1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "machine-trace-metrics"
11 #include "llvm/CodeGen/MachineTraceMetrics.h"
12 #include "llvm/ADT/PostOrderIterator.h"
13 #include "llvm/ADT/SparseSet.h"
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
16 #include "llvm/CodeGen/MachineLoopInfo.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/MC/MCSubtargetInfo.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
25
26 using namespace llvm;
27
28 char MachineTraceMetrics::ID = 0;
29 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;
30
31 INITIALIZE_PASS_BEGIN(MachineTraceMetrics,
32 "machine-trace-metrics", "Machine Trace Metrics", false, true)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)33 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
34 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
35 INITIALIZE_PASS_END(MachineTraceMetrics,
36 "machine-trace-metrics", "Machine Trace Metrics", false, true)
37
38 MachineTraceMetrics::MachineTraceMetrics()
39 : MachineFunctionPass(ID), MF(0), TII(0), TRI(0), MRI(0), Loops(0) {
40 std::fill(Ensembles, array_endof(Ensembles), (Ensemble*)0);
41 }
42
getAnalysisUsage(AnalysisUsage & AU) const43 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
44 AU.setPreservesAll();
45 AU.addRequired<MachineBranchProbabilityInfo>();
46 AU.addRequired<MachineLoopInfo>();
47 MachineFunctionPass::getAnalysisUsage(AU);
48 }
49
runOnMachineFunction(MachineFunction & Func)50 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
51 MF = &Func;
52 TII = MF->getTarget().getInstrInfo();
53 TRI = MF->getTarget().getRegisterInfo();
54 MRI = &MF->getRegInfo();
55 Loops = &getAnalysis<MachineLoopInfo>();
56 const TargetSubtargetInfo &ST =
57 MF->getTarget().getSubtarget<TargetSubtargetInfo>();
58 SchedModel.init(*ST.getSchedModel(), &ST, TII);
59 BlockInfo.resize(MF->getNumBlockIDs());
60 return false;
61 }
62
releaseMemory()63 void MachineTraceMetrics::releaseMemory() {
64 MF = 0;
65 BlockInfo.clear();
66 for (unsigned i = 0; i != TS_NumStrategies; ++i) {
67 delete Ensembles[i];
68 Ensembles[i] = 0;
69 }
70 }
71
72 //===----------------------------------------------------------------------===//
73 // Fixed block information
74 //===----------------------------------------------------------------------===//
75 //
76 // The number of instructions in a basic block and the CPU resources used by
77 // those instructions don't depend on any given trace strategy.
78
79 /// Compute the resource usage in basic block MBB.
80 const MachineTraceMetrics::FixedBlockInfo*
getResources(const MachineBasicBlock * MBB)81 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
82 assert(MBB && "No basic block");
83 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
84 if (FBI->hasResources())
85 return FBI;
86
87 // Compute resource usage in the block.
88 // FIXME: Compute per-functional unit counts.
89 FBI->HasCalls = false;
90 unsigned InstrCount = 0;
91 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
92 I != E; ++I) {
93 const MachineInstr *MI = I;
94 if (MI->isTransient())
95 continue;
96 ++InstrCount;
97 if (MI->isCall())
98 FBI->HasCalls = true;
99 }
100 FBI->InstrCount = InstrCount;
101 return FBI;
102 }
103
104 //===----------------------------------------------------------------------===//
105 // Ensemble utility functions
106 //===----------------------------------------------------------------------===//
107
Ensemble(MachineTraceMetrics * ct)108 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
109 : MTM(*ct) {
110 BlockInfo.resize(MTM.BlockInfo.size());
111 }
112
113 // Virtual destructor serves as an anchor.
~Ensemble()114 MachineTraceMetrics::Ensemble::~Ensemble() {}
115
116 const MachineLoop*
getLoopFor(const MachineBasicBlock * MBB) const117 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
118 return MTM.Loops->getLoopFor(MBB);
119 }
120
121 // Update resource-related information in the TraceBlockInfo for MBB.
122 // Only update resources related to the trace above MBB.
123 void MachineTraceMetrics::Ensemble::
computeDepthResources(const MachineBasicBlock * MBB)124 computeDepthResources(const MachineBasicBlock *MBB) {
125 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
126
127 // Compute resources from trace above. The top block is simple.
128 if (!TBI->Pred) {
129 TBI->InstrDepth = 0;
130 TBI->Head = MBB->getNumber();
131 return;
132 }
133
134 // Compute from the block above. A post-order traversal ensures the
135 // predecessor is always computed first.
136 TraceBlockInfo *PredTBI = &BlockInfo[TBI->Pred->getNumber()];
137 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
138 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
139 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
140 TBI->Head = PredTBI->Head;
141 }
142
143 // Update resource-related information in the TraceBlockInfo for MBB.
144 // Only update resources related to the trace below MBB.
145 void MachineTraceMetrics::Ensemble::
computeHeightResources(const MachineBasicBlock * MBB)146 computeHeightResources(const MachineBasicBlock *MBB) {
147 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
148
149 // Compute resources for the current block.
150 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
151
152 // The trace tail is done.
153 if (!TBI->Succ) {
154 TBI->Tail = MBB->getNumber();
155 return;
156 }
157
158 // Compute from the block below. A post-order traversal ensures the
159 // predecessor is always computed first.
