376 
calculateRegClassAndHint(MachineFunction & MF,const MachineLoopInfo & Loops)377 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
378                                              const MachineLoopInfo &Loops) {
379   VirtRegAuxInfo VRAI(MF, LIS, Loops);
380   for (iterator I = begin(), E = end(); I != E; ++I) {
381     LiveInterval &LI = **I;
382     if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
383       DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
384                    << MRI.getRegClass(LI.reg)->getName() << '\n');
385     VRAI.CalculateWeightAndHint(LI);
386   }
387 }
388