1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/InstrTypes.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/ValueSymbolTable.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/GetElementPtrTypeIterator.h"
29 #include "llvm/Support/LeakDetector.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/ValueHandle.h"
32 #include <algorithm>
33 using namespace llvm;
34
35 //===----------------------------------------------------------------------===//
36 // Value Class
37 //===----------------------------------------------------------------------===//
38
checkType(Type * Ty)39 static inline Type *checkType(Type *Ty) {
40 assert(Ty && "Value defined with a null type: Error!");
41 return const_cast<Type*>(Ty);
42 }
43
Value(Type * ty,unsigned scid)44 Value::Value(Type *ty, unsigned scid)
45 : SubclassID(scid), HasValueHandle(0),
46 SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
47 UseList(0), Name(0) {
48 // FIXME: Why isn't this in the subclass gunk??
49 // Note, we cannot call isa<CallInst> before the CallInst has been
50 // constructed.
51 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
52 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
53 "invalid CallInst type!");
54 else if (SubclassID != BasicBlockVal &&
55 (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
56 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
57 "Cannot create non-first-class values except for constants!");
58 }
59
~Value()60 Value::~Value() {
61 // Notify all ValueHandles (if present) that this value is going away.
62 if (HasValueHandle)
63 ValueHandleBase::ValueIsDeleted(this);
64
65 #ifndef NDEBUG // Only in -g mode...
66 // Check to make sure that there are no uses of this value that are still
67 // around when the value is destroyed. If there are, then we have a dangling
68 // reference and something is wrong. This code is here to print out what is
69 // still being referenced. The value in question should be printed as
70 // a <badref>
71 //
72 if (!use_empty()) {
73 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
74 for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
75 dbgs() << "Use still stuck around after Def is destroyed:"
76 << **I << "\n";
77 }
78 #endif
79 assert(use_empty() && "Uses remain when a value is destroyed!");
80
81 // If this value is named, destroy the name. This should not be in a symtab
82 // at this point.
83 if (Name && SubclassID != MDStringVal)
84 Name->Destroy();
85
86 // There should be no uses of this object anymore, remove it.
87 LeakDetector::removeGarbageObject(this);
88 }
89
90 /// hasNUses - Return true if this Value has exactly N users.
91 ///
hasNUses(unsigned N) const92 bool Value::hasNUses(unsigned N) const {
93 const_use_iterator UI = use_begin(), E = use_end();
94
95 for (; N; --N, ++UI)
96 if (UI == E) return false; // Too few.
97 return UI == E;
98 }
99
100 /// hasNUsesOrMore - Return true if this value has N users or more. This is
101 /// logically equivalent to getNumUses() >= N.
102 ///
hasNUsesOrMore(unsigned N) const103 bool Value::hasNUsesOrMore(unsigned N) const {
104 const_use_iterator UI = use_begin(), E = use_end();
105
106 for (; N; --N, ++UI)
107 if (UI == E) return false; // Too few.
108
109 return true;
110 }
111
112 /// isUsedInBasicBlock - Return true if this value is used in the specified
113 /// basic block.
isUsedInBasicBlock(const BasicBlock * BB) const114 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
115 // Start by scanning over the instructions looking for a use before we start
116 // the expensive use iteration.
117 unsigned MaxBlockSize = 3;
118 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
119 if (std::find(I->op_begin(), I->op_end(), this) != I->op_end())
120 return true;
121 if (MaxBlockSize-- == 0) // If the block is larger fall back to use_iterator
122 break;
123 }
124
125 if (MaxBlockSize != 0) // We scanned the entire block and found no use.
126 return false;
127
128 for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
129 const Instruction *User = dyn_cast<Instruction>(*I);
130 if (User && User->getParent() == BB)
131 return true;
132 }
133 return false;
134 }
135
136
137 /// getNumUses - This method computes the number of uses of this Value. This
138 /// is a linear time operation. Use hasOneUse or hasNUses to check for specific
139 /// values.
getNumUses() const140 unsigned Value::getNumUses() const {
141 return (unsigned)std::distance(use_begin(), use_end());
142 }
143
getSymTab(Value * V,ValueSymbolTable * & ST)144 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
145 ST = 0;
146 if (Instruction *I = dyn_cast<Instruction>(V)) {
147 if (BasicBlock *P = I->getParent())
148 if (Function *PP = P->getParent())
149 ST = &PP->getValueSymbolTable();
150 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
151 if (Function *P = BB->getParent())
152 ST = &P->getValueSymbolTable();
153 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
154 if (Module *P = GV->getParent())
155 ST = &P->getValueSymbolTable();
156 } else if (Argument *A = dyn_cast<Argument>(V)) {
157 if (Function *P = A->getParent())
158 ST = &P->getValueSymbolTable();
159 } else if (isa<MDString>(V))
160 return true;
161 else {
162 assert(isa<Constant>(V) && "Unknown value type!");
163 return true; // no name is setable for this.
