• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates PHI instructions by aggressively coalescing the copies
11 // that would be inserted by a naive algorithm and only inserting the copies
12 // that are necessary. The coalescing technique initially assumes that all
13 // registers appearing in a PHI instruction do not interfere. It then eliminates
14 // proven interferences, using dominators to only perform a linear number of
15 // interference tests instead of the quadratic number of interference tests
16 // that this would naively require. This is a technique derived from:
17 //
18 //    Budimlic, et al. Fast copy coalescing and live-range identification.
19 //    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
20 //    Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
21 //    PLDI '02. ACM, New York, NY, 25-32.
22 //
23 // The original implementation constructs a data structure they call a dominance
24 // forest for this purpose. The dominance forest was shown to be unnecessary,
25 // as it is possible to emulate the creation and traversal of a dominance forest
26 // by directly using the dominator tree, rather than actually constructing the
27 // dominance forest.  This technique is explained in:
28 //
29 //   Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
30 //     Quality and Efficiency,
31 //   In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
32 //   Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
33 //   CGO '09. IEEE, Washington, DC, 114-125.
34 //
35 // Careful implementation allows for all of the dominator forest interference
36 // checks to be performed at once in a single depth-first traversal of the
37 // dominator tree, which is what is implemented here.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #define DEBUG_TYPE "strongphielim"
42 #include "llvm/CodeGen/Passes.h"
43 #include "PHIEliminationUtils.h"
44 #include "llvm/ADT/DenseSet.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
47 #include "llvm/CodeGen/MachineDominators.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstrBuilder.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 using namespace llvm;
54 
55 namespace {
56   class StrongPHIElimination : public MachineFunctionPass {
57   public:
58     static char ID; // Pass identification, replacement for typeid
StrongPHIElimination()59     StrongPHIElimination() : MachineFunctionPass(ID) {
60       initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
61     }
62 
63     virtual void getAnalysisUsage(AnalysisUsage&) const;
64     bool runOnMachineFunction(MachineFunction&);
65 
66   private:
67     /// This struct represents a single node in the union-find data structure
68     /// representing the variable congruence classes. There is one difference
69     /// from a normal union-find data structure. We steal two bits from the parent
70     /// pointer . One of these bits is used to represent whether the register
71     /// itself has been isolated, and the other is used to represent whether the
72     /// PHI with that register as its destination has been isolated.
73     ///
74     /// Note that this leads to the strange situation where the leader of a
75     /// congruence class may no longer logically be a member, due to being
76     /// isolated.
77     struct Node {
78       enum Flags {
79         kRegisterIsolatedFlag = 1,
80         kPHIIsolatedFlag = 2
81       };
Node__anon6d28e9530111::StrongPHIElimination::Node82       Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
83 
84       Node *getLeader();
85 
86       PointerIntPair<Node*, 2> parent;
87       unsigned value;
88       unsigned rank;
89     };
90 
91     /// Add a register in a new congruence class containing only itself.
92     void addReg(unsigned);
93 
94     /// Join the congruence classes of two registers. This function is biased
95     /// towards the left argument, i.e. after
96     ///
97     /// addReg(r2);
98     /// unionRegs(r1, r2);
99     ///
100     /// the leader of the unioned congruence class is the same as the leader of
101     /// r1's congruence class prior to the union. This is actually relied upon
102     /// in the copy insertion code.
103     void unionRegs(unsigned, unsigned);
104 
105     /// Get the color of a register. The color is 0 if the register has been
106     /// isolated.
107     unsigned getRegColor(unsigned);
108 
109     // Isolate a register.
110     void isolateReg(unsigned);
111 
112     /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
113     /// isolated. Otherwise, it is the original color of its destination and
114     /// all of its operands (before they were isolated, if they were).
115     unsigned getPHIColor(MachineInstr*);
116 
117     /// Isolate a PHI.
