1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/SparseSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/RegAllocRegistry.h"
30 #include "llvm/CodeGen/RegisterClassInfo.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 STATISTIC(NumStores, "Number of stores added");
42 STATISTIC(NumLoads , "Number of loads added");
43 STATISTIC(NumCopies, "Number of copies coalesced");
44
45 static RegisterRegAlloc
46 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
47
48 namespace {
49 class RAFast : public MachineFunctionPass {
50 public:
51 static char ID;
RAFast()52 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
53 isBulkSpilling(false) {}
54 private:
55 const TargetMachine *TM;
56 MachineFunction *MF;
57 MachineRegisterInfo *MRI;
58 const TargetRegisterInfo *TRI;
59 const TargetInstrInfo *TII;
60 RegisterClassInfo RegClassInfo;
61
62 // Basic block currently being allocated.
63 MachineBasicBlock *MBB;
64
65 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
66 // values are spilled.
67 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
68
69 // Everything we know about a live virtual register.
70 struct LiveReg {
71 MachineInstr *LastUse; // Last instr to use reg.
72 unsigned VirtReg; // Virtual register number.
73 unsigned PhysReg; // Currently held here.
74 unsigned short LastOpNum; // OpNum on LastUse.
75 bool Dirty; // Register needs spill.
76
LiveReg__anon2451a3330111::RAFast::LiveReg77 explicit LiveReg(unsigned v)
78 : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {}
79
getSparseSetIndex__anon2451a3330111::RAFast::LiveReg80 unsigned getSparseSetIndex() const {
81 return TargetRegisterInfo::virtReg2Index(VirtReg);
82 }
83 };
84
85 typedef SparseSet<LiveReg> LiveRegMap;
86
87 // LiveVirtRegs - This map contains entries for each virtual register
88 // that is currently available in a physical register.
89 LiveRegMap LiveVirtRegs;
90
91 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
92
93 // RegState - Track the state of a physical register.
94 enum RegState {
95 // A disabled register is not available for allocation, but an alias may
96 // be in use. A register can only be moved out of the disabled state if
97 // all aliases are disabled.
98 regDisabled,
99
100 // A free register is not currently in use and can be allocated
101 // immediately without checking aliases.
102 regFree,
103
104 // A reserved register has been assigned explicitly (e.g., setting up a
105 // call parameter), and it remains reserved until it is used.
106 regReserved
107
108 // A register state may also be a virtual register number, indication that
109 // the physical register is currently allocated to a virtual register. In
110 // that case, LiveVirtRegs contains the inverse mapping.
111 };
112
113 // PhysRegState - One of the RegState enums, or a virtreg.
114 std::vector<unsigned> PhysRegState;
115
116 // Set of register units.
117 typedef SparseSet<unsigned> UsedInInstrSet;
118
119 // Set of register units that are used in the current instruction, and so
120 // cannot be allocated.
121 UsedInInstrSet UsedInInstr;
122
123 // Mark a physreg as used in this instruction.
markRegUsedInInstr(unsigned PhysReg)124 void markRegUsedInInstr(unsigned PhysReg) {
125 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
126 UsedInInstr.insert(*Units);
127 }
128
129 // Check if a physreg or any of its aliases are used in this instruction.
isRegUsedInInstr(unsigned PhysReg) const130 bool isRegUsedInInstr(unsigned PhysReg) const {
131 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
132 if (UsedInInstr.count(*Units))
133 return true;
134 return false;
135 }
136
137 // SkippedInstrs - Descriptors of instructions whose clobber list was
138 // ignored because all registers were spilled. It is still necessary to
139 // mark all the clobbered registers as used by the function.
140 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
141
142 // isBulkSpilling - This flag is set when LiveRegMap will be cleared
143 // completely after spilling all live registers. LiveRegMap entries should
144 // not be erased.
145 bool isBulkSpilling;
146
147 enum {
148 spillClean = 1,
149 spillDirty = 100,
150 spillImpossible = ~0u
151 };
152 public:
getPassName() const153 virtual const char *getPassName() const {
154 return "Fast Register Allocator";
155 }
156
getAnalysisUsage(AnalysisUsage & AU) const157 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
158 AU.setPreservesCFG();
159 MachineFunctionPass::getAnalysisUsage(AU);
160 }
161
162 private:
163 bool runOnMachineFunction(MachineFunction &Fn);
164 void AllocateBasicBlock();
165 void handleThroughOperands(MachineInstr *MI,
166 SmallVectorImpl<unsigned> &VirtDead);
167 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
168 bool isLastUseOfLocalReg(MachineOperand&);
169
170 void addKillFlag(const LiveReg&);
171 void killVirtReg(LiveRegMap::iterator);
172 void killVirtReg(unsigned VirtReg);
173 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
174 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
175
176 void usePhysReg(MachineOperand&);
177 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
178 unsigned calcSpillCost(unsigned PhysReg) const;
179 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
findLiveVirtReg(unsigned VirtReg)180 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
181 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
182 }
findLiveVirtReg(unsigned VirtReg) const183 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
184 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
185 }
186 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
187 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
188 unsigned Hint);
189 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
190 unsigned VirtReg, unsigned Hint);
191 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
192 unsigned VirtReg, unsigned Hint);
193 void spillAll(MachineBasicBlock::iterator MI);
194 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
195 };
196 char RAFast::ID = 0;
197 }
198
199 /// getStackSpaceFor - This allocates space for the specified virtual register
200 /// to be held on the stack.