160 TraceBlockInfo *SuccTBI = &BlockInfo[TBI->Succ->getNumber()];
161 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
162 TBI->InstrHeight += SuccTBI->InstrHeight;
163 TBI->Tail = SuccTBI->Tail;
164 }
165
166 // Check if depth resources for MBB are valid and return the TBI.
167 // Return NULL if the resources have been invalidated.
168 const MachineTraceMetrics::TraceBlockInfo*
169 MachineTraceMetrics::Ensemble::
getDepthResources(const MachineBasicBlock * MBB) const170 getDepthResources(const MachineBasicBlock *MBB) const {
171 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
172 return TBI->hasValidDepth() ? TBI : 0;
173 }
174
175 // Check if height resources for MBB are valid and return the TBI.
176 // Return NULL if the resources have been invalidated.
177 const MachineTraceMetrics::TraceBlockInfo*
178 MachineTraceMetrics::Ensemble::
getHeightResources(const MachineBasicBlock * MBB) const179 getHeightResources(const MachineBasicBlock *MBB) const {
180 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
181 return TBI->hasValidHeight() ? TBI : 0;
182 }
183
184 //===----------------------------------------------------------------------===//
185 // Trace Selection Strategies
186 //===----------------------------------------------------------------------===//
187 //
188 // A trace selection strategy is implemented as a sub-class of Ensemble. The
189 // trace through a block B is computed by two DFS traversals of the CFG
190 // starting from B. One upwards, and one downwards. During the upwards DFS,
191 // pickTracePred() is called on the post-ordered blocks. During the downwards
192 // DFS, pickTraceSucc() is called in a post-order.
193 //
194
195 // We never allow traces that leave loops, but we do allow traces to enter
196 // nested loops. We also never allow traces to contain back-edges.
197 //
198 // This means that a loop header can never appear above the center block of a
199 // trace, except as the trace head. Below the center block, loop exiting edges
200 // are banned.
201 //
202 // Return true if an edge from the From loop to the To loop is leaving a loop.
203 // Either of To and From can be null.
isExitingLoop(const MachineLoop * From,const MachineLoop * To)204 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
205 return From && !From->contains(To);
206 }
207
208 // MinInstrCountEnsemble - Pick the trace that executes the least number of
209 // instructions.
210 namespace {
211 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
getName() const212 const char *getName() const { return "MinInstr"; }
213 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*);
214 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*);
215
216 public:
MinInstrCountEnsemble(MachineTraceMetrics * mtm)217 MinInstrCountEnsemble(MachineTraceMetrics *mtm)
218 : MachineTraceMetrics::Ensemble(mtm) {}
219 };
220 }
221
222 // Select the preferred predecessor for MBB.
223 const MachineBasicBlock*
pickTracePred(const MachineBasicBlock * MBB)224 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
225 if (MBB->pred_empty())
226 return 0;
227 const MachineLoop *CurLoop = getLoopFor(MBB);
228 // Don't leave loops, and never follow back-edges.
229 if (CurLoop && MBB == CurLoop->getHeader())
230 return 0;
231 unsigned CurCount = MTM.getResources(MBB)->InstrCount;
232 const MachineBasicBlock *Best = 0;
233 unsigned BestDepth = 0;
234 for (MachineBasicBlock::const_pred_iterator
235 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
236 const MachineBasicBlock *Pred = *I;
237 const MachineTraceMetrics::TraceBlockInfo *PredTBI =
238 getDepthResources(Pred);
239 // Ignore cycles that aren't natural loops.
240 if (!PredTBI)
241 continue;
242 // Pick the predecessor that would give this block the smallest InstrDepth.
243 unsigned Depth = PredTBI->InstrDepth + CurCount;
244 if (!Best || Depth < BestDepth)
245 Best = Pred, BestDepth = Depth;
246 }
247 return Best;
248 }
249
250 // Select the preferred successor for MBB.
251 const MachineBasicBlock*
pickTraceSucc(const MachineBasicBlock * MBB)252 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
253 if (MBB->pred_empty())
254 return 0;
255 const MachineLoop *CurLoop = getLoopFor(MBB);
256 const MachineBasicBlock *Best = 0;
257 unsigned BestHeight = 0;
258 for (MachineBasicBlock::const_succ_iterator
259 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
260 const MachineBasicBlock *Succ = *I;
261 // Don't consider back-edges.
262 if (CurLoop && Succ == CurLoop->getHeader())
263 continue;
264 // Don't consider successors exiting CurLoop.
265 if (isExitingLoop(CurLoop, getLoopFor(Succ)))
266 continue;
267 const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
268 getHeightResources(Succ);
269 // Ignore cycles that aren't natural loops.
270 if (!SuccTBI)
271 continue;
272 // Pick the successor that would give this block the smallest InstrHeight.
273 unsigned Height = SuccTBI->InstrHeight;
274 if (!Best || Height < BestHeight)
275 Best = Succ, BestHeight = Height;
276 }
277 return Best;
278 }
279
280 // Get an Ensemble sub-class for the requested trace strategy.
281 MachineTraceMetrics::Ensemble *
getEnsemble(MachineTraceMetrics::Strategy strategy)282 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
283 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
284 Ensemble *&E = Ensembles[strategy];
285 if (E)
286 return E;
287
288 // Allocate new Ensemble on demand.