118     void isolatePHI(MachineInstr*);
119 
120     /// Traverses a basic block, splitting any interferences found between
121     /// registers in the same congruence class. It takes two DenseMaps as
122     /// arguments that it also updates: CurrentDominatingParent, which maps
123     /// a color to the register in that congruence class whose definition was
124     /// most recently seen, and ImmediateDominatingParent, which maps a register
125     /// to the register in the same congruence class that most immediately
126     /// dominates it.
127     ///
128     /// This function assumes that it is being called in a depth-first traversal
129     /// of the dominator tree.
130     void SplitInterferencesForBasicBlock(
131       MachineBasicBlock&,
132       DenseMap<unsigned, unsigned> &CurrentDominatingParent,
133       DenseMap<unsigned, unsigned> &ImmediateDominatingParent);
134 
135     // Lowers a PHI instruction, inserting copies of the source and destination
136     // registers as necessary.
137     void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
138 
139     // Merges the live interval of Reg into NewReg and renames Reg to NewReg
140     // everywhere that Reg appears. Requires Reg and NewReg to have non-
141     // overlapping lifetimes.
142     void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
143 
144     MachineRegisterInfo *MRI;
145     const TargetInstrInfo *TII;
146     MachineDominatorTree *DT;
147     LiveIntervals *LI;
148 
149     BumpPtrAllocator Allocator;
150 
151     DenseMap<unsigned, Node*> RegNodeMap;
152 
153     // Maps a basic block to a list of its defs of registers that appear as PHI
154     // sources.
155     DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
156 
157     // Maps a color to a pair of a MachineInstr* and a virtual register, which
158     // is the operand of that PHI corresponding to the current basic block.
159     DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
160 
161     // FIXME: Can these two data structures be combined? Would a std::multimap
162     // be any better?
163 
164     // Stores pairs of predecessor basic blocks and the source registers of
165     // inserted copy instructions.
166     typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
167     SrcCopySet InsertedSrcCopySet;
168 
169     // Maps pairs of predecessor basic blocks and colors to their defining copy
170     // instructions.
171     typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
172       SrcCopyMap;
173     SrcCopyMap InsertedSrcCopyMap;
174 
175     // Maps inserted destination copy registers to their defining copy
176     // instructions.
177     typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
178     DestCopyMap InsertedDestCopies;
179   };
180 
181   struct MIIndexCompare {
MIIndexCompare__anon6d28e9530111::MIIndexCompare182     MIIndexCompare(LiveIntervals *LiveIntervals) : LI(LiveIntervals) { }
183 
operator ()__anon6d28e9530111::MIIndexCompare184     bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
185       return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
186     }
187 
188     LiveIntervals *LI;
189   };
190 } // namespace
191 
192 STATISTIC(NumPHIsLowered, "Number of PHIs lowered");
193 STATISTIC(NumDestCopiesInserted, "Number of destination copies inserted");
194 STATISTIC(NumSrcCopiesInserted, "Number of source copies inserted");
195 
196 char StrongPHIElimination::ID = 0;
197 INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
198   "Eliminate PHI nodes for register allocation, intelligently", false, false)
199 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
200 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
201 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
202 INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
203   "Eliminate PHI nodes for register allocation, intelligently", false, false)
204 
205 char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
206 
getAnalysisUsage(AnalysisUsage & AU) const207 void StrongPHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
208   AU.setPreservesCFG();
209   AU.addRequired<MachineDominatorTree>();
210   AU.addRequired<SlotIndexes>();
211   AU.addPreserved<SlotIndexes>();
212   AU.addRequired<LiveIntervals>();
213   AU.addPreserved<LiveIntervals>();
214   MachineFunctionPass::getAnalysisUsage(AU);
215 }
216 
findLastUse(MachineBasicBlock * MBB,unsigned Reg)217 static MachineOperand *findLastUse(MachineBasicBlock *MBB, unsigned Reg) {
218   // FIXME: This only needs to check from the first terminator, as only the
219   // first terminator can use a virtual register.