getStackSpaceFor(unsigned VirtReg,const TargetRegisterClass * RC)201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
202 // Find the location Reg would belong...
203 int SS = StackSlotForVirtReg[VirtReg];
204 if (SS != -1)
205 return SS; // Already has space allocated?
206
207 // Allocate a new stack object for this spill location...
208 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
209 RC->getAlignment());
210
211 // Assign the slot.
212 StackSlotForVirtReg[VirtReg] = FrameIdx;
213 return FrameIdx;
214 }
215
216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
217 /// its virtual register, and it is guaranteed to be a block-local register.
218 ///
isLastUseOfLocalReg(MachineOperand & MO)219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
220 // If the register has ever been spilled or reloaded, we conservatively assume
221 // it is a global register used in multiple blocks.
222 if (StackSlotForVirtReg[MO.getReg()] != -1)
223 return false;
224
225 // Check that the use/def chain has exactly one operand - MO.
226 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
227 if (&I.getOperand() != &MO)
228 return false;
229 return ++I == MRI->reg_nodbg_end();
230 }
231
232 /// addKillFlag - Set kill flags on last use of a virtual register.
addKillFlag(const LiveReg & LR)233 void RAFast::addKillFlag(const LiveReg &LR) {
234 if (!LR.LastUse) return;
235 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
236 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
237 if (MO.getReg() == LR.PhysReg)
238 MO.setIsKill();
239 else
240 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
241 }
242 }
243
244 /// killVirtReg - Mark virtreg as no longer available.
killVirtReg(LiveRegMap::iterator LRI)245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
246 addKillFlag(*LRI);
247 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
248 "Broken RegState mapping");
249 PhysRegState[LRI->PhysReg] = regFree;
250 // Erase from LiveVirtRegs unless we're spilling in bulk.
251 if (!isBulkSpilling)
252 LiveVirtRegs.erase(LRI);
253 }
254
255 /// killVirtReg - Mark virtreg as no longer available.
killVirtReg(unsigned VirtReg)256 void RAFast::killVirtReg(unsigned VirtReg) {
257 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
258 "killVirtReg needs a virtual register");
259 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
260 if (LRI != LiveVirtRegs.end())
261 killVirtReg(LRI);
262 }
263
264 /// spillVirtReg - This method spills the value specified by VirtReg into the
265 /// corresponding stack slot if needed.
spillVirtReg(MachineBasicBlock::iterator MI,unsigned VirtReg)266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
267 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
268 "Spilling a physical register is illegal!");
269 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
270 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
271 spillVirtReg(MI, LRI);
272 }
273
274 /// spillVirtReg - Do the actual work of spilling.
spillVirtReg(MachineBasicBlock::iterator MI,LiveRegMap::iterator LRI)275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
276 LiveRegMap::iterator LRI) {
277 LiveReg &LR = *LRI;
278 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
279
280 if (LR.Dirty) {
281 // If this physreg is used by the instruction, we want to kill it on the
282 // instruction, not on the spill.
283 bool SpillKill = LR.LastUse != MI;
284 LR.Dirty = false;
285 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
286 << " in " << PrintReg(LR.PhysReg, TRI));
287 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
288 int FI = getStackSpaceFor(LRI->VirtReg, RC);
289 DEBUG(dbgs() << " to stack slot #" << FI << "\n");
290 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
291 ++NumStores; // Update statistics
292
293 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
294 // identify spilled location as the place to find corresponding variable's
295 // value.
296 SmallVector<MachineInstr *, 4> &LRIDbgValues =
297 LiveDbgValueMap[LRI->VirtReg];
298 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
299 MachineInstr *DBG = LRIDbgValues[li];
300 const MDNode *MDPtr =
301 DBG->getOperand(DBG->getNumOperands()-1).getMetadata();
302 int64_t Offset = 0;
303 if (DBG->getOperand(1).isImm())
304 Offset = DBG->getOperand(1).getImm();
305 DebugLoc DL;
306 if (MI == MBB->end()) {
307 // If MI is at basic block end then use last instruction's location.