289 switch (strategy) {
290 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
291 default: llvm_unreachable("Invalid trace strategy enum");
292 }
293 }
294
invalidate(const MachineBasicBlock * MBB)295 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
296 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n');
297 BlockInfo[MBB->getNumber()].invalidate();
298 for (unsigned i = 0; i != TS_NumStrategies; ++i)
299 if (Ensembles[i])
300 Ensembles[i]->invalidate(MBB);
301 }
302
verifyAnalysis() const303 void MachineTraceMetrics::verifyAnalysis() const {
304 if (!MF)
305 return;
306 #ifndef NDEBUG
307 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
308 for (unsigned i = 0; i != TS_NumStrategies; ++i)
309 if (Ensembles[i])
310 Ensembles[i]->verify();
311 #endif
312 }
313
314 //===----------------------------------------------------------------------===//
315 // Trace building
316 //===----------------------------------------------------------------------===//
317 //
318 // Traces are built by two CFG traversals. To avoid recomputing too much, use a
319 // set abstraction that confines the search to the current loop, and doesn't
320 // revisit blocks.
321
322 namespace {
323 struct LoopBounds {
324 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
325 SmallPtrSet<const MachineBasicBlock*, 8> Visited;
326 const MachineLoopInfo *Loops;
327 bool Downward;
LoopBounds__anon098373b70211::LoopBounds328 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
329 const MachineLoopInfo *loops)
330 : Blocks(blocks), Loops(loops), Downward(false) {}
331 };
332 }
333
334 // Specialize po_iterator_storage in order to prune the post-order traversal so
335 // it is limited to the current loop and doesn't traverse the loop back edges.
336 namespace llvm {
337 template<>
338 class po_iterator_storage<LoopBounds, true> {
339 LoopBounds &LB;
340 public:
po_iterator_storage(LoopBounds & lb)341 po_iterator_storage(LoopBounds &lb) : LB(lb) {}
finishPostorder(const MachineBasicBlock *)342 void finishPostorder(const MachineBasicBlock*) {}
343
insertEdge(const MachineBasicBlock * From,const MachineBasicBlock * To)344 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) {
345 // Skip already visited To blocks.
346 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
347 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
348 return false;
349 // From is null once when To is the trace center block.
350 if (From) {
351 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) {
352 // Don't follow backedges, don't leave FromLoop when going upwards.
353 if ((LB.Downward ? To : From) == FromLoop->getHeader())
354 return false;
355 // Don't leave FromLoop.
356 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
357 return false;
358 }
359 }
360 // To is a new block. Mark the block as visited in case the CFG has cycles
361 // that MachineLoopInfo didn't recognize as a natural loop.
362 return LB.Visited.insert(To);
363 }
364 };
365 }
366
367 /// Compute the trace through MBB.
computeTrace(const MachineBasicBlock * MBB)368 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
369 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#"
370 << MBB->getNumber() << '\n');
371 // Set up loop bounds for the backwards post-order traversal.
372 LoopBounds Bounds(BlockInfo, MTM.Loops);
373
374 // Run an upwards post-order search for the trace start.
375 Bounds.Downward = false;
376 Bounds.Visited.clear();
377 typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO;
378 for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds);
379 I != E; ++I) {
380 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": ");
381 TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
382 // All the predecessors have been visited, pick the preferred one.
383 TBI.Pred = pickTracePred(*I);
384 DEBUG({
385 if (TBI.Pred)
386 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n';
387 else
388 dbgs() << "null\n";
389 });
390 // The trace leading to I is now known, compute the depth resources.
391 computeDepthResources(*I);
392 }
393
394 // Run a downwards post-order search for the trace end.
395 Bounds.Downward = true;
396 Bounds.Visited.clear();
397 typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO;
398 for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds);
399 I != E; ++I) {
400 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": ");
401 TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
402 // All the successors have been visited, pick the preferred one.
403 TBI.Succ = pickTraceSucc(*I);
404 DEBUG({
405 if (TBI.Succ)
406 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n';
407 else
408 dbgs() << "null\n";
409 });
410 // The trace leaving I is now known, compute the height resources.
411 computeHeightResources(*I);
412 }
413 }
414
415 /// Invalidate traces through BadMBB.
416 void
invalidate(const MachineBasicBlock * BadMBB)417 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
418 SmallVector<const MachineBasicBlock*, 16> WorkList;
419 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];
420
421 // Invalidate height resources of blocks above MBB.
422 if (BadTBI.hasValidHeight()) {
423 BadTBI.invalidateHeight();
424 WorkList.push_back(BadMBB);
425 do {
426 const MachineBasicBlock *MBB = WorkList.pop_back_val();
427 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
428 << " height.\n");
429 // Find any MBB predecessors that have MBB as their preferred successor.
430 // They are the only ones that need to be invalidated.
431 for (MachineBasicBlock::const_pred_iterator
432 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
433 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
434 if (!TBI.hasValidHeight())
435 continue;
436 if (TBI.Succ == MBB) {
437 TBI.invalidateHeight();
438 WorkList.push_back(*I);
439 continue;
440 }
441 // Verify that TBI.Succ is actually a *I successor.