220   for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
221     assert (RI != MBB->rend());
222     MachineInstr *MI = &*RI;
223 
224     for (MachineInstr::mop_iterator OI = MI->operands_begin(),
225          OE = MI->operands_end(); OI != OE; ++OI) {
226       MachineOperand &MO = *OI;
227       if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
228         return &MO;
229     }
230   }
231 }
232 
runOnMachineFunction(MachineFunction & MF)233 bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) {
234   MRI = &MF.getRegInfo();
235   TII = MF.getTarget().getInstrInfo();
236   DT = &getAnalysis<MachineDominatorTree>();
237   LI = &getAnalysis<LiveIntervals>();
238 
239   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
240        I != E; ++I) {
241     for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
242          BBI != BBE && BBI->isPHI(); ++BBI) {
243       unsigned DestReg = BBI->getOperand(0).getReg();
244       addReg(DestReg);
245       PHISrcDefs[I].push_back(BBI);
246 
247       for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
248         MachineOperand &SrcMO = BBI->getOperand(i);
249         unsigned SrcReg = SrcMO.getReg();
250         addReg(SrcReg);
251         unionRegs(DestReg, SrcReg);
252 
253         MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
254         if (DefMI)
255           PHISrcDefs[DefMI->getParent()].push_back(DefMI);
256       }
257     }
258   }
259 
260   // Perform a depth-first traversal of the dominator tree, splitting
261   // interferences amongst PHI-congruence classes.
262   DenseMap<unsigned, unsigned> CurrentDominatingParent;
263   DenseMap<unsigned, unsigned> ImmediateDominatingParent;
264   for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
265        DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
266     SplitInterferencesForBasicBlock(*DI->getBlock(),
267                                     CurrentDominatingParent,
268                                     ImmediateDominatingParent);
269   }
270 
271   // Insert copies for all PHI source and destination registers.
272   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
273        I != E; ++I) {
274     for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
275          BBI != BBE && BBI->isPHI(); ++BBI) {
276       InsertCopiesForPHI(BBI, I);
277     }
278   }
279 
280   // FIXME: Preserve the equivalence classes during copy insertion and use
281   // the preversed equivalence classes instead of recomputing them.
282   RegNodeMap.clear();
283   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
284        I != E; ++I) {
285     for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
286          BBI != BBE && BBI->isPHI(); ++BBI) {
287       unsigned DestReg = BBI->getOperand(0).getReg();
288       addReg(DestReg);
289 
290       for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
291         unsigned SrcReg = BBI->getOperand(i).getReg();
292         addReg(SrcReg);
293         unionRegs(DestReg, SrcReg);
294       }
295     }
296   }
297 
298   DenseMap<unsigned, unsigned> RegRenamingMap;
299   bool Changed = false;
300   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
301        I != E; ++I) {
302     MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
303     while (BBI != BBE && BBI->isPHI()) {
304       MachineInstr *PHI = BBI;
305 
306       assert(PHI->getNumOperands() > 0);
307 
308       unsigned SrcReg = PHI->getOperand(1).getReg();
309       unsigned SrcColor = getRegColor(SrcReg);
310       unsigned NewReg = RegRenamingMap[SrcColor];
311       if (!NewReg) {
312         NewReg = SrcReg;
313         RegRenamingMap[SrcColor] = SrcReg;
314       }
315       MergeLIsAndRename(SrcReg, NewReg);
316 
317       unsigned DestReg = PHI->getOperand(0).getReg();
318       if (!InsertedDestCopies.count(DestReg))
319         MergeLIsAndRename(DestReg, NewReg);
320 
321       for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
322         unsigned SrcReg = PHI->getOperand(i).getReg();
323         MergeLIsAndRename(SrcReg, NewReg);
324       }
325 
326       ++BBI;
327       LI->RemoveMachineInstrFromMaps(PHI);
328       PHI->eraseFromParent();
329       Changed = true;
330     }
331   }
332 
333   // Due to the insertion of copies to split live ranges, the live intervals are
334   // guaranteed to not overlap, except in one case: an original PHI source and a
335   // PHI destination copy. In this case, they have the same value and thus don't
336   // truly intersect, so we merge them into the value live at that point.
