• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "mcexpr"
11 #include "llvm/MC/MCExpr.h"
12 #include "llvm/ADT/Statistic.h"
13 #include "llvm/ADT/StringSwitch.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCObjectWriter.h"
18 #include "llvm/MC/MCSymbol.h"
19 #include "llvm/MC/MCValue.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24 
25 namespace {
26 namespace stats {
27 STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
28 }
29 }
30 
print(raw_ostream & OS) const31 void MCExpr::print(raw_ostream &OS) const {
32   switch (getKind()) {
33   case MCExpr::Target:
34     return cast<MCTargetExpr>(this)->PrintImpl(OS);
35   case MCExpr::Constant:
36     OS << cast<MCConstantExpr>(*this).getValue();
37     return;
38 
39   case MCExpr::SymbolRef: {
40     const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
41     const MCSymbol &Sym = SRE.getSymbol();
42     // Parenthesize names that start with $ so that they don't look like
43     // absolute names.
44     bool UseParens = Sym.getName()[0] == '$';
45 
46     if (SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_HA16 ||
47         SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_LO16) {
48       OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
49       UseParens = true;
50     }
51 
52     if (UseParens)
53       OS << '(' << Sym << ')';
54     else
55       OS << Sym;
56 
57     if (SRE.getKind() == MCSymbolRefExpr::VK_ARM_NONE ||
58         SRE.getKind() == MCSymbolRefExpr::VK_ARM_PLT ||
59         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TLSGD ||
60         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOT ||
61         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTOFF ||
62         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TPOFF ||
63         SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTTPOFF ||
64         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TARGET1 ||
65         SRE.getKind() == MCSymbolRefExpr::VK_ARM_TARGET2 ||
66         SRE.getKind() == MCSymbolRefExpr::VK_ARM_PREL31)
67       OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
68     else if (SRE.getKind() != MCSymbolRefExpr::VK_None &&
69              SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_HA16 &&
70              SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_LO16)
71       OS << '@' << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
72 
73     return;
74   }
75 
76   case MCExpr::Unary: {
77     const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
78     switch (UE.getOpcode()) {
79     case MCUnaryExpr::LNot:  OS << '!'; break;
80     case MCUnaryExpr::Minus: OS << '-'; break;
81     case MCUnaryExpr::Not:   OS << '~'; break;
82     case MCUnaryExpr::Plus:  OS << '+'; break;
83     }
84     OS << *UE.getSubExpr();
85     return;
86   }
87 
88   case MCExpr::Binary: {
89     const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
90 
91     // Only print parens around the LHS if it is non-trivial.
92     if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
93       OS << *BE.getLHS();
94     } else {
95       OS << '(' << *BE.getLHS() << ')';
96     }
97 
98     switch (BE.getOpcode()) {
99     case MCBinaryExpr::Add:
100       // Print "X-42" instead of "X+-42".
101       if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
102         if (RHSC->getValue() < 0) {
103           OS << RHSC->getValue();
104           return;
105         }
106       }
107 
108       OS <<  '+';
109       break;
110     case MCBinaryExpr::And:  OS <<  '&'; break;
111     case MCBinaryExpr::Div:  OS <<  '/'; break;
112     case MCBinaryExpr::EQ:   OS << "=="; break;
113     case MCBinaryExpr::GT:   OS <<  '>'; break;
114     case MCBinaryExpr::GTE:  OS << ">="; break;
115     case MCBinaryExpr::LAnd: OS << "&&"; break;
116     case MCBinaryExpr::LOr:  OS << "||"; break;
117     case MCBinaryExpr::LT:   OS <<  '<'; break;
118     case MCBinaryExpr::LTE:  OS << "<="; break;
119     case MCBinaryExpr::Mod:  OS <<  '%'; break;
120     case MCBinaryExpr::Mul:  OS <<  '*'; break;
121     case MCBinaryExpr::NE:   OS << "!="; break;
122     case MCBinaryExpr::Or:   OS <<  '|'; break;
123     case MCBinaryExpr::Shl:  OS << "<<"; break;
124     case MCBinaryExpr::Shr:  OS << ">>"; break;
125     case MCBinaryExpr::Sub:  OS <<  '-'; break;
126     case MCBinaryExpr::Xor:  OS <<  '^'; break;
127     }
128 
129     // Only print parens around the LHS if it is non-trivial.