442 assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed");
443 }
444 } while (!WorkList.empty());
445 }
446
447 // Invalidate depth resources of blocks below MBB.
448 if (BadTBI.hasValidDepth()) {
449 BadTBI.invalidateDepth();
450 WorkList.push_back(BadMBB);
451 do {
452 const MachineBasicBlock *MBB = WorkList.pop_back_val();
453 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
454 << " depth.\n");
455 // Find any MBB successors that have MBB as their preferred predecessor.
456 // They are the only ones that need to be invalidated.
457 for (MachineBasicBlock::const_succ_iterator
458 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
459 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
460 if (!TBI.hasValidDepth())
461 continue;
462 if (TBI.Pred == MBB) {
463 TBI.invalidateDepth();
464 WorkList.push_back(*I);
465 continue;
466 }
467 // Verify that TBI.Pred is actually a *I predecessor.
468 assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed");
469 }
470 } while (!WorkList.empty());
471 }
472
473 // Clear any per-instruction data. We only have to do this for BadMBB itself
474 // because the instructions in that block may change. Other blocks may be
475 // invalidated, but their instructions will stay the same, so there is no
476 // need to erase the Cycle entries. They will be overwritten when we
477 // recompute.
478 for (MachineBasicBlock::const_iterator I = BadMBB->begin(), E = BadMBB->end();
479 I != E; ++I)
480 Cycles.erase(I);
481 }
482
verify() const483 void MachineTraceMetrics::Ensemble::verify() const {
484 #ifndef NDEBUG
485 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
486 "Outdated BlockInfo size");
487 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
488 const TraceBlockInfo &TBI = BlockInfo[Num];
489 if (TBI.hasValidDepth() && TBI.Pred) {
490 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
491 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
492 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
493 "Trace is broken, depth should have been invalidated.");
494 const MachineLoop *Loop = getLoopFor(MBB);
495 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
496 }
497 if (TBI.hasValidHeight() && TBI.Succ) {
498 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
499 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
500 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
501 "Trace is broken, height should have been invalidated.");
502 const MachineLoop *Loop = getLoopFor(MBB);
503 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
504 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
505 "Trace contains backedge");
506 }
507 }
508 #endif
509 }
510
511 //===----------------------------------------------------------------------===//
512 // Data Dependencies
513 //===----------------------------------------------------------------------===//
514 //
515 // Compute the depth and height of each instruction based on data dependencies
516 // and instruction latencies. These cycle numbers assume that the CPU can issue
517 // an infinite number of instructions per cycle as long as their dependencies
518 // are ready.
519
520 // A data dependency is represented as a defining MI and operand numbers on the
521 // defining and using MI.
522 namespace {
523 struct DataDep {
524 const MachineInstr *DefMI;
525 unsigned DefOp;
526 unsigned UseOp;
527
DataDep__anon098373b70311::DataDep528 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
529 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}
530
531 /// Create a DataDep from an SSA form virtual register.
DataDep__anon098373b70311::DataDep532 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
533 : UseOp(UseOp) {
534 assert(TargetRegisterInfo::isVirtualRegister(VirtReg));
535 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
536 assert(!DefI.atEnd() && "Register has no defs");
537 DefMI = &*DefI;
538 DefOp = DefI.getOperandNo();
539 assert((++DefI).atEnd() && "Register has multiple defs");
540 }
541 };
542 }
543
544 // Get the input data dependencies that must be ready before UseMI can issue.
545 // Return true if UseMI has any physreg operands.
getDataDeps(const MachineInstr * UseMI,SmallVectorImpl<DataDep> & Deps,const MachineRegisterInfo * MRI)546 static bool getDataDeps(const MachineInstr *UseMI,
547 SmallVectorImpl<DataDep> &Deps,
548 const MachineRegisterInfo *MRI) {
549 bool HasPhysRegs = false;
550 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
551 if (!MO->isReg())
552 continue;
553 unsigned Reg = MO->getReg();
554 if (!Reg)
555 continue;
556 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
557 HasPhysRegs = true;
558 continue;
559 }
560 // Collect virtual register reads.
561 if (MO->readsReg())
562 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo()));
563 }
564 return HasPhysRegs;
565 }
566
567 // Get the input data dependencies of a PHI instruction, using Pred as the
568 // preferred predecessor.
569 // This will add at most one dependency to Deps.
getPHIDeps(const MachineInstr * UseMI,SmallVectorImpl<DataDep> & Deps,const MachineBasicBlock * Pred,const MachineRegisterInfo * MRI)570 static void getPHIDeps(const MachineInstr *UseMI,
571 SmallVectorImpl<DataDep> &Deps,
572 const MachineBasicBlock *Pred,
573 const MachineRegisterInfo *MRI) {
574 // No predecessor at the beginning of a trace. Ignore dependencies.
575 if (!Pred)
576 return;
577 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI");
578 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) {
579 if (UseMI->getOperand(i + 1).getMBB() == Pred) {
580 unsigned Reg = UseMI->getOperand(i).getReg();
581 Deps.push_back(DataDep(MRI, Reg, i));
582 return;
583 }
584 }
585 }
586
587 // Keep track of physreg data dependencies by recording each live register unit.