308 MachineBasicBlock::iterator EI = MI;
309 DL = (--EI)->getDebugLoc();
310 }
311 else
312 DL = MI->getDebugLoc();
313 if (MachineInstr *NewDV =
314 TII->emitFrameIndexDebugValue(*MF, FI, Offset, MDPtr, DL)) {
315 MachineBasicBlock *MBB = DBG->getParent();
316 MBB->insert(MI, NewDV);
317 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
318 }
319 }
320 // Now this register is spilled there is should not be any DBG_VALUE
321 // pointing to this register because they are all pointing to spilled value
322 // now.
323 LRIDbgValues.clear();
324 if (SpillKill)
325 LR.LastUse = 0; // Don't kill register again
326 }
327 killVirtReg(LRI);
328 }
329
330 /// spillAll - Spill all dirty virtregs without killing them.
spillAll(MachineBasicBlock::iterator MI)331 void RAFast::spillAll(MachineBasicBlock::iterator MI) {
332 if (LiveVirtRegs.empty()) return;
333 isBulkSpilling = true;
334 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
335 // of spilling here is deterministic, if arbitrary.
336 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
337 i != e; ++i)
338 spillVirtReg(MI, i);
339 LiveVirtRegs.clear();
340 isBulkSpilling = false;
341 }
342
343 /// usePhysReg - Handle the direct use of a physical register.
344 /// Check that the register is not used by a virtreg.
345 /// Kill the physreg, marking it free.
346 /// This may add implicit kills to MO->getParent() and invalidate MO.
usePhysReg(MachineOperand & MO)347 void RAFast::usePhysReg(MachineOperand &MO) {
348 unsigned PhysReg = MO.getReg();
349 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
350 "Bad usePhysReg operand");
351 markRegUsedInInstr(PhysReg);
352 switch (PhysRegState[PhysReg]) {
353 case regDisabled:
354 break;
355 case regReserved:
356 PhysRegState[PhysReg] = regFree;
357 // Fall through
358 case regFree:
359 MO.setIsKill();
360 return;
361 default:
362 // The physreg was allocated to a virtual register. That means the value we
363 // wanted has been clobbered.
364 llvm_unreachable("Instruction uses an allocated register");
365 }
366
367 // Maybe a superregister is reserved?
368 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
369 unsigned Alias = *AI;
370 switch (PhysRegState[Alias]) {
371 case regDisabled:
372 break;
373 case regReserved:
374 assert(TRI->isSuperRegister(PhysReg, Alias) &&
375 "Instruction is not using a subregister of a reserved register");
376 // Leave the superregister in the working set.
377 PhysRegState[Alias] = regFree;
378 MO.getParent()->addRegisterKilled(Alias, TRI, true);
379 return;
380 case regFree:
381 if (TRI->isSuperRegister(PhysReg, Alias)) {
382 // Leave the superregister in the working set.
383 MO.getParent()->addRegisterKilled(Alias, TRI, true);
384 return;
385 }
386 // Some other alias was in the working set - clear it.
387 PhysRegState[Alias] = regDisabled;
388 break;
389 default:
390 llvm_unreachable("Instruction uses an alias of an allocated register");
391 }
392 }
393
394 // All aliases are disabled, bring register into working set.
395 PhysRegState[PhysReg] = regFree;
396 MO.setIsKill();
397 }
398
399 /// definePhysReg - Mark PhysReg as reserved or free after spilling any
400 /// virtregs. This is very similar to defineVirtReg except the physreg is
401 /// reserved instead of allocated.
definePhysReg(MachineInstr * MI,unsigned PhysReg,RegState NewState)402 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
403 RegState NewState) {
404 markRegUsedInInstr(PhysReg);
405 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
406 case regDisabled:
407 break;
408 default:
409 spillVirtReg(MI, VirtReg);
410 // Fall through.
411 case regFree:
412 case regReserved:
413 PhysRegState[PhysReg] = NewState;
414 return;
415 }
416
417 // This is a disabled register, disable all aliases.
418 PhysRegState[PhysReg] = NewState;
419 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
420 unsigned Alias = *AI;
421 switch (unsigned VirtReg = PhysRegState[Alias]) {
422 case regDisabled:
423 break;
424 default:
425 spillVirtReg(MI, VirtReg);
426 // Fall through.
427 case regFree:
428 case regReserved:
429 PhysRegState[Alias] = regDisabled;
430 if (TRI->isSuperRegister(PhysReg, Alias))
431 return;
432 break;
433 }
434 }
435 }
436
437
438 // calcSpillCost - Return the cost of spilling clearing out PhysReg and
439 // aliases so it is free for allocation.