130     if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
131       OS << *BE.getRHS();
132     } else {
133       OS << '(' << *BE.getRHS() << ')';
134     }
135     return;
136   }
137   }
138 
139   llvm_unreachable("Invalid expression kind!");
140 }
141 
142 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const143 void MCExpr::dump() const {
144   print(dbgs());
145   dbgs() << '\n';
146 }
147 #endif
148 
149 /* *** */
150 
Create(Opcode Opc,const MCExpr * LHS,const MCExpr * RHS,MCContext & Ctx)151 const MCBinaryExpr *MCBinaryExpr::Create(Opcode Opc, const MCExpr *LHS,
152                                          const MCExpr *RHS, MCContext &Ctx) {
153   return new (Ctx) MCBinaryExpr(Opc, LHS, RHS);
154 }
155 
Create(Opcode Opc,const MCExpr * Expr,MCContext & Ctx)156 const MCUnaryExpr *MCUnaryExpr::Create(Opcode Opc, const MCExpr *Expr,
157                                        MCContext &Ctx) {
158   return new (Ctx) MCUnaryExpr(Opc, Expr);
159 }
160 
Create(int64_t Value,MCContext & Ctx)161 const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) {
162   return new (Ctx) MCConstantExpr(Value);
163 }
164 
165 /* *** */
166 
Create(const MCSymbol * Sym,VariantKind Kind,MCContext & Ctx)167 const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym,
168                                                VariantKind Kind,
169                                                MCContext &Ctx) {
170   return new (Ctx) MCSymbolRefExpr(Sym, Kind);
171 }
172 
Create(StringRef Name,VariantKind Kind,MCContext & Ctx)173 const MCSymbolRefExpr *MCSymbolRefExpr::Create(StringRef Name, VariantKind Kind,
174                                                MCContext &Ctx) {
175   return Create(Ctx.GetOrCreateSymbol(Name), Kind, Ctx);
176 }
177 
getVariantKindName(VariantKind Kind)178 StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
179   switch (Kind) {
180   case VK_Invalid: return "<<invalid>>";
181   case VK_None: return "<<none>>";
182 
183   case VK_GOT: return "GOT";
184   case VK_GOTOFF: return "GOTOFF";
185   case VK_GOTPCREL: return "GOTPCREL";
186   case VK_GOTTPOFF: return "GOTTPOFF";
187   case VK_INDNTPOFF: return "INDNTPOFF";
188   case VK_NTPOFF: return "NTPOFF";
189   case VK_GOTNTPOFF: return "GOTNTPOFF";
190   case VK_PLT: return "PLT";
191   case VK_TLSGD: return "TLSGD";
192   case VK_TLSLD: return "TLSLD";
193   case VK_TLSLDM: return "TLSLDM";
194   case VK_TPOFF: return "TPOFF";
195   case VK_DTPOFF: return "DTPOFF";
196   case VK_TLVP: return "TLVP";
197   case VK_SECREL: return "SECREL";
198   case VK_ARM_NONE: return "(NONE)";
199   case VK_ARM_PLT: return "(PLT)";
200   case VK_ARM_GOT: return "(GOT)";
201   case VK_ARM_GOTOFF: return "(GOTOFF)";
202   case VK_ARM_TPOFF: return "(tpoff)";
203   case VK_ARM_GOTTPOFF: return "(gottpoff)";
204   case VK_ARM_TLSGD: return "(tlsgd)";
205   case VK_ARM_TARGET1: return "(target1)";
206   case VK_ARM_TARGET2: return "(target2)";
207   case VK_ARM_PREL31: return "(prel31)";
208   case VK_PPC_TOC: return "tocbase";
209   case VK_PPC_TOC_ENTRY: return "toc";
210   case VK_PPC_DARWIN_HA16: return "ha16";
211   case VK_PPC_DARWIN_LO16: return "lo16";
212   case VK_PPC_GAS_HA16: return "ha";
213   case VK_PPC_GAS_LO16: return "l";
214   case VK_PPC_TPREL16_HA: return "tprel@ha";
215   case VK_PPC_TPREL16_LO: return "tprel@l";
216   case VK_PPC_DTPREL16_HA: return "dtprel@ha";
217   case VK_PPC_DTPREL16_LO: return "dtprel@l";
218   case VK_PPC_TOC16_HA: return "toc@ha";
219   case VK_PPC_TOC16_LO: return "toc@l";
220   case VK_PPC_GOT_TPREL16_HA: return "got@tprel@ha";
221   case VK_PPC_GOT_TPREL16_LO: return "got@tprel@l";
222   case VK_PPC_TLS: return "tls";
223   case VK_PPC_GOT_TLSGD16_HA: return "got@tlsgd@ha";
224   case VK_PPC_GOT_TLSGD16_LO: return "got@tlsgd@l";
225   case VK_PPC_GOT_TLSLD16_HA: return "got@tlsld@ha";
226   case VK_PPC_GOT_TLSLD16_LO: return "got@tlsld@l";