164 }
165 return false;
166 }
167
getName() const168 StringRef Value::getName() const {
169 // Make sure the empty string is still a C string. For historical reasons,
170 // some clients want to call .data() on the result and expect it to be null
171 // terminated.
172 if (!Name) return StringRef("", 0);
173 return Name->getKey();
174 }
175
setName(const Twine & NewName)176 void Value::setName(const Twine &NewName) {
177 assert(SubclassID != MDStringVal &&
178 "Cannot set the name of MDString with this method!");
179
180 // Fast path for common IRBuilder case of setName("") when there is no name.
181 if (NewName.isTriviallyEmpty() && !hasName())
182 return;
183
184 SmallString<256> NameData;
185 StringRef NameRef = NewName.toStringRef(NameData);
186
187 // Name isn't changing?
188 if (getName() == NameRef)
189 return;
190
191 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
192
193 // Get the symbol table to update for this object.
194 ValueSymbolTable *ST;
195 if (getSymTab(this, ST))
196 return; // Cannot set a name on this value (e.g. constant).
197
198 if (Function *F = dyn_cast<Function>(this))
199 getContext().pImpl->IntrinsicIDCache.erase(F);
200
201 if (!ST) { // No symbol table to update? Just do the change.
202 if (NameRef.empty()) {
203 // Free the name for this value.
204 Name->Destroy();
205 Name = 0;
206 return;
207 }
208
209 if (Name)
210 Name->Destroy();
211
212 // NOTE: Could optimize for the case the name is shrinking to not deallocate
213 // then reallocated.
214
215 // Create the new name.
216 Name = ValueName::Create(NameRef.begin(), NameRef.end());
217 Name->setValue(this);
218 return;
219 }
220
221 // NOTE: Could optimize for the case the name is shrinking to not deallocate
222 // then reallocated.
223 if (hasName()) {
224 // Remove old name.
225 ST->removeValueName(Name);
226 Name->Destroy();
227 Name = 0;
228
229 if (NameRef.empty())
230 return;
231 }
232
233 // Name is changing to something new.
234 Name = ST->createValueName(NameRef, this);
235 }
236
237
238 /// takeName - transfer the name from V to this value, setting V's name to
239 /// empty. It is an error to call V->takeName(V).
takeName(Value * V)240 void Value::takeName(Value *V) {
241 assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
242
243 ValueSymbolTable *ST = 0;
244 // If this value has a name, drop it.
245 if (hasName()) {
246 // Get the symtab this is in.
247 if (getSymTab(this, ST)) {
248 // We can't set a name on this value, but we need to clear V's name if
249 // it has one.
250 if (V->hasName()) V->setName("");
251 return; // Cannot set a name on this value (e.g. constant).
252 }
253
254 // Remove old name.
255 if (ST)
256 ST->removeValueName(Name);
257 Name->Destroy();
258 Name = 0;
259 }
260
261 // Now we know that this has no name.
262
263 // If V has no name either, we're done.
264 if (!V->hasName()) return;
265
266 // Get this's symtab if we didn't before.
267 if (!ST) {
268 if (getSymTab(this, ST)) {
269 // Clear V's name.
270 V->setName("");
271 return; // Cannot set a name on this value (e.g. constant).
272 }
273 }
274
275 // Get V's ST, this should always succed, because V has a name.
276 ValueSymbolTable *VST;
277 bool Failure = getSymTab(V, VST);
278 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
279
280 // If these values are both in the same symtab, we can do this very fast.
281 // This works even if both values have no symtab yet.
282 if (ST == VST) {
283 // Take the name!
284 Name = V->Name;
285 V->Name = 0;
286 Name->setValue(this);
287 return;
288 }
289
290 // Otherwise, things are slightly more complex. Remove V's name from VST and
291 // then reinsert it into ST.
292
293 if (VST)
294 VST->removeValueName(V->Name);
295 Name = V->Name;
296 V->Name = 0;
297 Name->setValue(this);
298
299 if (ST)
300 ST->reinsertValue(this);
301 }
302
303
replaceAllUsesWith(Value * New)304 void Value::replaceAllUsesWith(Value *New) {
305 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
306 assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
307 assert(New->getType() == getType() &&
308 "replaceAllUses of value with new value of different type!");
309
310 // Notify all ValueHandles (if present) that this value is going away.