337   // FIXME: Is there some better way we can handle this?
338   for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
339        E = InsertedDestCopies.end(); I != E; ++I) {
340     unsigned DestReg = I->first;
341     unsigned DestColor = getRegColor(DestReg);
342     unsigned NewReg = RegRenamingMap[DestColor];
343 
344     LiveInterval &DestLI = LI->getInterval(DestReg);
345     LiveInterval &NewLI = LI->getInterval(NewReg);
346 
347     assert(DestLI.ranges.size() == 1
348            && "PHI destination copy's live interval should be a single live "
349                "range from the beginning of the BB to the copy instruction.");
350     LiveRange *DestLR = DestLI.begin();
351     VNInfo *NewVNI = NewLI.getVNInfoAt(DestLR->start);
352     if (!NewVNI) {
353       NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
354       MachineInstr *CopyInstr = I->second;
355       CopyInstr->getOperand(1).setIsKill(true);
356     }
357 
358     LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
359     NewLI.addRange(NewLR);
360 
361     LI->removeInterval(DestReg);
362     MRI->replaceRegWith(DestReg, NewReg);
363   }
364 
365   // Adjust the live intervals of all PHI source registers to handle the case
366   // where the PHIs in successor blocks were the only later uses of the source
367   // register.
368   for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
369        E = InsertedSrcCopySet.end(); I != E; ++I) {
370     MachineBasicBlock *MBB = I->first;
371     unsigned SrcReg = I->second;
372     if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
373       SrcReg = RenamedRegister;
374 
375     LiveInterval &SrcLI = LI->getInterval(SrcReg);
376 
377     bool isLiveOut = false;
378     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
379          SE = MBB->succ_end(); SI != SE; ++SI) {
380       if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
381         isLiveOut = true;
382         break;
383       }
384     }
385 
386     if (isLiveOut)
387       continue;
388 
389     MachineOperand *LastUse = findLastUse(MBB, SrcReg);
390     assert(LastUse);
391     SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
392     SrcLI.removeRange(LastUseIndex.getRegSlot(), LI->getMBBEndIdx(MBB));
393     LastUse->setIsKill(true);
394   }
395 
396   Allocator.Reset();
397   RegNodeMap.clear();
398   PHISrcDefs.clear();
399   InsertedSrcCopySet.clear();
400   InsertedSrcCopyMap.clear();
401   InsertedDestCopies.clear();
402 
403   return Changed;
404 }
405 
addReg(unsigned Reg)406 void StrongPHIElimination::addReg(unsigned Reg) {
407   Node *&N = RegNodeMap[Reg];
408   if (!N)
409     N = new (Allocator) Node(Reg);
410 }
411 
412 StrongPHIElimination::Node*
getLeader()413 StrongPHIElimination::Node::getLeader() {
414   Node *N = this;
415   Node *Parent = parent.getPointer();
416   Node *Grandparent = Parent->parent.getPointer();
417 
418   while (Parent != Grandparent) {
419     N->parent.setPointer(Grandparent);
420     N = Grandparent;
421     Parent = Parent->parent.getPointer();
422     Grandparent = Parent->parent.getPointer();
423   }
424 
425   return Parent;
426 }
427 
getRegColor(unsigned Reg)428 unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
429   DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
430   if (RI == RegNodeMap.end())
431     return 0;
432   Node *Node = RI->second;
433   if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
434     return 0;
435   return Node->getLeader()->value;
436 }
437 
unionRegs(unsigned Reg1,unsigned Reg2)438 void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
439   Node *Node1 = RegNodeMap[Reg1]->getLeader();
440   Node *Node2 = RegNodeMap[Reg2]->getLeader();
441 
442   if (Node1->rank > Node2->rank) {
443     Node2->parent.setPointer(Node1->getLeader());
444   } else if (Node1->rank < Node2->rank) {
445     Node1->parent.setPointer(Node2->getLeader());
446   } else if (Node1 != Node2) {