440 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it
441 // can be allocated directly.
442 // Returns spillImpossible when PhysReg or an alias can't be spilled.
calcSpillCost(unsigned PhysReg) const443 unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
444 if (isRegUsedInInstr(PhysReg)) {
445 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
446 return spillImpossible;
447 }
448 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
449 case regDisabled:
450 break;
451 case regFree:
452 return 0;
453 case regReserved:
454 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
455 << PrintReg(PhysReg, TRI) << " is reserved already.\n");
456 return spillImpossible;
457 default: {
458 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
459 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
460 return I->Dirty ? spillDirty : spillClean;
461 }
462 }
463
464 // This is a disabled register, add up cost of aliases.
465 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
466 unsigned Cost = 0;
467 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
468 unsigned Alias = *AI;
469 switch (unsigned VirtReg = PhysRegState[Alias]) {
470 case regDisabled:
471 break;
472 case regFree:
473 ++Cost;
474 break;
475 case regReserved:
476 return spillImpossible;
477 default: {
478 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
479 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
480 Cost += I->Dirty ? spillDirty : spillClean;
481 break;
482 }
483 }
484 }
485 return Cost;
486 }
487
488
489 /// assignVirtToPhysReg - This method updates local state so that we know
490 /// that PhysReg is the proper container for VirtReg now. The physical
491 /// register must not be used for anything else when this is called.
492 ///
assignVirtToPhysReg(LiveReg & LR,unsigned PhysReg)493 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
494 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
495 << PrintReg(PhysReg, TRI) << "\n");
496 PhysRegState[PhysReg] = LR.VirtReg;
497 assert(!LR.PhysReg && "Already assigned a physreg");
498 LR.PhysReg = PhysReg;
499 }
500
501 RAFast::LiveRegMap::iterator
assignVirtToPhysReg(unsigned VirtReg,unsigned PhysReg)502 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
503 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
504 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
505 assignVirtToPhysReg(*LRI, PhysReg);
506 return LRI;
507 }
508
509 /// allocVirtReg - Allocate a physical register for VirtReg.
allocVirtReg(MachineInstr * MI,LiveRegMap::iterator LRI,unsigned Hint)510 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
511 LiveRegMap::iterator LRI,
512 unsigned Hint) {
513 const unsigned VirtReg = LRI->VirtReg;
514
515 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
516 "Can only allocate virtual registers");
517
518 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
519
520 // Ignore invalid hints.
521 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
522 !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
523 Hint = 0;
524
525 // Take hint when possible.
526 if (Hint) {
527 // Ignore the hint if we would have to spill a dirty register.
528 unsigned Cost = calcSpillCost(Hint);
529 if (Cost < spillDirty) {
530 if (Cost)
531 definePhysReg(MI, Hint, regFree);
532 // definePhysReg may kill virtual registers and modify LiveVirtRegs.
533 // That invalidates LRI, so run a new lookup for VirtReg.
534 return assignVirtToPhysReg(VirtReg, Hint);
535 }
536 }
537
538 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
539
540 // First try to find a completely free register.
541 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
542 unsigned PhysReg = *I;
543 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
544 assignVirtToPhysReg(*LRI, PhysReg);
545 return LRI;
546 }
547 }
548
549 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
550 << RC->getName() << "\n");
551
552 unsigned BestReg = 0, BestCost = spillImpossible;
553 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
554 unsigned Cost = calcSpillCost(*I);
555 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
556 DEBUG(dbgs() << "\tCost: " << Cost << "\n");
557 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
558 // Cost is 0 when all aliases are already disabled.
559 if (Cost == 0) {
560 assignVirtToPhysReg(*LRI, *I);
561 return LRI;
562 }
563 if (Cost < BestCost)
564 BestReg = *I, BestCost = Cost;
565 }
566
567 if (BestReg) {
568 definePhysReg(MI, BestReg, regFree);
569 // definePhysReg may kill virtual registers and modify LiveVirtRegs.
570 // That invalidates LRI, so run a new lookup for VirtReg.
571 return assignVirtToPhysReg(VirtReg, BestReg);
572 }
573
574 // Nothing we can do. Report an error and keep going with a bad allocation.
575 MI->emitError("ran out of registers during register allocation");
576 definePhysReg(MI, *AO.begin(), regFree);
577 return assignVirtToPhysReg(VirtReg, *AO.begin());
578 }
579
580 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
581 RAFast::LiveRegMap::iterator
defineVirtReg(MachineInstr * MI,unsigned OpNum,unsigned VirtReg,unsigned Hint)582 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
583 unsigned VirtReg, unsigned Hint) {
584 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
585 "Not a virtual register");
586 LiveRegMap::iterator LRI;
587 bool New;
588 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
589 if (New) {
590 // If there is no hint, peek at the only use of this register.
