1 //===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates PHI instructions by aggressively coalescing the copies
11 // that would be inserted by a naive algorithm and only inserting the copies
12 // that are necessary. The coalescing technique initially assumes that all
13 // registers appearing in a PHI instruction do not interfere. It then eliminates
14 // proven interferences, using dominators to only perform a linear number of
15 // interference tests instead of the quadratic number of interference tests
16 // that this would naively require. This is a technique derived from:
17 //
18 // Budimlic, et al. Fast copy coalescing and live-range identification.
19 // In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
20 // Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
21 // PLDI '02. ACM, New York, NY, 25-32.
22 //
23 // The original implementation constructs a data structure they call a dominance
24 // forest for this purpose. The dominance forest was shown to be unnecessary,
25 // as it is possible to emulate the creation and traversal of a dominance forest
26 // by directly using the dominator tree, rather than actually constructing the
27 // dominance forest. This technique is explained in:
28 //
29 // Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
30 // Quality and Efficiency,
31 // In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
32 // Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
33 // CGO '09. IEEE, Washington, DC, 114-125.
34 //
35 // Careful implementation allows for all of the dominator forest interference
36 // checks to be performed at once in a single depth-first traversal of the
37 // dominator tree, which is what is implemented here.
38 //
39 //===----------------------------------------------------------------------===//
40
41 #define DEBUG_TYPE "strongphielim"
42 #include "llvm/CodeGen/Passes.h"
43 #include "PHIEliminationUtils.h"
44 #include "llvm/ADT/DenseSet.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
47 #include "llvm/CodeGen/MachineDominators.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstrBuilder.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 using namespace llvm;
54
55 namespace {
56 class StrongPHIElimination : public MachineFunctionPass {
57 public:
58 static char ID; // Pass identification, replacement for typeid
StrongPHIElimination()59 StrongPHIElimination() : MachineFunctionPass(ID) {
60 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
61 }
62
63 virtual void getAnalysisUsage(AnalysisUsage&) const;
64 bool runOnMachineFunction(MachineFunction&);
65
66 private:
67 /// This struct represents a single node in the union-find data structure
68 /// representing the variable congruence classes. There is one difference
69 /// from a normal union-find data structure. We steal two bits from the parent
70 /// pointer . One of these bits is used to represent whether the register
71 /// itself has been isolated, and the other is used to represent whether the
72 /// PHI with that register as its destination has been isolated.
73 ///
74 /// Note that this leads to the strange situation where the leader of a
75 /// congruence class may no longer logically be a member, due to being
76 /// isolated.
77 struct Node {
78 enum Flags {
79 kRegisterIsolatedFlag = 1,
80 kPHIIsolatedFlag = 2
81 };
Node__anon6d28e9530111::StrongPHIElimination::Node82 Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
83
84 Node *getLeader();
85
86 PointerIntPair<Node*, 2> parent;
87 unsigned value;
88 unsigned rank;
89 };
90
91 /// Add a register in a new congruence class containing only itself.
92 void addReg(unsigned);
93
94 /// Join the congruence classes of two registers. This function is biased
95 /// towards the left argument, i.e. after
96 ///
97 /// addReg(r2);
98 /// unionRegs(r1, r2);
99 ///
100 /// the leader of the unioned congruence class is the same as the leader of
101 /// r1's congruence class prior to the union. This is actually relied upon
102 /// in the copy insertion code.
103 void unionRegs(unsigned, unsigned);
104
105 /// Get the color of a register. The color is 0 if the register has been
106 /// isolated.
107 unsigned getRegColor(unsigned);
108
109 // Isolate a register.
110 void isolateReg(unsigned);
111
112 /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
113 /// isolated. Otherwise, it is the original color of its destination and
114 /// all of its operands (before they were isolated, if they were).
115 unsigned getPHIColor(MachineInstr*);
116
117 /// Isolate a PHI.
118 void isolatePHI(MachineInstr*);
119
120 /// Traverses a basic block, splitting any interferences found between
121 /// registers in the same congruence class. It takes two DenseMaps as
122 /// arguments that it also updates: CurrentDominatingParent, which maps
123 /// a color to the register in that congruence class whose definition was
124 /// most recently seen, and ImmediateDominatingParent, which maps a register
125 /// to the register in the same congruence class that most immediately
126 /// dominates it.
127 ///
128 /// This function assumes that it is being called in a depth-first traversal
129 /// of the dominator tree.