447     Node2->parent.setPointer(Node1->getLeader());
448     Node1->rank++;
449   }
450 }
451 
isolateReg(unsigned Reg)452 void StrongPHIElimination::isolateReg(unsigned Reg) {
453   Node *Node = RegNodeMap[Reg];
454   Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
455 }
456 
getPHIColor(MachineInstr * PHI)457 unsigned StrongPHIElimination::getPHIColor(MachineInstr *PHI) {
458   assert(PHI->isPHI());
459 
460   unsigned DestReg = PHI->getOperand(0).getReg();
461   Node *DestNode = RegNodeMap[DestReg];
462   if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
463     return 0;
464 
465   for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
466     unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
467     if (SrcColor)
468       return SrcColor;
469   }
470   return 0;
471 }
472 
isolatePHI(MachineInstr * PHI)473 void StrongPHIElimination::isolatePHI(MachineInstr *PHI) {
474   assert(PHI->isPHI());
475   Node *Node = RegNodeMap[PHI->getOperand(0).getReg()];
476   Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
477 }
478 
479 /// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
480 /// interferences found between registers in the same congruence class. It
481 /// takes two DenseMaps as arguments that it also updates:
482 ///
483 /// 1) CurrentDominatingParent, which maps a color to the register in that
484 ///    congruence class whose definition was most recently seen.
485 ///
486 /// 2) ImmediateDominatingParent, which maps a register to the register in the
487 ///    same congruence class that most immediately dominates it.
488 ///
489 /// This function assumes that it is being called in a depth-first traversal
490 /// of the dominator tree.
491 ///
492 /// The algorithm used here is a generalization of the dominance-based SSA test
493 /// for two variables. If there are variables a_1, ..., a_n such that
494 ///
495 ///   def(a_1) dom ... dom def(a_n),
496 ///
497 /// then we can test for an interference between any two a_i by only using O(n)
498 /// interference tests between pairs of variables. If i < j and a_i and a_j
499 /// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
500 /// Thus, in order to test for an interference involving a_i, we need only check
501 /// for a potential interference with a_i+1.
502 ///
503 /// This method can be generalized to arbitrary sets of variables by performing
504 /// a depth-first traversal of the dominator tree. As we traverse down a branch
505 /// of the dominator tree, we keep track of the current dominating variable and
506 /// only perform an interference test with that variable. However, when we go to
507 /// another branch of the dominator tree, the definition of the current dominating
508 /// variable may no longer dominate the current block. In order to correct this,
509 /// we need to use a stack of past choices of the current dominating variable
510 /// and pop from this stack until we find a variable whose definition actually
511 /// dominates the current block.
512 ///
513 /// There will be one push on this stack for each variable that has become the
514 /// current dominating variable, so instead of using an explicit stack we can
515 /// simply associate the previous choice for a current dominating variable with
516 /// the new choice. This works better in our implementation, where we test for
517 /// interference in multiple distinct sets at once.
518 void
SplitInterferencesForBasicBlock(MachineBasicBlock & MBB,DenseMap<unsigned,unsigned> & CurrentDominatingParent,DenseMap<unsigned,unsigned> & ImmediateDominatingParent)519 StrongPHIElimination::SplitInterferencesForBasicBlock(
520     MachineBasicBlock &MBB,
521     DenseMap<unsigned, unsigned> &CurrentDominatingParent,
522     DenseMap<unsigned, unsigned> &ImmediateDominatingParent) {
523   // Sort defs by their order in the original basic block, as the code below
524   // assumes that it is processing definitions in dominance order.