588 // Associate each regunit with an instruction operand. Depending on the
589 // direction instructions are scanned, it could be the operand that defined the
590 // regunit, or the highest operand to read the regunit.
591 namespace {
592 struct LiveRegUnit {
593 unsigned RegUnit;
594 unsigned Cycle;
595 const MachineInstr *MI;
596 unsigned Op;
597
getSparseSetIndex__anon098373b70411::LiveRegUnit598 unsigned getSparseSetIndex() const { return RegUnit; }
599
LiveRegUnit__anon098373b70411::LiveRegUnit600 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(0), Op(0) {}
601 };
602 }
603
604 // Identify physreg dependencies for UseMI, and update the live regunit
605 // tracking set when scanning instructions downwards.
updatePhysDepsDownwards(const MachineInstr * UseMI,SmallVectorImpl<DataDep> & Deps,SparseSet<LiveRegUnit> & RegUnits,const TargetRegisterInfo * TRI)606 static void updatePhysDepsDownwards(const MachineInstr *UseMI,
607 SmallVectorImpl<DataDep> &Deps,
608 SparseSet<LiveRegUnit> &RegUnits,
609 const TargetRegisterInfo *TRI) {
610 SmallVector<unsigned, 8> Kills;
611 SmallVector<unsigned, 8> LiveDefOps;
612
613 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
614 if (!MO->isReg())
615 continue;
616 unsigned Reg = MO->getReg();
617 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
618 continue;
619 // Track live defs and kills for updating RegUnits.
620 if (MO->isDef()) {
621 if (MO->isDead())
622 Kills.push_back(Reg);
623 else
624 LiveDefOps.push_back(MO.getOperandNo());
625 } else if (MO->isKill())
626 Kills.push_back(Reg);
627 // Identify dependencies.
628 if (!MO->readsReg())
629 continue;
630 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
631 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
632 if (I == RegUnits.end())
633 continue;
634 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo()));
635 break;
636 }
637 }
638
639 // Update RegUnits to reflect live registers after UseMI.
640 // First kills.
641 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
642 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units)
643 RegUnits.erase(*Units);
644
645 // Second, live defs.
646 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) {
647 unsigned DefOp = LiveDefOps[i];
648 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI);
649 Units.isValid(); ++Units) {
650 LiveRegUnit &LRU = RegUnits[*Units];
651 LRU.MI = UseMI;
652 LRU.Op = DefOp;
653 }
654 }
655 }
656
657 /// The length of the critical path through a trace is the maximum of two path
658 /// lengths:
659 ///
660 /// 1. The maximum height+depth over all instructions in the trace center block.
661 ///
662 /// 2. The longest cross-block dependency chain. For small blocks, it is
663 /// possible that the critical path through the trace doesn't include any
664 /// instructions in the block.
665 ///
666 /// This function computes the second number from the live-in list of the
667 /// center block.
668 unsigned MachineTraceMetrics::Ensemble::
computeCrossBlockCriticalPath(const TraceBlockInfo & TBI)669 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
670 assert(TBI.HasValidInstrDepths && "Missing depth info");
671 assert(TBI.HasValidInstrHeights && "Missing height info");
672 unsigned MaxLen = 0;
673 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
674 const LiveInReg &LIR = TBI.LiveIns[i];
675 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg))
676 continue;
677 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
678 // Ignore dependencies outside the current trace.
679 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
680 if (!DefTBI.isUsefulDominator(TBI))
681 continue;
682 unsigned Len = LIR.Height + Cycles[DefMI].Depth;
683 MaxLen = std::max(MaxLen, Len);
684 }
685 return MaxLen;
686 }
687
688 /// Compute instruction depths for all instructions above or in MBB in its
689 /// trace. This assumes that the trace through MBB has already been computed.
690 void MachineTraceMetrics::Ensemble::
computeInstrDepths(const MachineBasicBlock * MBB)691 computeInstrDepths(const MachineBasicBlock *MBB) {
692 // The top of the trace may already be computed, and HasValidInstrDepths
693 // implies Head->HasValidInstrDepths, so we only need to start from the first
694 // block in the trace that needs to be recomputed.
695 SmallVector<const MachineBasicBlock*, 8> Stack;
696 do {
697 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
698 assert(TBI.hasValidDepth() && "Incomplete trace");
699 if (TBI.HasValidInstrDepths)
700 break;
701 Stack.push_back(MBB);
702 MBB = TBI.Pred;
703 } while (MBB);
704
705 // FIXME: If MBB is non-null at this point, it is the last pre-computed block
706 // in the trace. We should track any live-out physregs that were defined in
707 // the trace. This is quite rare in SSA form, typically created by CSE
708 // hoisting a compare.
709 SparseSet<LiveRegUnit> RegUnits;
710 RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
711
712 // Go through trace blocks in top-down order, stopping after the center block.
713 SmallVector<DataDep, 8> Deps;
714 while (!Stack.empty()) {
715 MBB = Stack.pop_back_val();
716 DEBUG(dbgs() << "Depths for BB#" << MBB->getNumber() << ":\n");
717 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
718 TBI.HasValidInstrDepths = true;
719 TBI.CriticalPath = 0;
720
721 // Also compute the critical path length through MBB when possible.
722 if (TBI.HasValidInstrHeights)
723 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);
724
725 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
726 I != E; ++I) {
727 const MachineInstr *UseMI = I;
728
729 // Collect all data dependencies.