311 if (HasValueHandle)
312 ValueHandleBase::ValueIsRAUWd(this, New);
313
314 while (!use_empty()) {
315 Use &U = *UseList;
316 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
317 // constant because they are uniqued.
318 if (Constant *C = dyn_cast<Constant>(U.getUser())) {
319 if (!isa<GlobalValue>(C)) {
320 C->replaceUsesOfWithOnConstant(this, New, &U);
321 continue;
322 }
323 }
324
325 U.set(New);
326 }
327
328 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
329 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
330 }
331
332 namespace {
333 // Various metrics for how much to strip off of pointers.
334 enum PointerStripKind {
335 PSK_ZeroIndices,
336 PSK_InBoundsConstantIndices,
337 PSK_InBounds
338 };
339
340 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(Value * V)341 static Value *stripPointerCastsAndOffsets(Value *V) {
342 if (!V->getType()->isPointerTy())
343 return V;
344
345 // Even though we don't look through PHI nodes, we could be called on an
346 // instruction in an unreachable block, which may be on a cycle.
347 SmallPtrSet<Value *, 4> Visited;
348
349 Visited.insert(V);
350 do {
351 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
352 switch (StripKind) {
353 case PSK_ZeroIndices:
354 if (!GEP->hasAllZeroIndices())
355 return V;
356 break;
357 case PSK_InBoundsConstantIndices:
358 if (!GEP->hasAllConstantIndices())
359 return V;
360 // fallthrough
361 case PSK_InBounds:
362 if (!GEP->isInBounds())
363 return V;
364 break;
365 }
366 V = GEP->getPointerOperand();
367 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
368 V = cast<Operator>(V)->getOperand(0);
369 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
370 if (GA->mayBeOverridden())
371 return V;
372 V = GA->getAliasee();
373 } else {
374 return V;
375 }
376 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
377 } while (Visited.insert(V));
378
379 return V;
380 }
381 } // namespace
382
stripPointerCasts()383 Value *Value::stripPointerCasts() {
384 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
385 }
386
stripInBoundsConstantOffsets()387 Value *Value::stripInBoundsConstantOffsets() {
388 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
389 }
390
stripInBoundsOffsets()391 Value *Value::stripInBoundsOffsets() {
392 return stripPointerCastsAndOffsets<PSK_InBounds>(this);
393 }
394
395 /// isDereferenceablePointer - Test if this value is always a pointer to
396 /// allocated and suitably aligned memory for a simple load or store.
isDereferenceablePointer(const Value * V,SmallPtrSet<const Value *,32> & Visited)397 static bool isDereferenceablePointer(const Value *V,
398 SmallPtrSet<const Value *, 32> &Visited) {
399 // Note that it is not safe to speculate into a malloc'd region because
400 // malloc may return null.
401 // It's also not always safe to follow a bitcast, for example:
402 // bitcast i8* (alloca i8) to i32*
403 // would result in a 4-byte load from a 1-byte alloca. Some cases could
404 // be handled using DataLayout to check sizes and alignments though.
405
406 // These are obviously ok.
407 if (isa<AllocaInst>(V)) return true;
408
409 // Global variables which can't collapse to null are ok.
410 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
411 return !GV->hasExternalWeakLinkage();
412
413 // byval arguments are ok.
414 if (const Argument *A = dyn_cast<Argument>(V))
415 return A->hasByValAttr();
416
417 // For GEPs, determine if the indexing lands within the allocated object.
418 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
419 // Conservatively require that the base pointer be fully dereferenceable.
420 if (!Visited.insert(GEP->getOperand(0)))
421 return false;
422 if (!isDereferenceablePointer(GEP->getOperand(0), Visited))
423 return false;
424 // Check the indices.
425 gep_type_iterator GTI = gep_type_begin(GEP);
426 for (User::const_op_iterator I = GEP->op_begin()+1,
427 E = GEP->op_end(); I != E; ++I) {
428 Value *Index = *I;
429 Type *Ty = *GTI++;
430 // Struct indices can't be out of bounds.
431 if (isa<StructType>(Ty))
432 continue;
433 ConstantInt *CI = dyn_cast<ConstantInt>(Index);
434 if (!CI)
435 return false;
436 // Zero is always ok.