525   std::vector<MachineInstr*> &DefInstrs = PHISrcDefs[&MBB];
526   std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
527 
528   for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
529        BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
530     for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
531          E = (*BBI)->operands_end(); I != E; ++I) {
532       const MachineOperand &MO = *I;
533 
534       // FIXME: This would be faster if it were possible to bail out of checking
535       // an instruction's operands after the explicit defs, but this is incorrect
536       // for variadic instructions, which may appear before register allocation
537       // in the future.
538       if (!MO.isReg() || !MO.isDef())
539         continue;
540 
541       unsigned DestReg = MO.getReg();
542       if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
543         continue;
544 
545       // If the virtual register being defined is not used in any PHI or has
546       // already been isolated, then there are no more interferences to check.
547       unsigned DestColor = getRegColor(DestReg);
548       if (!DestColor)
549         continue;
550 
551       // The input to this pass sometimes is not in SSA form in every basic
552       // block, as some virtual registers have redefinitions. We could eliminate
553       // this by fixing the passes that generate the non-SSA code, or we could
554       // handle it here by tracking defining machine instructions rather than
555       // virtual registers. For now, we just handle the situation conservatively
556       // in a way that will possibly lead to false interferences.
557       unsigned &CurrentParent = CurrentDominatingParent[DestColor];
558       unsigned NewParent = CurrentParent;
559       if (NewParent == DestReg)
560         continue;
561 
562       // Pop registers from the stack represented by ImmediateDominatingParent
563       // until we find a parent that dominates the current instruction.
564       while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
565                            || !getRegColor(NewParent)))
566         NewParent = ImmediateDominatingParent[NewParent];
567 
568       // If NewParent is nonzero, then its definition dominates the current
569       // instruction, so it is only necessary to check for the liveness of
570       // NewParent in order to check for an interference.
571       if (NewParent
572           && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
573         // If there is an interference, always isolate the new register. This
574         // could be improved by using a heuristic that decides which of the two
575         // registers to isolate.
576         isolateReg(DestReg);
577         CurrentParent = NewParent;
578       } else {
579         // If there is no interference, update ImmediateDominatingParent and set
580         // the CurrentDominatingParent for this color to the current register.
581         ImmediateDominatingParent[DestReg] = NewParent;
582         CurrentParent = DestReg;
583       }
584     }
585   }
586 
587   // We now walk the PHIs in successor blocks and check for interferences. This
588   // is necessary because the use of a PHI's operands are logically contained in
589   // the predecessor block. The def of a PHI's destination register is processed
590   // along with the other defs in a basic block.
591 
592   CurrentPHIForColor.clear();
593 
594   for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
595        SE = MBB.succ_end(); SI != SE; ++SI) {
596     for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
597          BBI != BBE && BBI->isPHI(); ++BBI) {
598       MachineInstr *PHI = BBI;
599 
600       // If a PHI is already isolated, either by being isolated directly or
601       // having all of its operands isolated, ignore it.
602       unsigned Color = getPHIColor(PHI);
603       if (!Color)
604         continue;
605 
606       // Find the index of the PHI operand that corresponds to this basic block.
607       unsigned PredIndex;
608       for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
609         if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
610           break;
611       }
612       assert(PredIndex < PHI->getNumOperands());
613       unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
614 
615       // Pop registers from the stack represented by ImmediateDominatingParent
616       // until we find a parent that dominates the current instruction.
617       unsigned &CurrentParent = CurrentDominatingParent[Color];
618       unsigned NewParent = CurrentParent;
619       while (NewParent
620              && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
621                  || !getRegColor(NewParent)))
622         NewParent = ImmediateDominatingParent[NewParent];
623       CurrentParent = NewParent;
624 
625       // If there is an interference with a register, always isolate the
626       // register rather than the PHI. It is also possible to isolate the
627       // PHI, but that introduces copies for all of the registers involved
628       // in that PHI.