227   case VK_PPC_TLSGD: return "tlsgd";
228   case VK_PPC_TLSLD: return "tlsld";
229   case VK_Mips_GPREL: return "GPREL";
230   case VK_Mips_GOT_CALL: return "GOT_CALL";
231   case VK_Mips_GOT16: return "GOT16";
232   case VK_Mips_GOT: return "GOT";
233   case VK_Mips_ABS_HI: return "ABS_HI";
234   case VK_Mips_ABS_LO: return "ABS_LO";
235   case VK_Mips_TLSGD: return "TLSGD";
236   case VK_Mips_TLSLDM: return "TLSLDM";
237   case VK_Mips_DTPREL_HI: return "DTPREL_HI";
238   case VK_Mips_DTPREL_LO: return "DTPREL_LO";
239   case VK_Mips_GOTTPREL: return "GOTTPREL";
240   case VK_Mips_TPREL_HI: return "TPREL_HI";
241   case VK_Mips_TPREL_LO: return "TPREL_LO";
242   case VK_Mips_GPOFF_HI: return "GPOFF_HI";
243   case VK_Mips_GPOFF_LO: return "GPOFF_LO";
244   case VK_Mips_GOT_DISP: return "GOT_DISP";
245   case VK_Mips_GOT_PAGE: return "GOT_PAGE";
246   case VK_Mips_GOT_OFST: return "GOT_OFST";
247   case VK_Mips_HIGHER:   return "HIGHER";
248   case VK_Mips_HIGHEST:  return "HIGHEST";
249   case VK_Mips_GOT_HI16: return "GOT_HI16";
250   case VK_Mips_GOT_LO16: return "GOT_LO16";
251   case VK_Mips_CALL_HI16: return "CALL_HI16";
252   case VK_Mips_CALL_LO16: return "CALL_LO16";
253   }
254   llvm_unreachable("Invalid variant kind");
255 }
256 
257 MCSymbolRefExpr::VariantKind
getVariantKindForName(StringRef Name)258 MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
259   return StringSwitch<VariantKind>(Name)
260     .Case("GOT", VK_GOT)
261     .Case("got", VK_GOT)
262     .Case("GOTOFF", VK_GOTOFF)
263     .Case("gotoff", VK_GOTOFF)
264     .Case("GOTPCREL", VK_GOTPCREL)
265     .Case("gotpcrel", VK_GOTPCREL)
266     .Case("GOTTPOFF", VK_GOTTPOFF)
267     .Case("gottpoff", VK_GOTTPOFF)
268     .Case("INDNTPOFF", VK_INDNTPOFF)
269     .Case("indntpoff", VK_INDNTPOFF)
270     .Case("NTPOFF", VK_NTPOFF)
271     .Case("ntpoff", VK_NTPOFF)
272     .Case("GOTNTPOFF", VK_GOTNTPOFF)
273     .Case("gotntpoff", VK_GOTNTPOFF)
274     .Case("PLT", VK_PLT)
275     .Case("plt", VK_PLT)
276     .Case("TLSGD", VK_TLSGD)
277     .Case("tlsgd", VK_TLSGD)
278     .Case("TLSLD", VK_TLSLD)
279     .Case("tlsld", VK_TLSLD)
280     .Case("TLSLDM", VK_TLSLDM)
281     .Case("tlsldm", VK_TLSLDM)
282     .Case("TPOFF", VK_TPOFF)
283     .Case("tpoff", VK_TPOFF)
284     .Case("DTPOFF", VK_DTPOFF)
285     .Case("dtpoff", VK_DTPOFF)
286     .Case("TLVP", VK_TLVP)
287     .Case("tlvp", VK_TLVP)
288     .Default(VK_Invalid);
289 }
290 
291 /* *** */
292 
anchor()293 void MCTargetExpr::anchor() {}
294 
295 /* *** */
296 
EvaluateAsAbsolute(int64_t & Res) const297 bool MCExpr::EvaluateAsAbsolute(int64_t &Res) const {
298   return EvaluateAsAbsolute(Res, 0, 0, 0);
299 }
300 
EvaluateAsAbsolute(int64_t & Res,const MCAsmLayout & Layout) const301 bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
302                                 const MCAsmLayout &Layout) const {
303   return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, 0);
304 }
305 
EvaluateAsAbsolute(int64_t & Res,const MCAsmLayout & Layout,const SectionAddrMap & Addrs) const306 bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
307                                 const MCAsmLayout &Layout,
308                                 const SectionAddrMap &Addrs) const {
309   return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs);
310 }
311 
EvaluateAsAbsolute(int64_t & Res,const MCAssembler & Asm) const312 bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
313   return EvaluateAsAbsolute(Res, &Asm, 0, 0);
314 }
315 
EvaluateAsAbsolute(int64_t & Res,const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs) const316 bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
317                                 const MCAsmLayout *Layout,
318                                 const SectionAddrMap *Addrs) const {
319   MCValue Value;
320 
321   // Fast path constants.