591 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
592 MRI->hasOneNonDBGUse(VirtReg)) {
593 const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
594 // It's a copy, use the destination register as a hint.
595 if (UseMI.isCopyLike())
596 Hint = UseMI.getOperand(0).getReg();
597 }
598 LRI = allocVirtReg(MI, LRI, Hint);
599 } else if (LRI->LastUse) {
600 // Redefining a live register - kill at the last use, unless it is this
601 // instruction defining VirtReg multiple times.
602 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
603 addKillFlag(*LRI);
604 }
605 assert(LRI->PhysReg && "Register not assigned");
606 LRI->LastUse = MI;
607 LRI->LastOpNum = OpNum;
608 LRI->Dirty = true;
609 markRegUsedInInstr(LRI->PhysReg);
610 return LRI;
611 }
612
613 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
614 RAFast::LiveRegMap::iterator
reloadVirtReg(MachineInstr * MI,unsigned OpNum,unsigned VirtReg,unsigned Hint)615 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
616 unsigned VirtReg, unsigned Hint) {
617 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
618 "Not a virtual register");
619 LiveRegMap::iterator LRI;
620 bool New;
621 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
622 MachineOperand &MO = MI->getOperand(OpNum);
623 if (New) {
624 LRI = allocVirtReg(MI, LRI, Hint);
625 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
626 int FrameIndex = getStackSpaceFor(VirtReg, RC);
627 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
628 << PrintReg(LRI->PhysReg, TRI) << "\n");
629 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
630 ++NumLoads;
631 } else if (LRI->Dirty) {
632 if (isLastUseOfLocalReg(MO)) {
633 DEBUG(dbgs() << "Killing last use: " << MO << "\n");
634 if (MO.isUse())
635 MO.setIsKill();
636 else
637 MO.setIsDead();
638 } else if (MO.isKill()) {
639 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
640 MO.setIsKill(false);
641 } else if (MO.isDead()) {
642 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
643 MO.setIsDead(false);
644 }
645 } else if (MO.isKill()) {
646 // We must remove kill flags from uses of reloaded registers because the
647 // register would be killed immediately, and there might be a second use:
648 // %foo = OR %x<kill>, %x
649 // This would cause a second reload of %x into a different register.
650 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
651 MO.setIsKill(false);
652 } else if (MO.isDead()) {
653 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
654 MO.setIsDead(false);
655 }
656 assert(LRI->PhysReg && "Register not assigned");
657 LRI->LastUse = MI;
658 LRI->LastOpNum = OpNum;
659 markRegUsedInInstr(LRI->PhysReg);
660 return LRI;
661 }
662
663 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
664 // subregs. This may invalidate any operand pointers.
665 // Return true if the operand kills its register.
setPhysReg(MachineInstr * MI,unsigned OpNum,unsigned PhysReg)666 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
667 MachineOperand &MO = MI->getOperand(OpNum);
668 bool Dead = MO.isDead();
669 if (!MO.getSubReg()) {
670 MO.setReg(PhysReg);
671 return MO.isKill() || Dead;
672 }
673
674 // Handle subregister index.
675 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
676 MO.setSubReg(0);
677
678 // A kill flag implies killing the full register. Add corresponding super
679 // register kill.
680 if (MO.isKill()) {
681 MI->addRegisterKilled(PhysReg, TRI, true);
682 return true;
683 }
684
685 // A <def,read-undef> of a sub-register requires an implicit def of the full
686 // register.
687 if (MO.isDef() && MO.isUndef())
688 MI->addRegisterDefined(PhysReg, TRI);
689
690 return Dead;
691 }
692
693 // Handle special instruction operand like early clobbers and tied ops when
694 // there are additional physreg defines.
handleThroughOperands(MachineInstr * MI,SmallVectorImpl<unsigned> & VirtDead)695 void RAFast::handleThroughOperands(MachineInstr *MI,
696 SmallVectorImpl<unsigned> &VirtDead) {
697 DEBUG(dbgs() << "Scanning for through registers:");
698 SmallSet<unsigned, 8> ThroughRegs;
699 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
700 MachineOperand &MO = MI->getOperand(i);
701 if (!MO.isReg()) continue;
702 unsigned Reg = MO.getReg();
703 if (!TargetRegisterInfo::isVirtualRegister(Reg))
704 continue;
705 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
706 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
707 if (ThroughRegs.insert(Reg))
708 DEBUG(dbgs() << ' ' << PrintReg(Reg));
709 }
710 }
711
712 // If any physreg defines collide with preallocated through registers,
713 // we must spill and reallocate.