629       if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
630                     && NewParent != PredOperandReg)
631         isolateReg(NewParent);
632 
633       std::pair<MachineInstr*, unsigned>
634         &CurrentPHI = CurrentPHIForColor[Color];
635 
636       // If two PHIs have the same operand from every shared predecessor, then
637       // they don't actually interfere. Otherwise, isolate the current PHI. This
638       // could possibly be improved, e.g. we could isolate the PHI with the
639       // fewest operands.
640       if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
641         isolatePHI(PHI);
642       else
643         CurrentPHI = std::make_pair(PHI, PredOperandReg);
644     }
645   }
646 }
647 
InsertCopiesForPHI(MachineInstr * PHI,MachineBasicBlock * MBB)648 void StrongPHIElimination::InsertCopiesForPHI(MachineInstr *PHI,
649                                               MachineBasicBlock *MBB) {
650   assert(PHI->isPHI());
651   ++NumPHIsLowered;
652   unsigned PHIColor = getPHIColor(PHI);
653 
654   for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
655     MachineOperand &SrcMO = PHI->getOperand(i);
656 
657     // If a source is defined by an implicit def, there is no need to insert a
658     // copy in the predecessor.
659     if (SrcMO.isUndef())
660       continue;
661 
662     unsigned SrcReg = SrcMO.getReg();
663     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
664            "Machine PHI Operands must all be virtual registers!");
665 
666     MachineBasicBlock *PredBB = PHI->getOperand(i + 1).getMBB();
667     unsigned SrcColor = getRegColor(SrcReg);
668 
669     // If neither the PHI nor the operand were isolated, then we only need to
670     // set the phi-kill flag on the VNInfo at this PHI.
671     if (PHIColor && SrcColor == PHIColor) {
672       LiveInterval &SrcInterval = LI->getInterval(SrcReg);
673       SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
674       VNInfo *SrcVNI = SrcInterval.getVNInfoBefore(PredIndex);
675       (void)SrcVNI;
676       assert(SrcVNI);
677       continue;
678     }
679 
680     unsigned CopyReg = 0;
681     if (PHIColor) {
682       SrcCopyMap::const_iterator I
683         = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
684       CopyReg
685         = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
686     }
687 
688     if (!CopyReg) {
689       const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
690       CopyReg = MRI->createVirtualRegister(RC);
691 
692       MachineBasicBlock::iterator
693         CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
694       unsigned SrcSubReg = SrcMO.getSubReg();
695       MachineInstr *CopyInstr = BuildMI(*PredBB,
696                                         CopyInsertPoint,
697                                         PHI->getDebugLoc(),
698                                         TII->get(TargetOpcode::COPY),
699                                         CopyReg).addReg(SrcReg, 0, SrcSubReg);
700       LI->InsertMachineInstrInMaps(CopyInstr);
701       ++NumSrcCopiesInserted;
702 
703       // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
704       // the newly added range.
705       LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
706       InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
707 
708       addReg(CopyReg);
709       if (PHIColor) {
710         unionRegs(PHIColor, CopyReg);
711         assert(getRegColor(CopyReg) != CopyReg);
712       } else {
713         PHIColor = CopyReg;
714         assert(getRegColor(CopyReg) == CopyReg);
715       }
716 
717       // Insert into map if not already there.
718       InsertedSrcCopyMap.insert(std::make_pair(std::make_pair(PredBB, PHIColor),
719                                                CopyInstr));
720     }
721 
722     SrcMO.setReg(CopyReg);
723 
724     // If SrcReg is not live beyond the PHI, trim its interval so that it is no
725     // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
726     // processed later, but this is still correct to do at this point because we
727     // never rely on LiveIntervals being correct while inserting copies.
728     // FIXME: Should this just count uses at PHIs like the normal PHIElimination
729     // pass does?