322   if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
323     Res = CE->getValue();
324     return true;
325   }
326 
327   // FIXME: The use if InSet = Addrs is a hack. Setting InSet causes us
328   // absolutize differences across sections and that is what the MachO writer
329   // uses Addrs for.
330   bool IsRelocatable =
331     EvaluateAsRelocatableImpl(Value, Asm, Layout, Addrs, /*InSet*/ Addrs);
332 
333   // Record the current value.
334   Res = Value.getConstant();
335 
336   return IsRelocatable && Value.isAbsolute();
337 }
338 
339 /// \brief Helper method for \see EvaluateSymbolAdd().
AttemptToFoldSymbolOffsetDifference(const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet,const MCSymbolRefExpr * & A,const MCSymbolRefExpr * & B,int64_t & Addend)340 static void AttemptToFoldSymbolOffsetDifference(const MCAssembler *Asm,
341                                                 const MCAsmLayout *Layout,
342                                                 const SectionAddrMap *Addrs,
343                                                 bool InSet,
344                                                 const MCSymbolRefExpr *&A,
345                                                 const MCSymbolRefExpr *&B,
346                                                 int64_t &Addend) {
347   if (!A || !B)
348     return;
349 
350   const MCSymbol &SA = A->getSymbol();
351   const MCSymbol &SB = B->getSymbol();
352 
353   if (SA.isUndefined() || SB.isUndefined())
354     return;
355 
356   if (!Asm->getWriter().IsSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
357     return;
358 
359   MCSymbolData &AD = Asm->getSymbolData(SA);
360   MCSymbolData &BD = Asm->getSymbolData(SB);
361 
362   if (AD.getFragment() == BD.getFragment()) {
363     Addend += (AD.getOffset() - BD.getOffset());
364 
365     // Pointers to Thumb symbols need to have their low-bit set to allow
366     // for interworking.
367     if (Asm->isThumbFunc(&SA))
368       Addend |= 1;
369 
370     // Clear the symbol expr pointers to indicate we have folded these
371     // operands.
372     A = B = 0;
373     return;
374   }
375 
376   if (!Layout)
377     return;
378 
379   const MCSectionData &SecA = *AD.getFragment()->getParent();
380   const MCSectionData &SecB = *BD.getFragment()->getParent();
381 
382   if ((&SecA != &SecB) && !Addrs)
383     return;
384 
385   // Eagerly evaluate.
386   Addend += (Layout->getSymbolOffset(&Asm->getSymbolData(A->getSymbol())) -
387              Layout->getSymbolOffset(&Asm->getSymbolData(B->getSymbol())));
388   if (Addrs && (&SecA != &SecB))
389     Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));
390 
391   // Pointers to Thumb symbols need to have their low-bit set to allow
392   // for interworking.
393   if (Asm->isThumbFunc(&SA))
394     Addend |= 1;
395 
396   // Clear the symbol expr pointers to indicate we have folded these
397   // operands.
398   A = B = 0;
399 }
400 
401 /// \brief Evaluate the result of an add between (conceptually) two MCValues.
402 ///
403 /// This routine conceptually attempts to construct an MCValue:
404 ///   Result = (Result_A - Result_B + Result_Cst)
405 /// from two MCValue's LHS and RHS where
406 ///   Result = LHS + RHS
407 /// and
408 ///   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
409 ///
410 /// This routine attempts to aggresively fold the operands such that the result
411 /// is representable in an MCValue, but may not always succeed.
412 ///
413 /// \returns True on success, false if the result is not representable in an
414 /// MCValue.