437 if (CI->isZero())
438 continue;
439 // Check to see that it's within the bounds of an array.
440 ArrayType *ATy = dyn_cast<ArrayType>(Ty);
441 if (!ATy)
442 return false;
443 if (CI->getValue().getActiveBits() > 64)
444 return false;
445 if (CI->getZExtValue() >= ATy->getNumElements())
446 return false;
447 }
448 // Indices check out; this is dereferenceable.
449 return true;
450 }
451
452 // If we don't know, assume the worst.
453 return false;
454 }
455
456 /// isDereferenceablePointer - Test if this value is always a pointer to
457 /// allocated and suitably aligned memory for a simple load or store.
isDereferenceablePointer() const458 bool Value::isDereferenceablePointer() const {
459 SmallPtrSet<const Value *, 32> Visited;
460 return ::isDereferenceablePointer(this, Visited);
461 }
462
463 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
464 /// return the value in the PHI node corresponding to PredBB. If not, return
465 /// ourself. This is useful if you want to know the value something has in a
466 /// predecessor block.
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)467 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
468 const BasicBlock *PredBB) {
469 PHINode *PN = dyn_cast<PHINode>(this);
470 if (PN && PN->getParent() == CurBB)
471 return PN->getIncomingValueForBlock(PredBB);
472 return this;
473 }
474
getContext() const475 LLVMContext &Value::getContext() const { return VTy->getContext(); }
476
477 //===----------------------------------------------------------------------===//
478 // ValueHandleBase Class
479 //===----------------------------------------------------------------------===//
480
481 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
482 /// List is known to point into the existing use list.
AddToExistingUseList(ValueHandleBase ** List)483 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
484 assert(List && "Handle list is null?");
485
486 // Splice ourselves into the list.
487 Next = *List;
488 *List = this;
489 setPrevPtr(List);
490 if (Next) {
491 Next->setPrevPtr(&Next);
492 assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
493 }
494 }
495
AddToExistingUseListAfter(ValueHandleBase * List)496 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
497 assert(List && "Must insert after existing node");
498
499 Next = List->Next;
500 setPrevPtr(&List->Next);
501 List->Next = this;
502 if (Next)
503 Next->setPrevPtr(&Next);
504 }
505
506 /// AddToUseList - Add this ValueHandle to the use list for VP.
AddToUseList()507 void ValueHandleBase::AddToUseList() {
508 assert(VP.getPointer() && "Null pointer doesn't have a use list!");
509
510 LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
511
512 if (VP.getPointer()->HasValueHandle) {
513 // If this value already has a ValueHandle, then it must be in the
514 // ValueHandles map already.
515 ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
516 assert(Entry != 0 && "Value doesn't have any handles?");
517 AddToExistingUseList(&Entry);
518 return;
519 }
520
521 // Ok, it doesn't have any handles yet, so we must insert it into the
522 // DenseMap. However, doing this insertion could cause the DenseMap to
523 // reallocate itself, which would invalidate all of the PrevP pointers that
524 // point into the old table. Handle this by checking for reallocation and
525 // updating the stale pointers only if needed.
526 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
527 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
528
529 ValueHandleBase *&Entry = Handles[VP.getPointer()];
530 assert(Entry == 0 && "Value really did already have handles?");
531 AddToExistingUseList(&Entry);
532 VP.getPointer()->HasValueHandle = true;
533
534 // If reallocation didn't happen or if this was the first insertion, don't
535 // walk the table.
536 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
537 Handles.size() == 1) {
538 return;
539 }
540
541 // Okay, reallocation did happen. Fix the Prev Pointers.
542 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
543 E = Handles.end(); I != E; ++I) {
544 assert(I->second && I->first == I->second->VP.getPointer() &&
545 "List invariant broken!");
546 I->second->setPrevPtr(&I->second);
547 }
548 }
549
550 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
RemoveFromUseList()551 void ValueHandleBase::RemoveFromUseList() {
552 assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
553 "Pointer doesn't have a use list!");
554
555 // Unlink this from its use list.
556 ValueHandleBase **PrevPtr = getPrevPtr();
557 assert(*PrevPtr == this && "List invariant broken");
558
559 *PrevPtr = Next;
560 if (Next) {
561 assert(Next->getPrevPtr() == &Next && "List invariant broken");
562 Next->setPrevPtr(PrevPtr);
563 return;
564 }
565
566 // If the Next pointer was null, then it is possible that this was the last
567 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
568 // map.