130 void SplitInterferencesForBasicBlock(
131 MachineBasicBlock&,
132 DenseMap<unsigned, unsigned> &CurrentDominatingParent,
133 DenseMap<unsigned, unsigned> &ImmediateDominatingParent);
134
135 // Lowers a PHI instruction, inserting copies of the source and destination
136 // registers as necessary.
137 void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
138
139 // Merges the live interval of Reg into NewReg and renames Reg to NewReg
140 // everywhere that Reg appears. Requires Reg and NewReg to have non-
141 // overlapping lifetimes.
142 void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
143
144 MachineRegisterInfo *MRI;
145 const TargetInstrInfo *TII;
146 MachineDominatorTree *DT;
147 LiveIntervals *LI;
148
149 BumpPtrAllocator Allocator;
150
151 DenseMap<unsigned, Node*> RegNodeMap;
152
153 // Maps a basic block to a list of its defs of registers that appear as PHI
154 // sources.
155 DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
156
157 // Maps a color to a pair of a MachineInstr* and a virtual register, which
158 // is the operand of that PHI corresponding to the current basic block.
159 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
160
161 // FIXME: Can these two data structures be combined? Would a std::multimap
162 // be any better?
163
164 // Stores pairs of predecessor basic blocks and the source registers of
165 // inserted copy instructions.
166 typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
167 SrcCopySet InsertedSrcCopySet;
168
169 // Maps pairs of predecessor basic blocks and colors to their defining copy
170 // instructions.
171 typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
172 SrcCopyMap;
173 SrcCopyMap InsertedSrcCopyMap;
174
175 // Maps inserted destination copy registers to their defining copy
176 // instructions.
177 typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
178 DestCopyMap InsertedDestCopies;
179 };
180
181 struct MIIndexCompare {
MIIndexCompare__anon6d28e9530111::MIIndexCompare182 MIIndexCompare(LiveIntervals *LiveIntervals) : LI(LiveIntervals) { }
183
operator ()__anon6d28e9530111::MIIndexCompare184 bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
185 return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
186 }
187
188 LiveIntervals *LI;
189 };
190 } // namespace
191
192 STATISTIC(NumPHIsLowered, "Number of PHIs lowered");
193 STATISTIC(NumDestCopiesInserted, "Number of destination copies inserted");
194 STATISTIC(NumSrcCopiesInserted, "Number of source copies inserted");
195
196 char StrongPHIElimination::ID = 0;
197 INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
198 "Eliminate PHI nodes for register allocation, intelligently", false, false)
199 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
200 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
201 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
202 INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
203 "Eliminate PHI nodes for register allocation, intelligently", false, false)
204
205 char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
206
getAnalysisUsage(AnalysisUsage & AU) const207 void StrongPHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
208 AU.setPreservesCFG();
209 AU.addRequired<MachineDominatorTree>();
210 AU.addRequired<SlotIndexes>();
211 AU.addPreserved<SlotIndexes>();
212 AU.addRequired<LiveIntervals>();
213 AU.addPreserved<LiveIntervals>();
214 MachineFunctionPass::getAnalysisUsage(AU);
215 }
216
findLastUse(MachineBasicBlock * MBB,unsigned Reg)217 static MachineOperand *findLastUse(MachineBasicBlock *MBB, unsigned Reg) {
218 // FIXME: This only needs to check from the first terminator, as only the
219 // first terminator can use a virtual register.
220 for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
221 assert (RI != MBB->rend());
222 MachineInstr *MI = &*RI;
223
224 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
225 OE = MI->operands_end(); OI != OE; ++OI) {
226 MachineOperand &MO = *OI;
227 if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
228 return &MO;
229 }
230 }
231 }
232
runOnMachineFunction(MachineFunction & MF)233 bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) {
234 MRI = &MF.getRegInfo();
235 TII = MF.getTarget().getInstrInfo();
236 DT = &getAnalysis<MachineDominatorTree>();
237 LI = &getAnalysis<LiveIntervals>();
238
239 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
240 I != E; ++I) {
241 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
242 BBI != BBE && BBI->isPHI(); ++BBI) {
243 unsigned DestReg = BBI->getOperand(0).getReg();
244 addReg(DestReg);
245 PHISrcDefs[I].push_back(BBI);
246
247 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
248 MachineOperand &SrcMO = BBI->getOperand(i);
249 unsigned SrcReg = SrcMO.getReg();
250 addReg(SrcReg);
251 unionRegs(DestReg, SrcReg);
252
253 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
254 if (DefMI)
255 PHISrcDefs[DefMI->getParent()].push_back(DefMI);
256 }
257 }
258 }
259
260 // Perform a depth-first traversal of the dominator tree, splitting
261 // interferences amongst PHI-congruence classes.