730 Deps.clear();
731 if (UseMI->isPHI())
732 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI);
733 else if (getDataDeps(UseMI, Deps, MTM.MRI))
734 updatePhysDepsDownwards(UseMI, Deps, RegUnits, MTM.TRI);
735
736 // Filter and process dependencies, computing the earliest issue cycle.
737 unsigned Cycle = 0;
738 for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
739 const DataDep &Dep = Deps[i];
740 const TraceBlockInfo&DepTBI =
741 BlockInfo[Dep.DefMI->getParent()->getNumber()];
742 // Ignore dependencies from outside the current trace.
743 if (!DepTBI.isUsefulDominator(TBI))
744 continue;
745 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
746 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
747 // Add latency if DefMI is a real instruction. Transients get latency 0.
748 if (!Dep.DefMI->isTransient())
749 DepCycle += MTM.SchedModel
750 .computeOperandLatency(Dep.DefMI, Dep.DefOp, UseMI, Dep.UseOp,
751 /* FindMin = */ false);
752 Cycle = std::max(Cycle, DepCycle);
753 }
754 // Remember the instruction depth.
755 InstrCycles &MICycles = Cycles[UseMI];
756 MICycles.Depth = Cycle;
757
758 if (!TBI.HasValidInstrHeights) {
759 DEBUG(dbgs() << Cycle << '\t' << *UseMI);
760 continue;
761 }
762 // Update critical path length.
763 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
764 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *UseMI);
765 }
766 }
767 }
768
769 // Identify physreg dependencies for MI when scanning instructions upwards.
770 // Return the issue height of MI after considering any live regunits.
771 // Height is the issue height computed from virtual register dependencies alone.
updatePhysDepsUpwards(const MachineInstr * MI,unsigned Height,SparseSet<LiveRegUnit> & RegUnits,const TargetSchedModel & SchedModel,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)772 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height,
773 SparseSet<LiveRegUnit> &RegUnits,
774 const TargetSchedModel &SchedModel,
775 const TargetInstrInfo *TII,
776 const TargetRegisterInfo *TRI) {
777 SmallVector<unsigned, 8> ReadOps;
778 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
779 if (!MO->isReg())
780 continue;
781 unsigned Reg = MO->getReg();
782 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
783 continue;
784 if (MO->readsReg())
785 ReadOps.push_back(MO.getOperandNo());
786 if (!MO->isDef())
787 continue;
788 // This is a def of Reg. Remove corresponding entries from RegUnits, and
789 // update MI Height to consider the physreg dependencies.
790 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
791 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
792 if (I == RegUnits.end())
793 continue;
794 unsigned DepHeight = I->Cycle;
795 if (!MI->isTransient()) {
796 // We may not know the UseMI of this dependency, if it came from the
797 // live-in list. SchedModel can handle a NULL UseMI.
798 DepHeight += SchedModel
799 .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op,
800 /* FindMin = */ false);
801 }
802 Height = std::max(Height, DepHeight);
803 // This regunit is dead above MI.
804 RegUnits.erase(I);
805 }
806 }
807
808 // Now we know the height of MI. Update any regunits read.
809 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) {
810 unsigned Reg = MI->getOperand(ReadOps[i]).getReg();
811 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
812 LiveRegUnit &LRU = RegUnits[*Units];
813 // Set the height to the highest reader of the unit.
814 if (LRU.Cycle <= Height && LRU.MI != MI) {
815 LRU.Cycle = Height;
816 LRU.MI = MI;
817 LRU.Op = ReadOps[i];
818 }
819 }
820 }
821
822 return Height;
823 }
824
825
826 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap;
827
828 // Push the height of DefMI upwards if required to match UseMI.
829 // Return true if this is the first time DefMI was seen.
pushDepHeight(const DataDep & Dep,const MachineInstr * UseMI,unsigned UseHeight,MIHeightMap & Heights,const TargetSchedModel & SchedModel,const TargetInstrInfo * TII)830 static bool pushDepHeight(const DataDep &Dep,
831 const MachineInstr *UseMI, unsigned UseHeight,
832 MIHeightMap &Heights,
833 const TargetSchedModel &SchedModel,
834 const TargetInstrInfo *TII) {
835 // Adjust height by Dep.DefMI latency.
836 if (!Dep.DefMI->isTransient())
837 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
838 UseMI, Dep.UseOp, false);
839
840 // Update Heights[DefMI] to be the maximum height seen.
841 MIHeightMap::iterator I;
842 bool New;
843 tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
844 if (New)
845 return true;
846
847 // DefMI has been pushed before. Give it the max height.
848 if (I->second < UseHeight)
849 I->second = UseHeight;
850 return false;
851 }
852
853 /// Assuming that the virtual register defined by DefMI:DefOp was used by
854 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
855 /// when reaching the block that contains DefMI.
856 void MachineTraceMetrics::Ensemble::
addLiveIns(const MachineInstr * DefMI,unsigned DefOp,ArrayRef<const MachineBasicBlock * > Trace)857 addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
858 ArrayRef<const MachineBasicBlock*> Trace) {
859 assert(!Trace.empty() && "Trace should contain at least one block");
860 unsigned Reg = DefMI->getOperand(DefOp).getReg();
861 assert(TargetRegisterInfo::isVirtualRegister(Reg));
862 const MachineBasicBlock *DefMBB = DefMI->getParent();
863
864 // Reg is live-in to all blocks in Trace that follow DefMBB.