415 
416 /// NOTE: It is really important to have both the Asm and Layout arguments.
417 /// They might look redundant, but this function can be used before layout
418 /// is done (see the object streamer for example) and having the Asm argument
419 /// lets us avoid relaxations early.
EvaluateSymbolicAdd(const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet,const MCValue & LHS,const MCSymbolRefExpr * RHS_A,const MCSymbolRefExpr * RHS_B,int64_t RHS_Cst,MCValue & Res)420 static bool EvaluateSymbolicAdd(const MCAssembler *Asm,
421                                 const MCAsmLayout *Layout,
422                                 const SectionAddrMap *Addrs,
423                                 bool InSet,
424                                 const MCValue &LHS,const MCSymbolRefExpr *RHS_A,
425                                 const MCSymbolRefExpr *RHS_B, int64_t RHS_Cst,
426                                 MCValue &Res) {
427   // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
428   // about dealing with modifiers. This will ultimately bite us, one day.
429   const MCSymbolRefExpr *LHS_A = LHS.getSymA();
430   const MCSymbolRefExpr *LHS_B = LHS.getSymB();
431   int64_t LHS_Cst = LHS.getConstant();
432 
433   // Fold the result constant immediately.
434   int64_t Result_Cst = LHS_Cst + RHS_Cst;
435 
436   assert((!Layout || Asm) &&
437          "Must have an assembler object if layout is given!");
438 
439   // If we have a layout, we can fold resolved differences.
440   if (Asm) {
441     // First, fold out any differences which are fully resolved. By
442     // reassociating terms in
443     //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
444     // we have the four possible differences:
445     //   (LHS_A - LHS_B),
446     //   (LHS_A - RHS_B),
447     //   (RHS_A - LHS_B),
448     //   (RHS_A - RHS_B).
449     // Since we are attempting to be as aggressive as possible about folding, we
450     // attempt to evaluate each possible alternative.
451     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
452                                         Result_Cst);
453     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
454                                         Result_Cst);
455     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
456                                         Result_Cst);
457     AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
458                                         Result_Cst);
459   }
460 
461   // We can't represent the addition or subtraction of two symbols.
462   if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
463     return false;
464 
465   // At this point, we have at most one additive symbol and one subtractive
466   // symbol -- find them.
467   const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
468   const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;
469 
470   // If we have a negated symbol, then we must have also have a non-negated
471   // symbol in order to encode the expression.
472   if (B && !A)
473     return false;
474 
475   Res = MCValue::get(A, B, Result_Cst);
476   return true;
477 }
478 
EvaluateAsRelocatable(MCValue & Res,const MCAsmLayout & Layout) const479 bool MCExpr::EvaluateAsRelocatable(MCValue &Res,
480                                    const MCAsmLayout &Layout) const {
481   return EvaluateAsRelocatableImpl(Res, &Layout.getAssembler(), &Layout,
482                                    0, false);
483 }
484 
EvaluateAsRelocatableImpl(MCValue & Res,const MCAssembler * Asm,const MCAsmLayout * Layout,const SectionAddrMap * Addrs,bool InSet) const485 bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
486                                        const MCAssembler *Asm,
487                                        const MCAsmLayout *Layout,
488                                        const SectionAddrMap *Addrs,
489                                        bool InSet) const {
490   ++stats::MCExprEvaluate;
491 
492   switch (getKind()) {
493   case Target:
494     return cast<MCTargetExpr>(this)->EvaluateAsRelocatableImpl(Res, Layout);
495 
496   case Constant:
497     Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
498     return true;
499 
500   case SymbolRef: {
501     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
502     const MCSymbol &Sym = SRE->getSymbol();
503 
504     // Evaluate recursively if this is a variable.
505     if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None) {
506       bool Ret = Sym.getVariableValue()->EvaluateAsRelocatableImpl(Res, Asm,
507                                                                    Layout,
508                                                                    Addrs,
509                                                                    true);
510       // If we failed to simplify this to a constant, let the target
511       // handle it.