262 DenseMap<unsigned, unsigned> CurrentDominatingParent;
263 DenseMap<unsigned, unsigned> ImmediateDominatingParent;
264 for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
265 DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
266 SplitInterferencesForBasicBlock(*DI->getBlock(),
267 CurrentDominatingParent,
268 ImmediateDominatingParent);
269 }
270
271 // Insert copies for all PHI source and destination registers.
272 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
273 I != E; ++I) {
274 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
275 BBI != BBE && BBI->isPHI(); ++BBI) {
276 InsertCopiesForPHI(BBI, I);
277 }
278 }
279
280 // FIXME: Preserve the equivalence classes during copy insertion and use
281 // the preversed equivalence classes instead of recomputing them.
282 RegNodeMap.clear();
283 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
284 I != E; ++I) {
285 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
286 BBI != BBE && BBI->isPHI(); ++BBI) {
287 unsigned DestReg = BBI->getOperand(0).getReg();
288 addReg(DestReg);
289
290 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
291 unsigned SrcReg = BBI->getOperand(i).getReg();
292 addReg(SrcReg);
293 unionRegs(DestReg, SrcReg);
294 }
295 }
296 }
297
298 DenseMap<unsigned, unsigned> RegRenamingMap;
299 bool Changed = false;
300 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
301 I != E; ++I) {
302 MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
303 while (BBI != BBE && BBI->isPHI()) {
304 MachineInstr *PHI = BBI;
305
306 assert(PHI->getNumOperands() > 0);
307
308 unsigned SrcReg = PHI->getOperand(1).getReg();
309 unsigned SrcColor = getRegColor(SrcReg);
310 unsigned NewReg = RegRenamingMap[SrcColor];
311 if (!NewReg) {
312 NewReg = SrcReg;
313 RegRenamingMap[SrcColor] = SrcReg;
314 }
315 MergeLIsAndRename(SrcReg, NewReg);
316
317 unsigned DestReg = PHI->getOperand(0).getReg();
318 if (!InsertedDestCopies.count(DestReg))
319 MergeLIsAndRename(DestReg, NewReg);
320
321 for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
322 unsigned SrcReg = PHI->getOperand(i).getReg();
323 MergeLIsAndRename(SrcReg, NewReg);
324 }
325
326 ++BBI;
327 LI->RemoveMachineInstrFromMaps(PHI);
328 PHI->eraseFromParent();
329 Changed = true;
330 }
331 }
332
333 // Due to the insertion of copies to split live ranges, the live intervals are
334 // guaranteed to not overlap, except in one case: an original PHI source and a
335 // PHI destination copy. In this case, they have the same value and thus don't
336 // truly intersect, so we merge them into the value live at that point.
337 // FIXME: Is there some better way we can handle this?
338 for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
339 E = InsertedDestCopies.end(); I != E; ++I) {
340 unsigned DestReg = I->first;
341 unsigned DestColor = getRegColor(DestReg);
342 unsigned NewReg = RegRenamingMap[DestColor];
343
344 LiveInterval &DestLI = LI->getInterval(DestReg);
345 LiveInterval &NewLI = LI->getInterval(NewReg);
346
347 assert(DestLI.ranges.size() == 1
348 && "PHI destination copy's live interval should be a single live "
349 "range from the beginning of the BB to the copy instruction.");
350 LiveRange *DestLR = DestLI.begin();
351 VNInfo *NewVNI = NewLI.getVNInfoAt(DestLR->start);
352 if (!NewVNI) {
353 NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
354 MachineInstr *CopyInstr = I->second;
355 CopyInstr->getOperand(1).setIsKill(true);
356 }
357
358 LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
359 NewLI.addRange(NewLR);
360
361 LI->removeInterval(DestReg);
362 MRI->replaceRegWith(DestReg, NewReg);
363 }
364
365 // Adjust the live intervals of all PHI source registers to handle the case
366 // where the PHIs in successor blocks were the only later uses of the source
367 // register.