865 for (unsigned i = Trace.size(); i; --i) {
866 const MachineBasicBlock *MBB = Trace[i-1];
867 if (MBB == DefMBB)
868 return;
869 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
870 // Just add the register. The height will be updated later.
871 TBI.LiveIns.push_back(Reg);
872 }
873 }
874
875 /// Compute instruction heights in the trace through MBB. This updates MBB and
876 /// the blocks below it in the trace. It is assumed that the trace has already
877 /// been computed.
878 void MachineTraceMetrics::Ensemble::
computeInstrHeights(const MachineBasicBlock * MBB)879 computeInstrHeights(const MachineBasicBlock *MBB) {
880 // The bottom of the trace may already be computed.
881 // Find the blocks that need updating.
882 SmallVector<const MachineBasicBlock*, 8> Stack;
883 do {
884 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
885 assert(TBI.hasValidHeight() && "Incomplete trace");
886 if (TBI.HasValidInstrHeights)
887 break;
888 Stack.push_back(MBB);
889 TBI.LiveIns.clear();
890 MBB = TBI.Succ;
891 } while (MBB);
892
893 // As we move upwards in the trace, keep track of instructions that are
894 // required by deeper trace instructions. Map MI -> height required so far.
895 MIHeightMap Heights;
896
897 // For physregs, the def isn't known when we see the use.
898 // Instead, keep track of the highest use of each regunit.
899 SparseSet<LiveRegUnit> RegUnits;
900 RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
901
902 // If the bottom of the trace was already precomputed, initialize heights
903 // from its live-in list.
904 // MBB is the highest precomputed block in the trace.
905 if (MBB) {
906 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
907 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
908 LiveInReg LI = TBI.LiveIns[i];
909 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) {
910 // For virtual registers, the def latency is included.
911 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
912 if (Height < LI.Height)
913 Height = LI.Height;
914 } else {
915 // For register units, the def latency is not included because we don't
916 // know the def yet.
917 RegUnits[LI.Reg].Cycle = LI.Height;
918 }
919 }
920 }
921
922 // Go through the trace blocks in bottom-up order.
923 SmallVector<DataDep, 8> Deps;
924 for (;!Stack.empty(); Stack.pop_back()) {
925 MBB = Stack.back();
926 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n");
927 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
928 TBI.HasValidInstrHeights = true;
929 TBI.CriticalPath = 0;
930
931 // Get dependencies from PHIs in the trace successor.
932 const MachineBasicBlock *Succ = TBI.Succ;
933 // If MBB is the last block in the trace, and it has a back-edge to the
934 // loop header, get loop-carried dependencies from PHIs in the header. For
935 // that purpose, pretend that all the loop header PHIs have height 0.
936 if (!Succ)
937 if (const MachineLoop *Loop = getLoopFor(MBB))
938 if (MBB->isSuccessor(Loop->getHeader()))
939 Succ = Loop->getHeader();
940
941 if (Succ) {
942 for (MachineBasicBlock::const_iterator I = Succ->begin(), E = Succ->end();
943 I != E && I->isPHI(); ++I) {
944 const MachineInstr *PHI = I;
945 Deps.clear();
946 getPHIDeps(PHI, Deps, MBB, MTM.MRI);
947 if (!Deps.empty()) {
948 // Loop header PHI heights are all 0.
949 unsigned Height = TBI.Succ ? Cycles.lookup(PHI).Height : 0;
950 DEBUG(dbgs() << "pred\t" << Height << '\t' << *PHI);
951 if (pushDepHeight(Deps.front(), PHI, Height,
952 Heights, MTM.SchedModel, MTM.TII))
953 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
954 }
955 }
956 }
957
958 // Go through the block backwards.
959 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
960 BI != BB;) {
961 const MachineInstr *MI = --BI;
962
963 // Find the MI height as determined by virtual register uses in the
964 // trace below.
965 unsigned Cycle = 0;
966 MIHeightMap::iterator HeightI = Heights.find(MI);
967 if (HeightI != Heights.end()) {
968 Cycle = HeightI->second;
969 // We won't be seeing any more MI uses.
970 Heights.erase(HeightI);
971 }
972
973 // Don't process PHI deps. They depend on the specific predecessor, and
974 // we'll get them when visiting the predecessor.
975 Deps.clear();
976 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI);
977
978 // There may also be regunit dependencies to include in the height.
979 if (HasPhysRegs)
980 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits,
981 MTM.SchedModel, MTM.TII, MTM.TRI);
982
983 // Update the required height of any virtual registers read by MI.
984 for (unsigned i = 0, e = Deps.size(); i != e; ++i)
985 if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
986 addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack);
987
988 InstrCycles &MICycles = Cycles[MI];
989 MICycles.Height = Cycle;
990 if (!TBI.HasValidInstrDepths) {
991 DEBUG(dbgs() << Cycle << '\t' << *MI);
992 continue;
993 }
994 // Update critical path length.
995 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
996 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI);
997 }
998
999 // Update virtual live-in heights. They were added by addLiveIns() with a 0
1000 // height because the final height isn't known until now.