730     LiveInterval &SrcLI = LI->getInterval(SrcReg);
731     SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
732     SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
733     SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
734     if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
735       SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
736   }
737 
738   unsigned DestReg = PHI->getOperand(0).getReg();
739   unsigned DestColor = getRegColor(DestReg);
740 
741   if (PHIColor && DestColor == PHIColor) {
742     LiveInterval &DestLI = LI->getInterval(DestReg);
743 
744     // Set the phi-def flag for the VN at this PHI.
745     SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
746     VNInfo *DestVNI = DestLI.getVNInfoAt(PHIIndex.getRegSlot());
747     assert(DestVNI);
748 
749     // Prior to PHI elimination, the live ranges of PHIs begin at their defining
750     // instruction. After PHI elimination, PHI instructions are replaced by VNs
751     // with the phi-def flag set, and the live ranges of these VNs start at the
752     // beginning of the basic block.
753     SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
754     DestVNI->def = MBBStartIndex;
755     DestLI.addRange(LiveRange(MBBStartIndex,
756                               PHIIndex.getRegSlot(),
757                               DestVNI));
758     return;
759   }
760 
761   const TargetRegisterClass *RC = MRI->getRegClass(DestReg);
762   unsigned CopyReg = MRI->createVirtualRegister(RC);
763 
764   MachineInstr *CopyInstr = BuildMI(*MBB,
765                                     MBB->SkipPHIsAndLabels(MBB->begin()),
766                                     PHI->getDebugLoc(),
767                                     TII->get(TargetOpcode::COPY),
768                                     DestReg).addReg(CopyReg);
769   LI->InsertMachineInstrInMaps(CopyInstr);
770   PHI->getOperand(0).setReg(CopyReg);
771   ++NumDestCopiesInserted;
772 
773   // Add the region from the beginning of MBB to the copy instruction to
774   // CopyReg's live interval, and give the VNInfo the phidef flag.
775   LiveInterval &CopyLI = LI->getOrCreateInterval(CopyReg);
776   SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
777   SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
778   VNInfo *CopyVNI = CopyLI.getNextValue(MBBStartIndex,
779                                         LI->getVNInfoAllocator());
780   CopyLI.addRange(LiveRange(MBBStartIndex,
781                             DestCopyIndex.getRegSlot(),
782                             CopyVNI));
783 
784   // Adjust DestReg's live interval to adjust for its new definition at
785   // CopyInstr.
786   LiveInterval &DestLI = LI->getOrCreateInterval(DestReg);
787   SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
788   DestLI.removeRange(PHIIndex.getRegSlot(), DestCopyIndex.getRegSlot());
789 
790   VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
791   assert(DestVNI);
792   DestVNI->def = DestCopyIndex.getRegSlot();
793 
794   InsertedDestCopies[CopyReg] = CopyInstr;
795 }
796 
MergeLIsAndRename(unsigned Reg,unsigned NewReg)797 void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
798   if (Reg == NewReg)
799     return;
800 
801   LiveInterval &OldLI = LI->getInterval(Reg);
802   LiveInterval &NewLI = LI->getInterval(NewReg);
803 
804   // Merge the live ranges of the two registers.
805   DenseMap<VNInfo*, VNInfo*> VNMap;
806   for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
807        LRI != LRE; ++LRI) {
808     LiveRange OldLR = *LRI;
809     VNInfo *OldVN = OldLR.valno;
810 
811     VNInfo *&NewVN = VNMap[OldVN];
812     if (!NewVN) {
813       NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
814       VNMap[OldVN] = NewVN;
815     }
816 
817     LiveRange LR(OldLR.start, OldLR.end, NewVN);
818     NewLI.addRange(LR);
819   }
820 
821   // Remove the LiveInterval for the register being renamed and replace all
822   // of its defs and uses with the new register.
823   LI->removeInterval(Reg);
824   MRI->replaceRegWith(Reg, NewReg);
825 }
826