368 for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
369 E = InsertedSrcCopySet.end(); I != E; ++I) {
370 MachineBasicBlock *MBB = I->first;
371 unsigned SrcReg = I->second;
372 if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
373 SrcReg = RenamedRegister;
374
375 LiveInterval &SrcLI = LI->getInterval(SrcReg);
376
377 bool isLiveOut = false;
378 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
379 SE = MBB->succ_end(); SI != SE; ++SI) {
380 if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
381 isLiveOut = true;
382 break;
383 }
384 }
385
386 if (isLiveOut)
387 continue;
388
389 MachineOperand *LastUse = findLastUse(MBB, SrcReg);
390 assert(LastUse);
391 SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
392 SrcLI.removeRange(LastUseIndex.getRegSlot(), LI->getMBBEndIdx(MBB));
393 LastUse->setIsKill(true);
394 }
395
396 Allocator.Reset();
397 RegNodeMap.clear();
398 PHISrcDefs.clear();
399 InsertedSrcCopySet.clear();
400 InsertedSrcCopyMap.clear();
401 InsertedDestCopies.clear();
402
403 return Changed;
404 }
405
addReg(unsigned Reg)406 void StrongPHIElimination::addReg(unsigned Reg) {
407 Node *&N = RegNodeMap[Reg];
408 if (!N)
409 N = new (Allocator) Node(Reg);
410 }
411
412 StrongPHIElimination::Node*
getLeader()413 StrongPHIElimination::Node::getLeader() {
414 Node *N = this;
415 Node *Parent = parent.getPointer();
416 Node *Grandparent = Parent->parent.getPointer();
417
418 while (Parent != Grandparent) {
419 N->parent.setPointer(Grandparent);
420 N = Grandparent;
421 Parent = Parent->parent.getPointer();
422 Grandparent = Parent->parent.getPointer();
423 }
424
425 return Parent;
426 }
427
getRegColor(unsigned Reg)428 unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
429 DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
430 if (RI == RegNodeMap.end())
431 return 0;
432 Node *Node = RI->second;
433 if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
434 return 0;
435 return Node->getLeader()->value;
436 }
437
unionRegs(unsigned Reg1,unsigned Reg2)438 void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
439 Node *Node1 = RegNodeMap[Reg1]->getLeader();
440 Node *Node2 = RegNodeMap[Reg2]->getLeader();
441
442 if (Node1->rank > Node2->rank) {
443 Node2->parent.setPointer(Node1->getLeader());
444 } else if (Node1->rank < Node2->rank) {
445 Node1->parent.setPointer(Node2->getLeader());
446 } else if (Node1 != Node2) {
447 Node2->parent.setPointer(Node1->getLeader());
448 Node1->rank++;
449 }
450 }
451
isolateReg(unsigned Reg)452 void StrongPHIElimination::isolateReg(unsigned Reg) {
453 Node *Node = RegNodeMap[Reg];
454 Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
455 }
456
getPHIColor(MachineInstr * PHI)457 unsigned StrongPHIElimination::getPHIColor(MachineInstr *PHI) {
458 assert(PHI->isPHI());
459
460 unsigned DestReg = PHI->getOperand(0).getReg();
461 Node *DestNode = RegNodeMap[DestReg];
462 if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
463 return 0;
464
465 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
466 unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
467 if (SrcColor)
468 return SrcColor;
469 }
470 return 0;
471 }
472
isolatePHI(MachineInstr * PHI)473 void StrongPHIElimination::isolatePHI(MachineInstr *PHI) {
474 assert(PHI->isPHI());
475 Node *Node = RegNodeMap[PHI->getOperand(0).getReg()];
476 Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
477 }
478
479 /// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
480 /// interferences found between registers in the same congruence class. It
481 /// takes two DenseMaps as arguments that it also updates:
482 ///
483 /// 1) CurrentDominatingParent, which maps a color to the register in that
484 /// congruence class whose definition was most recently seen.
485 ///
486 /// 2) ImmediateDominatingParent, which maps a register to the register in the
487 /// same congruence class that most immediately dominates it.
488 ///
489 /// This function assumes that it is being called in a depth-first traversal
490 /// of the dominator tree.