714 DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
715 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
716 MachineOperand &MO = MI->getOperand(i);
717 if (!MO.isReg() || !MO.isDef()) continue;
718 unsigned Reg = MO.getReg();
719 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
720 markRegUsedInInstr(Reg);
721 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
722 if (ThroughRegs.count(PhysRegState[*AI]))
723 definePhysReg(MI, *AI, regFree);
724 }
725 }
726
727 SmallVector<unsigned, 8> PartialDefs;
728 DEBUG(dbgs() << "Allocating tied uses.\n");
729 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
730 MachineOperand &MO = MI->getOperand(i);
731 if (!MO.isReg()) continue;
732 unsigned Reg = MO.getReg();
733 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
734 if (MO.isUse()) {
735 unsigned DefIdx = 0;
736 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
737 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
738 << DefIdx << ".\n");
739 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
740 unsigned PhysReg = LRI->PhysReg;
741 setPhysReg(MI, i, PhysReg);
742 // Note: we don't update the def operand yet. That would cause the normal
743 // def-scan to attempt spilling.
744 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
745 DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
746 // Reload the register, but don't assign to the operand just yet.
747 // That would confuse the later phys-def processing pass.
748 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
749 PartialDefs.push_back(LRI->PhysReg);
750 }
751 }
752
753 DEBUG(dbgs() << "Allocating early clobbers.\n");
754 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
755 MachineOperand &MO = MI->getOperand(i);
756 if (!MO.isReg()) continue;
757 unsigned Reg = MO.getReg();
758 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
759 if (!MO.isEarlyClobber())
760 continue;
761 // Note: defineVirtReg may invalidate MO.
762 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
763 unsigned PhysReg = LRI->PhysReg;
764 if (setPhysReg(MI, i, PhysReg))
765 VirtDead.push_back(Reg);
766 }
767
768 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
769 UsedInInstr.clear();
770 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
771 MachineOperand &MO = MI->getOperand(i);
772 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
773 unsigned Reg = MO.getReg();
774 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
775 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
776 << " as used in instr\n");
777 markRegUsedInInstr(Reg);
778 }
779
780 // Also mark PartialDefs as used to avoid reallocation.
781 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
782 markRegUsedInInstr(PartialDefs[i]);
783 }
784
AllocateBasicBlock()785 void RAFast::AllocateBasicBlock() {
786 DEBUG(dbgs() << "\nAllocating " << *MBB);
787
788 PhysRegState.assign(TRI->getNumRegs(), regDisabled);
789 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
790
791 MachineBasicBlock::iterator MII = MBB->begin();
792
793 // Add live-in registers as live.
794 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
795 E = MBB->livein_end(); I != E; ++I)
796 if (MRI->isAllocatable(*I))
797 definePhysReg(MII, *I, regReserved);
798
799 SmallVector<unsigned, 8> VirtDead;
800 SmallVector<MachineInstr*, 32> Coalesced;
801
802 // Otherwise, sequentially allocate each instruction in the MBB.
803 while (MII != MBB->end()) {
804 MachineInstr *MI = MII++;
805 const MCInstrDesc &MCID = MI->getDesc();
806 DEBUG({
807 dbgs() << "\n>> " << *MI << "Regs:";
808 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
809 if (PhysRegState[Reg] == regDisabled) continue;
810 dbgs() << " " << TRI->getName(Reg);
811 switch(PhysRegState[Reg]) {
812 case regFree:
813 break;
814 case regReserved:
815 dbgs() << "*";
816 break;
817 default: {
818 dbgs() << '=' << PrintReg(PhysRegState[Reg]);
819 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
820 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
821 if (I->Dirty)
822 dbgs() << "*";
823 assert(I->PhysReg == Reg && "Bad inverse map");
824 break;
825 }
826 }
827 }
828 dbgs() << '\n';
829 // Check that LiveVirtRegs is the inverse.
830 for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
831 e = LiveVirtRegs.end(); i != e; ++i) {
832 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
833 "Bad map key");
834 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
835 "Bad map value");
836 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
837 }
838 });
839
840 // Debug values are not allowed to change codegen in any way.
841 if (MI->isDebugValue()) {
842 bool ScanDbgValue = true;
843 while (ScanDbgValue) {
844 ScanDbgValue = false;
845 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
846 MachineOperand &MO = MI->getOperand(i);
847 if (!MO.isReg()) continue;
848 unsigned Reg = MO.getReg();
849 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
850 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
851 if (LRI != LiveVirtRegs.end())
852 setPhysReg(MI, i, LRI->PhysReg);
853 else {
854 int SS = StackSlotForVirtReg[Reg];
855 if (SS == -1) {
856 // We can't allocate a physreg for a DebugValue, sorry!