1001 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:");
1002 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
1003 LiveInReg &LIR = TBI.LiveIns[i];
1004 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
1005 LIR.Height = Heights.lookup(DefMI);
1006 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height);
1007 }
1008
1009 // Transfer the live regunits to the live-in list.
1010 for (SparseSet<LiveRegUnit>::const_iterator
1011 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
1012 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
1013 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI)
1014 << '@' << RI->Cycle);
1015 }
1016 DEBUG(dbgs() << '\n');
1017
1018 if (!TBI.HasValidInstrDepths)
1019 continue;
1020 // Add live-ins to the critical path length.
1021 TBI.CriticalPath = std::max(TBI.CriticalPath,
1022 computeCrossBlockCriticalPath(TBI));
1023 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
1024 }
1025 }
1026
1027 MachineTraceMetrics::Trace
getTrace(const MachineBasicBlock * MBB)1028 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
1029 // FIXME: Check cache tags, recompute as needed.
1030 computeTrace(MBB);
1031 computeInstrDepths(MBB);
1032 computeInstrHeights(MBB);
1033 return Trace(*this, BlockInfo[MBB->getNumber()]);
1034 }
1035
1036 unsigned
getInstrSlack(const MachineInstr * MI) const1037 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const {
1038 assert(MI && "Not an instruction.");
1039 assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) &&
1040 "MI must be in the trace center block");
1041 InstrCycles Cyc = getInstrCycles(MI);
1042 return getCriticalPath() - (Cyc.Depth + Cyc.Height);
1043 }
1044
1045 unsigned
getPHIDepth(const MachineInstr * PHI) const1046 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const {
1047 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
1048 SmallVector<DataDep, 1> Deps;
1049 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
1050 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
1051 DataDep &Dep = Deps.front();
1052 unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth;
1053 // Add latency if DefMI is a real instruction. Transients get latency 0.
1054 if (!Dep.DefMI->isTransient())
1055 DepCycle += TE.MTM.SchedModel
1056 .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp, false);
1057 return DepCycle;
1058 }
1059
getResourceDepth(bool Bottom) const1060 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
1061 // For now, we compute the resource depth from instruction count / issue
1062 // width. Eventually, we should compute resource depth per functional unit
1063 // and return the max.
1064 unsigned Instrs = TBI.InstrDepth;
1065 if (Bottom)
1066 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
1067 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1068 Instrs /= IW;
1069 // Assume issue width 1 without a schedule model.
1070 return Instrs;
1071 }
1072
1073 unsigned MachineTraceMetrics::Trace::
getResourceLength(ArrayRef<const MachineBasicBlock * > Extrablocks) const1074 getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks) const {
1075 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
1076 for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i)
1077 Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount;
1078 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1079 Instrs /= IW;
1080 // Assume issue width 1 without a schedule model.
1081 return Instrs;
1082 }
1083
print(raw_ostream & OS) const1084 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
1085 OS << getName() << " ensemble:\n";
1086 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
1087 OS << " BB#" << i << '\t';
1088 BlockInfo[i].print(OS);
1089 OS << '\n';
1090 }
1091 }
1092
print(raw_ostream & OS) const1093 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
1094 if (hasValidDepth()) {
1095 OS << "depth=" << InstrDepth;
1096 if (Pred)
1097 OS << " pred=BB#" << Pred->getNumber();
1098 else
1099 OS << " pred=null";
1100 OS << " head=BB#" << Head;
1101 if (HasValidInstrDepths)
1102 OS << " +instrs";
1103 } else
1104 OS << "depth invalid";
1105 OS << ", ";
1106 if (hasValidHeight()) {
1107 OS << "height=" << InstrHeight;
1108 if (Succ)
1109 OS << " succ=BB#" << Succ->getNumber();
1110 else
1111 OS << " succ=null";
1112 OS << " tail=BB#" << Tail;
1113 if (HasValidInstrHeights)
1114 OS << " +instrs";
1115 } else
1116 OS << "height invalid";
1117 if (HasValidInstrDepths && HasValidInstrHeights)
1118 OS << ", crit=" << CriticalPath;
1119 }
1120
print(raw_ostream & OS) const1121 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
1122 unsigned MBBNum = &TBI - &TE.BlockInfo[0];
1123
1124 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum
1125 << " --> BB#" << TBI.Tail << ':';
1126 if (TBI.hasValidHeight() && TBI.hasValidDepth())
1127 OS << ' ' << getInstrCount() << " instrs.";
1128 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
1129 OS << ' ' << TBI.CriticalPath << " cycles.";
1130
1131 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
1132 OS << "\nBB#" << MBBNum;
1133 while (Block->hasValidDepth() && Block->Pred) {
1134 unsigned Num = Block->Pred->getNumber();
1135 OS << " <- BB#" << Num;
1136 Block = &TE.BlockInfo[Num];
1137 }
1138
1139 Block = &TBI;
1140 OS << "\n ";
1141 while (Block->hasValidHeight() && Block->Succ) {
1142 unsigned Num = Block->Succ->getNumber();
1143 OS << " -> BB#" << Num;
1144 Block = &TE.BlockInfo[Num];
1145 }
1146 OS << '\n';
1147 }
1148