491 ///
492 /// The algorithm used here is a generalization of the dominance-based SSA test
493 /// for two variables. If there are variables a_1, ..., a_n such that
494 ///
495 /// def(a_1) dom ... dom def(a_n),
496 ///
497 /// then we can test for an interference between any two a_i by only using O(n)
498 /// interference tests between pairs of variables. If i < j and a_i and a_j
499 /// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
500 /// Thus, in order to test for an interference involving a_i, we need only check
501 /// for a potential interference with a_i+1.
502 ///
503 /// This method can be generalized to arbitrary sets of variables by performing
504 /// a depth-first traversal of the dominator tree. As we traverse down a branch
505 /// of the dominator tree, we keep track of the current dominating variable and
506 /// only perform an interference test with that variable. However, when we go to
507 /// another branch of the dominator tree, the definition of the current dominating
508 /// variable may no longer dominate the current block. In order to correct this,
509 /// we need to use a stack of past choices of the current dominating variable
510 /// and pop from this stack until we find a variable whose definition actually
511 /// dominates the current block.
512 ///
513 /// There will be one push on this stack for each variable that has become the
514 /// current dominating variable, so instead of using an explicit stack we can
515 /// simply associate the previous choice for a current dominating variable with
516 /// the new choice. This works better in our implementation, where we test for
517 /// interference in multiple distinct sets at once.
518 void
SplitInterferencesForBasicBlock(MachineBasicBlock & MBB,DenseMap<unsigned,unsigned> & CurrentDominatingParent,DenseMap<unsigned,unsigned> & ImmediateDominatingParent)519 StrongPHIElimination::SplitInterferencesForBasicBlock(
520 MachineBasicBlock &MBB,
521 DenseMap<unsigned, unsigned> &CurrentDominatingParent,
522 DenseMap<unsigned, unsigned> &ImmediateDominatingParent) {
523 // Sort defs by their order in the original basic block, as the code below
524 // assumes that it is processing definitions in dominance order.
525 std::vector<MachineInstr*> &DefInstrs = PHISrcDefs[&MBB];
526 std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
527
528 for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
529 BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
530 for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
531 E = (*BBI)->operands_end(); I != E; ++I) {
532 const MachineOperand &MO = *I;
533
534 // FIXME: This would be faster if it were possible to bail out of checking
535 // an instruction's operands after the explicit defs, but this is incorrect
536 // for variadic instructions, which may appear before register allocation
537 // in the future.
538 if (!MO.isReg() || !MO.isDef())
539 continue;
540
541 unsigned DestReg = MO.getReg();
542 if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
543 continue;
544
545 // If the virtual register being defined is not used in any PHI or has
546 // already been isolated, then there are no more interferences to check.
547 unsigned DestColor = getRegColor(DestReg);
548 if (!DestColor)
549 continue;
550
551 // The input to this pass sometimes is not in SSA form in every basic
552 // block, as some virtual registers have redefinitions. We could eliminate
553 // this by fixing the passes that generate the non-SSA code, or we could
554 // handle it here by tracking defining machine instructions rather than
555 // virtual registers. For now, we just handle the situation conservatively
556 // in a way that will possibly lead to false interferences.
557 unsigned &CurrentParent = CurrentDominatingParent[DestColor];
558 unsigned NewParent = CurrentParent;
559 if (NewParent == DestReg)
560 continue;
561
562 // Pop registers from the stack represented by ImmediateDominatingParent
563 // until we find a parent that dominates the current instruction.
564 while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
565 || !getRegColor(NewParent)))
566 NewParent = ImmediateDominatingParent[NewParent];
567
568 // If NewParent is nonzero, then its definition dominates the current
569 // instruction, so it is only necessary to check for the liveness of
570 // NewParent in order to check for an interference.
571 if (NewParent
572 && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
573 // If there is an interference, always isolate the new register. This
574 // could be improved by using a heuristic that decides which of the two
575 // registers to isolate.
576 isolateReg(DestReg);
577 CurrentParent = NewParent;
578 } else {
579 // If there is no interference, update ImmediateDominatingParent and set
580 // the CurrentDominatingParent for this color to the current register.
581 ImmediateDominatingParent[DestReg] = NewParent;
582 CurrentParent = DestReg;
583 }
584 }
585 }
586
587 // We now walk the PHIs in successor blocks and check for interferences. This
588 // is necessary because the use of a PHI's operands are logically contained in
589 // the predecessor block. The def of a PHI's destination register is processed
590 // along with the other defs in a basic block.