569 LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
570 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
571 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
572 Handles.erase(VP.getPointer());
573 VP.getPointer()->HasValueHandle = false;
574 }
575 }
576
577
ValueIsDeleted(Value * V)578 void ValueHandleBase::ValueIsDeleted(Value *V) {
579 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
580
581 // Get the linked list base, which is guaranteed to exist since the
582 // HasValueHandle flag is set.
583 LLVMContextImpl *pImpl = V->getContext().pImpl;
584 ValueHandleBase *Entry = pImpl->ValueHandles[V];
585 assert(Entry && "Value bit set but no entries exist");
586
587 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
588 // and remove themselves from the list without breaking our iteration. This
589 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
590 // Note that we deliberately do not the support the case when dropping a value
591 // handle results in a new value handle being permanently added to the list
592 // (as might occur in theory for CallbackVH's): the new value handle will not
593 // be processed and the checking code will mete out righteous punishment if
594 // the handle is still present once we have finished processing all the other
595 // value handles (it is fine to momentarily add then remove a value handle).
596 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
597 Iterator.RemoveFromUseList();
598 Iterator.AddToExistingUseListAfter(Entry);
599 assert(Entry->Next == &Iterator && "Loop invariant broken.");
600
601 switch (Entry->getKind()) {
602 case Assert:
603 break;
604 case Tracking:
605 // Mark that this value has been deleted by setting it to an invalid Value
606 // pointer.
607 Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
608 break;
609 case Weak:
610 // Weak just goes to null, which will unlink it from the list.
611 Entry->operator=(0);
612 break;
613 case Callback:
614 // Forward to the subclass's implementation.
615 static_cast<CallbackVH*>(Entry)->deleted();
616 break;
617 }
618 }
619
620 // All callbacks, weak references, and assertingVHs should be dropped by now.
621 if (V->HasValueHandle) {
622 #ifndef NDEBUG // Only in +Asserts mode...
623 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
624 << "\n";
625 if (pImpl->ValueHandles[V]->getKind() == Assert)
626 llvm_unreachable("An asserting value handle still pointed to this"
627 " value!");
628
629 #endif
630 llvm_unreachable("All references to V were not removed?");
631 }
632 }
633
634
ValueIsRAUWd(Value * Old,Value * New)635 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
636 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
637 assert(Old != New && "Changing value into itself!");
638
639 // Get the linked list base, which is guaranteed to exist since the
640 // HasValueHandle flag is set.
641 LLVMContextImpl *pImpl = Old->getContext().pImpl;
642 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
643
644 assert(Entry && "Value bit set but no entries exist");
645
646 // We use a local ValueHandleBase as an iterator so that
647 // ValueHandles can add and remove themselves from the list without
648 // breaking our iteration. This is not really an AssertingVH; we
649 // just have to give ValueHandleBase some kind.
650 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
651 Iterator.RemoveFromUseList();
652 Iterator.AddToExistingUseListAfter(Entry);
653 assert(Entry->Next == &Iterator && "Loop invariant broken.");
654
655 switch (Entry->getKind()) {
656 case Assert:
657 // Asserting handle does not follow RAUW implicitly.
658 break;
659 case Tracking:
660 // Tracking goes to new value like a WeakVH. Note that this may make it
661 // something incompatible with its templated type. We don't want to have a
662 // virtual (or inline) interface to handle this though, so instead we make
663 // the TrackingVH accessors guarantee that a client never sees this value.
664
665 // FALLTHROUGH
666 case Weak:
667 // Weak goes to the new value, which will unlink it from Old's list.
668 Entry->operator=(New);
669 break;
670 case Callback:
671 // Forward to the subclass's implementation.
672 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
673 break;
674 }
675 }
676
677 #ifndef NDEBUG
678 // If any new tracking or weak value handles were added while processing the
679 // list, then complain about it now.
680 if (Old->HasValueHandle)
681 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
682 switch (Entry->getKind()) {
683 case Tracking:
684 case Weak:
685 dbgs() << "After RAUW from " << *Old->getType() << " %"
686 << Old->getName() << " to " << *New->getType() << " %"
687 << New->getName() << "\n";
688 llvm_unreachable("A tracking or weak value handle still pointed to the"
689 " old value!\n");
690 default:
691 break;
692 }
693 #endif
694 }
695
696 // Default implementation for CallbackVH.
allUsesReplacedWith(Value *)697 void CallbackVH::allUsesReplacedWith(Value *) {}
698
deleted()699 void CallbackVH::deleted() {
700 setValPtr(NULL);
701 }
702