857 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
858 MO.setReg(0);
859 }
860 else {
861 // Modify DBG_VALUE now that the value is in a spill slot.
862 int64_t Offset = MI->getOperand(1).getImm();
863 const MDNode *MDPtr =
864 MI->getOperand(MI->getNumOperands()-1).getMetadata();
865 DebugLoc DL = MI->getDebugLoc();
866 if (MachineInstr *NewDV =
867 TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) {
868 DEBUG(dbgs() << "Modifying debug info due to spill:" <<
869 "\t" << *MI);
870 MachineBasicBlock *MBB = MI->getParent();
871 MBB->insert(MBB->erase(MI), NewDV);
872 // Scan NewDV operands from the beginning.
873 MI = NewDV;
874 ScanDbgValue = true;
875 break;
876 } else {
877 // We can't allocate a physreg for a DebugValue; sorry!
878 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
879 MO.setReg(0);
880 }
881 }
882 }
883 LiveDbgValueMap[Reg].push_back(MI);
884 }
885 }
886 // Next instruction.
887 continue;
888 }
889
890 // If this is a copy, we may be able to coalesce.
891 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
892 if (MI->isCopy()) {
893 CopyDst = MI->getOperand(0).getReg();
894 CopySrc = MI->getOperand(1).getReg();
895 CopyDstSub = MI->getOperand(0).getSubReg();
896 CopySrcSub = MI->getOperand(1).getSubReg();
897 }
898
899 // Track registers used by instruction.
900 UsedInInstr.clear();
901
902 // First scan.
903 // Mark physreg uses and early clobbers as used.
904 // Find the end of the virtreg operands
905 unsigned VirtOpEnd = 0;
906 bool hasTiedOps = false;
907 bool hasEarlyClobbers = false;
908 bool hasPartialRedefs = false;
909 bool hasPhysDefs = false;
910 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
911 MachineOperand &MO = MI->getOperand(i);
912 // Make sure MRI knows about registers clobbered by regmasks.
913 if (MO.isRegMask()) {
914 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
915 continue;
916 }
917 if (!MO.isReg()) continue;
918 unsigned Reg = MO.getReg();
919 if (!Reg) continue;
920 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
921 VirtOpEnd = i+1;
922 if (MO.isUse()) {
923 hasTiedOps = hasTiedOps ||
924 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
925 } else {
926 if (MO.isEarlyClobber())
927 hasEarlyClobbers = true;
928 if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
929 hasPartialRedefs = true;
930 }
931 continue;
932 }
933 if (!MRI->isAllocatable(Reg)) continue;
934 if (MO.isUse()) {
935 usePhysReg(MO);
936 } else if (MO.isEarlyClobber()) {
937 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
938 regFree : regReserved);
939 hasEarlyClobbers = true;
940 } else
941 hasPhysDefs = true;
942 }
943
944 // The instruction may have virtual register operands that must be allocated
945 // the same register at use-time and def-time: early clobbers and tied
946 // operands. If there are also physical defs, these registers must avoid
947 // both physical defs and uses, making them more constrained than normal
948 // operands.
949 // Similarly, if there are multiple defs and tied operands, we must make
950 // sure the same register is allocated to uses and defs.
951 // We didn't detect inline asm tied operands above, so just make this extra
952 // pass for all inline asm.
953 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
954 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
955 handleThroughOperands(MI, VirtDead);
956 // Don't attempt coalescing when we have funny stuff going on.
957 CopyDst = 0;
958 // Pretend we have early clobbers so the use operands get marked below.
959 // This is not necessary for the common case of a single tied use.
960 hasEarlyClobbers = true;
961 }
962
963 // Second scan.
964 // Allocate virtreg uses.
965 for (unsigned i = 0; i != VirtOpEnd; ++i) {
966 MachineOperand &MO = MI->getOperand(i);
967 if (!MO.isReg()) continue;
968 unsigned Reg = MO.getReg();
969 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
970 if (MO.isUse()) {
971 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
972 unsigned PhysReg = LRI->PhysReg;
973 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
974 if (setPhysReg(MI, i, PhysReg))
975 killVirtReg(LRI);
976 }
977 }
978
979 for (UsedInInstrSet::iterator
980 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
981 MRI->setRegUnitUsed(*I);
982
983 // Track registers defined by instruction - early clobbers and tied uses at
984 // this point.