591
592 CurrentPHIForColor.clear();
593
594 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
595 SE = MBB.succ_end(); SI != SE; ++SI) {
596 for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
597 BBI != BBE && BBI->isPHI(); ++BBI) {
598 MachineInstr *PHI = BBI;
599
600 // If a PHI is already isolated, either by being isolated directly or
601 // having all of its operands isolated, ignore it.
602 unsigned Color = getPHIColor(PHI);
603 if (!Color)
604 continue;
605
606 // Find the index of the PHI operand that corresponds to this basic block.
607 unsigned PredIndex;
608 for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
609 if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
610 break;
611 }
612 assert(PredIndex < PHI->getNumOperands());
613 unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
614
615 // Pop registers from the stack represented by ImmediateDominatingParent
616 // until we find a parent that dominates the current instruction.
617 unsigned &CurrentParent = CurrentDominatingParent[Color];
618 unsigned NewParent = CurrentParent;
619 while (NewParent
620 && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
621 || !getRegColor(NewParent)))
622 NewParent = ImmediateDominatingParent[NewParent];
623 CurrentParent = NewParent;
624
625 // If there is an interference with a register, always isolate the
626 // register rather than the PHI. It is also possible to isolate the
627 // PHI, but that introduces copies for all of the registers involved
628 // in that PHI.
629 if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
630 && NewParent != PredOperandReg)
631 isolateReg(NewParent);
632
633 std::pair<MachineInstr*, unsigned>
634 &CurrentPHI = CurrentPHIForColor[Color];
635
636 // If two PHIs have the same operand from every shared predecessor, then
637 // they don't actually interfere. Otherwise, isolate the current PHI. This
638 // could possibly be improved, e.g. we could isolate the PHI with the
639 // fewest operands.
640 if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
641 isolatePHI(PHI);
642 else
643 CurrentPHI = std::make_pair(PHI, PredOperandReg);
644 }
645 }
646 }
647
InsertCopiesForPHI(MachineInstr * PHI,MachineBasicBlock * MBB)648 void StrongPHIElimination::InsertCopiesForPHI(MachineInstr *PHI,
649 MachineBasicBlock *MBB) {
650 assert(PHI->isPHI());
651 ++NumPHIsLowered;
652 unsigned PHIColor = getPHIColor(PHI);
653
654 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
655 MachineOperand &SrcMO = PHI->getOperand(i);
656
657 // If a source is defined by an implicit def, there is no need to insert a
658 // copy in the predecessor.
659 if (SrcMO.isUndef())
660 continue;
661
662 unsigned SrcReg = SrcMO.getReg();
663 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
664 "Machine PHI Operands must all be virtual registers!");
665
666 MachineBasicBlock *PredBB = PHI->getOperand(i + 1).getMBB();
667 unsigned SrcColor = getRegColor(SrcReg);
668
669 // If neither the PHI nor the operand were isolated, then we only need to
670 // set the phi-kill flag on the VNInfo at this PHI.
671 if (PHIColor && SrcColor == PHIColor) {
672 LiveInterval &SrcInterval = LI->getInterval(SrcReg);
673 SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
674 VNInfo *SrcVNI = SrcInterval.getVNInfoBefore(PredIndex);
675 (void)SrcVNI;
676 assert(SrcVNI);
677 continue;
678 }
679
680 unsigned CopyReg = 0;
681 if (PHIColor) {
682 SrcCopyMap::const_iterator I
683 = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
684 CopyReg
685 = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
686 }
687
688 if (!CopyReg) {
689 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
690 CopyReg = MRI->createVirtualRegister(RC);
691
692 MachineBasicBlock::iterator
693 CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
694 unsigned SrcSubReg = SrcMO.getSubReg();
695 MachineInstr *CopyInstr = BuildMI(*PredBB,
696 CopyInsertPoint,
697 PHI->getDebugLoc(),
698 TII->get(TargetOpcode::COPY),
699 CopyReg).addReg(SrcReg, 0, SrcSubReg);
700 LI->InsertMachineInstrInMaps(CopyInstr);
701 ++NumSrcCopiesInserted;
702
703 // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
704 // the newly added range.
705 LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
706 InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
707
708 addReg(CopyReg);
709 if (PHIColor) {
710 unionRegs(PHIColor, CopyReg);
711 assert(getRegColor(CopyReg) != CopyReg);
712 } else {
713 PHIColor = CopyReg;
714 assert(getRegColor(CopyReg) == CopyReg);
715 }
716
717 // Insert into map if not already there.