512       if (Ret && !Res.getSymA() && !Res.getSymB())
513         return true;
514     }
515 
516     Res = MCValue::get(SRE, 0, 0);
517     return true;
518   }
519 
520   case Unary: {
521     const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
522     MCValue Value;
523 
524     if (!AUE->getSubExpr()->EvaluateAsRelocatableImpl(Value, Asm, Layout,
525                                                       Addrs, InSet))
526       return false;
527 
528     switch (AUE->getOpcode()) {
529     case MCUnaryExpr::LNot:
530       if (!Value.isAbsolute())
531         return false;
532       Res = MCValue::get(!Value.getConstant());
533       break;
534     case MCUnaryExpr::Minus:
535       /// -(a - b + const) ==> (b - a - const)
536       if (Value.getSymA() && !Value.getSymB())
537         return false;
538       Res = MCValue::get(Value.getSymB(), Value.getSymA(),
539                          -Value.getConstant());
540       break;
541     case MCUnaryExpr::Not:
542       if (!Value.isAbsolute())
543         return false;
544       Res = MCValue::get(~Value.getConstant());
545       break;
546     case MCUnaryExpr::Plus:
547       Res = Value;
548       break;
549     }
550 
551     return true;
552   }
553 
554   case Binary: {
555     const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
556     MCValue LHSValue, RHSValue;
557 
558     if (!ABE->getLHS()->EvaluateAsRelocatableImpl(LHSValue, Asm, Layout,
559                                                   Addrs, InSet) ||
560         !ABE->getRHS()->EvaluateAsRelocatableImpl(RHSValue, Asm, Layout,
561                                                   Addrs, InSet))
562       return false;
563 
564     // We only support a few operations on non-constant expressions, handle
565     // those first.
566     if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
567       switch (ABE->getOpcode()) {
568       default:
569         return false;
570       case MCBinaryExpr::Sub:
571         // Negate RHS and add.
572         return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
573                                    RHSValue.getSymB(), RHSValue.getSymA(),
574                                    -RHSValue.getConstant(),
575                                    Res);
576 
577       case MCBinaryExpr::Add:
578         return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
579                                    RHSValue.getSymA(), RHSValue.getSymB(),
580                                    RHSValue.getConstant(),
581                                    Res);
582       }
583     }
584 
585     // FIXME: We need target hooks for the evaluation. It may be limited in
586     // width, and gas defines the result of comparisons and right shifts
587     // differently from Apple as.
588     int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
589     int64_t Result = 0;
590     switch (ABE->getOpcode()) {
591     case MCBinaryExpr::Add:  Result = LHS + RHS; break;
592     case MCBinaryExpr::And:  Result = LHS & RHS; break;
593     case MCBinaryExpr::Div:  Result = LHS / RHS; break;
594     case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
595     case MCBinaryExpr::GT:   Result = LHS > RHS; break;
596     case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
597     case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
598     case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
599     case MCBinaryExpr::LT:   Result = LHS < RHS; break;
600     case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
601     case MCBinaryExpr::Mod:  Result = LHS % RHS; break;
602     case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
603     case MCBinaryExpr::NE:   Result = LHS != RHS; break;
604     case MCBinaryExpr::Or:   Result = LHS | RHS; break;
605     case MCBinaryExpr::Shl:  Result = LHS << RHS; break;
606     case MCBinaryExpr::Shr:  Result = LHS >> RHS; break;
607     case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
608     case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
609     }
610 
611     Res = MCValue::get(Result);
612     return true;
613   }
614   }
615 
616   llvm_unreachable("Invalid assembly expression kind!");
617 }
618 
FindAssociatedSection() const619 const MCSection *MCExpr::FindAssociatedSection() const {
620   switch (getKind()) {
621   case Target:
622     // We never look through target specific expressions.
623     return cast<MCTargetExpr>(this)->FindAssociatedSection();
624 
625   case Constant:
626     return MCSymbol::AbsolutePseudoSection;
627 
628   case SymbolRef: {
629     const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
630     const MCSymbol &Sym = SRE->getSymbol();
631 
632     if (Sym.isDefined())
633       return &Sym.getSection();
634 
635     return 0;
636   }
637 
638   case Unary:
639     return cast<MCUnaryExpr>(this)->getSubExpr()->FindAssociatedSection();
640 
641   case Binary: {
642     const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
643     const MCSection *LHS_S = BE->getLHS()->FindAssociatedSection();
644     const MCSection *RHS_S = BE->getRHS()->FindAssociatedSection();
645 
646     // If either section is absolute, return the other.
647     if (LHS_S == MCSymbol::AbsolutePseudoSection)
648       return RHS_S;
649     if (RHS_S == MCSymbol::AbsolutePseudoSection)
650       return LHS_S;
651 
652     // Otherwise, return the first non-null section.
653     return LHS_S ? LHS_S : RHS_S;
654   }
655   }
656 
657   llvm_unreachable("Invalid assembly expression kind!");
658 }
659