985 UsedInInstr.clear();
986 if (hasEarlyClobbers) {
987 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
988 MachineOperand &MO = MI->getOperand(i);
989 if (!MO.isReg()) continue;
990 unsigned Reg = MO.getReg();
991 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
992 // Look for physreg defs and tied uses.
993 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
994 markRegUsedInInstr(Reg);
995 }
996 }
997
998 unsigned DefOpEnd = MI->getNumOperands();
999 if (MI->isCall()) {
1000 // Spill all virtregs before a call. This serves two purposes: 1. If an
1001 // exception is thrown, the landing pad is going to expect to find
1002 // registers in their spill slots, and 2. we don't have to wade through
1003 // all the <imp-def> operands on the call instruction.
1004 DefOpEnd = VirtOpEnd;
1005 DEBUG(dbgs() << " Spilling remaining registers before call.\n");
1006 spillAll(MI);
1007
1008 // The imp-defs are skipped below, but we still need to mark those
1009 // registers as used by the function.
1010 SkippedInstrs.insert(&MCID);
1011 }
1012
1013 // Third scan.
1014 // Allocate defs and collect dead defs.
1015 for (unsigned i = 0; i != DefOpEnd; ++i) {
1016 MachineOperand &MO = MI->getOperand(i);
1017 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1018 continue;
1019 unsigned Reg = MO.getReg();
1020
1021 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1022 if (!MRI->isAllocatable(Reg)) continue;
1023 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
1024 regFree : regReserved);
1025 continue;
1026 }
1027 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
1028 unsigned PhysReg = LRI->PhysReg;
1029 if (setPhysReg(MI, i, PhysReg)) {
1030 VirtDead.push_back(Reg);
1031 CopyDst = 0; // cancel coalescing;
1032 } else
1033 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
1034 }
1035
1036 // Kill dead defs after the scan to ensure that multiple defs of the same
1037 // register are allocated identically. We didn't need to do this for uses
1038 // because we are crerating our own kill flags, and they are always at the
1039 // last use.
1040 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1041 killVirtReg(VirtDead[i]);
1042 VirtDead.clear();
1043
1044 for (UsedInInstrSet::iterator
1045 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
1046 MRI->setRegUnitUsed(*I);
1047
1048 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1049 DEBUG(dbgs() << "-- coalescing: " << *MI);
1050 Coalesced.push_back(MI);
1051 } else {
1052 DEBUG(dbgs() << "<< " << *MI);
1053 }
1054 }
1055
1056 // Spill all physical registers holding virtual registers now.
1057 DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1058 spillAll(MBB->getFirstTerminator());
1059
1060 // Erase all the coalesced copies. We are delaying it until now because
1061 // LiveVirtRegs might refer to the instrs.
1062 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1063 MBB->erase(Coalesced[i]);
1064 NumCopies += Coalesced.size();
1065
1066 DEBUG(MBB->dump());
1067 }
1068
1069 /// runOnMachineFunction - Register allocate the whole function
1070 ///
runOnMachineFunction(MachineFunction & Fn)1071 bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1072 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1073 << "********** Function: " << Fn.getName() << '\n');
1074 MF = &Fn;
1075 MRI = &MF->getRegInfo();
1076 TM = &Fn.getTarget();
1077 TRI = TM->getRegisterInfo();
1078 TII = TM->getInstrInfo();
1079 MRI->freezeReservedRegs(Fn);
1080 RegClassInfo.runOnMachineFunction(Fn);
1081 UsedInInstr.clear();
1082 UsedInInstr.setUniverse(TRI->getNumRegUnits());
1083
1084 assert(!MRI->isSSA() && "regalloc requires leaving SSA");
1085
1086 // initialize the virtual->physical register map to have a 'null'
1087 // mapping for all virtual registers
1088 StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1089 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
1090
1091 // Loop over all of the basic blocks, eliminating virtual register references
1092 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1093 MBBi != MBBe; ++MBBi) {
1094 MBB = &*MBBi;
1095 AllocateBasicBlock();
1096 }
1097
1098 // Add the clobber lists for all the instructions we skipped earlier.
1099 for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
1100 I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
1101 if (const uint16_t *Defs = (*I)->getImplicitDefs())
1102 while (*Defs)
1103 MRI->setPhysRegUsed(*Defs++);
1104
1105 // All machine operands and other references to virtual registers have been
1106 // replaced. Remove the virtual registers.
1107 MRI->clearVirtRegs();
1108
1109 SkippedInstrs.clear();
1110 StackSlotForVirtReg.clear();
1111 LiveDbgValueMap.clear();
1112 return true;
1113 }
1114
createFastRegisterAllocator()1115 FunctionPass *llvm::createFastRegisterAllocator() {
1116 return new RAFast();
1117 }
1118