718 InsertedSrcCopyMap.insert(std::make_pair(std::make_pair(PredBB, PHIColor),
719 CopyInstr));
720 }
721
722 SrcMO.setReg(CopyReg);
723
724 // If SrcReg is not live beyond the PHI, trim its interval so that it is no
725 // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
726 // processed later, but this is still correct to do at this point because we
727 // never rely on LiveIntervals being correct while inserting copies.
728 // FIXME: Should this just count uses at PHIs like the normal PHIElimination
729 // pass does?
730 LiveInterval &SrcLI = LI->getInterval(SrcReg);
731 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
732 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
733 SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
734 if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
735 SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
736 }
737
738 unsigned DestReg = PHI->getOperand(0).getReg();
739 unsigned DestColor = getRegColor(DestReg);
740
741 if (PHIColor && DestColor == PHIColor) {
742 LiveInterval &DestLI = LI->getInterval(DestReg);
743
744 // Set the phi-def flag for the VN at this PHI.
745 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
746 VNInfo *DestVNI = DestLI.getVNInfoAt(PHIIndex.getRegSlot());
747 assert(DestVNI);
748
749 // Prior to PHI elimination, the live ranges of PHIs begin at their defining
750 // instruction. After PHI elimination, PHI instructions are replaced by VNs
751 // with the phi-def flag set, and the live ranges of these VNs start at the
752 // beginning of the basic block.
753 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
754 DestVNI->def = MBBStartIndex;
755 DestLI.addRange(LiveRange(MBBStartIndex,
756 PHIIndex.getRegSlot(),
757 DestVNI));
758 return;
759 }
760
761 const TargetRegisterClass *RC = MRI->getRegClass(DestReg);
762 unsigned CopyReg = MRI->createVirtualRegister(RC);
763
764 MachineInstr *CopyInstr = BuildMI(*MBB,
765 MBB->SkipPHIsAndLabels(MBB->begin()),
766 PHI->getDebugLoc(),
767 TII->get(TargetOpcode::COPY),
768 DestReg).addReg(CopyReg);
769 LI->InsertMachineInstrInMaps(CopyInstr);
770 PHI->getOperand(0).setReg(CopyReg);
771 ++NumDestCopiesInserted;
772
773 // Add the region from the beginning of MBB to the copy instruction to
774 // CopyReg's live interval, and give the VNInfo the phidef flag.
775 LiveInterval &CopyLI = LI->getOrCreateInterval(CopyReg);
776 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
777 SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
778 VNInfo *CopyVNI = CopyLI.getNextValue(MBBStartIndex,
779 LI->getVNInfoAllocator());
780 CopyLI.addRange(LiveRange(MBBStartIndex,
781 DestCopyIndex.getRegSlot(),
782 CopyVNI));
783
784 // Adjust DestReg's live interval to adjust for its new definition at
785 // CopyInstr.
786 LiveInterval &DestLI = LI->getOrCreateInterval(DestReg);
787 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
788 DestLI.removeRange(PHIIndex.getRegSlot(), DestCopyIndex.getRegSlot());
789
790 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
791 assert(DestVNI);
792 DestVNI->def = DestCopyIndex.getRegSlot();
793
794 InsertedDestCopies[CopyReg] = CopyInstr;
795 }
796
MergeLIsAndRename(unsigned Reg,unsigned NewReg)797 void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
798 if (Reg == NewReg)
799 return;
800
801 LiveInterval &OldLI = LI->getInterval(Reg);
802 LiveInterval &NewLI = LI->getInterval(NewReg);
803
804 // Merge the live ranges of the two registers.
805 DenseMap<VNInfo*, VNInfo*> VNMap;
806 for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
807 LRI != LRE; ++LRI) {
808 LiveRange OldLR = *LRI;
809 VNInfo *OldVN = OldLR.valno;
810
811 VNInfo *&NewVN = VNMap[OldVN];
812 if (!NewVN) {
813 NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
814 VNMap[OldVN] = NewVN;
815 }
816
817 LiveRange LR(OldLR.start, OldLR.end, NewVN);
818 NewLI.addRange(LR);
819 }
820
821 // Remove the LiveInterval for the register being renamed and replace all
822 // of its defs and uses with the new register.
823 LI->removeInterval(Reg);
824 MRI->replaceRegWith(Reg, NewReg);
825 }
826